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Most studies in chronobiology focus on solar cycles (daily and annual).

Moonlight and the lunar cycle received considerably less attention by chron-

obiologists. An exception are rhythms in intertidal species. Terrestrial

ecologists long ago acknowledged the effects of moonlight on predation suc-

cess, and consequently on predation risk, foraging behaviour and habitat

use, while marine biologists have focused more on the behaviour and

mainly on reproduction synchronization with relation to the Moon phase.

Lately, several studies in different animal taxa addressed the role of moon-

light in determining activity and studied the underlying mechanisms. In this

paper, we review the ecological and behavioural evidence showing the effect

of moonlight on activity, discuss the adaptive value of these changes, and

describe possible mechanisms underlying this effect. We will also refer

to other sources of night-time light (‘light pollution’) and highlight open

questions that demand further studies.
1. Introduction
Most studies in chronobiology focus on solar cycles (daily and annual); moon-

light and the lunar cycle received considerably less attention. An exception are

intertidal habitats, where the effects of the lunar cycle have been studied exten-

sively with a focus on behaviour and reproduction synchronization (reviewed

by [1,2]). Terrestrial ecologists long ago acknowledged the effects of moonlight

on predation success, and consequently on predation risk, foraging behaviour

and habitat use [3,4].

The lunar cycle refers to the 29.5 days (lunar month) required for the Moon

to orbit around the Earth, and the 24.8 h (lunar day) required for the Moon to

travel by the same spot on the Earth. These two cycles give rise to several environ-

mental cycles, such as illumination levels, tides and geomagnetic fields. As a

result of the Moon’s orbit around the Earth, every approximately 14.5 days the

Moon, the Earth and the Sun are in approximately the same axis and this gives

rise to spring tides. The 24.8-hour lunar day, on the other hand, leads to a tidal

cycle of 12.4 h, with high tides when the Moon is positioned directly above the

sea water or on the point diametrically opposed on the other side of the planet.

Finally, the deviation of the Moon’s orbit from the Earth’s equatorial plane

causes the amplitude of the semidiurnal tides (with a period of 12.4 h) to be asym-

metrical, leading a semidiurnal inequality in the tides, in some cases so unequal

that there is only one significant ebb of water every 24.8 h and not every 12.4 h

[5,6]. All these environmental changes can be perceived by animals and plants,

affect their behaviour, physiology, the adaptive significance of performing certain

activity at a certain time and ultimately affect their fitness.

Light changes during the lunar cycle can affect rhythms in organisms in

several non-mutually exclusive ways. It can represent a time cue, for example,

for explosive breeding in amphibians; it can change the ability of animals to

use visual cues, affecting the use of senses (e.g. for communication, navigation,
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prey or predator location); and it can indirectly change the

biotic environment by affecting activity levels of predators,

competitors and prey. In the marine realm, the Earth’s biggest

reproduction event known as the ‘mass spawning event’,

which occurs in the Great Barrier Reef, Australia, the Moon

may act as clock to choreograph sex among more than

100 species of corals at the same night, once a year.

We review the ecological and behavioural evidence for

the cycling effect of moonlight on animals, discuss the adap-

tive value of these responses and address possible underlying

mechanisms: is there evidence for a lunar day or lunar month

endogenous rhythm? Does the effect of moonlight represent a

‘masking’ effect? Is moonlight intensity high enough to influ-

ence the circadian clock, and how? We also refer to artificial

sources of nocturnal light (‘light pollution’) and highlight

open questions that demand further studies.
:20123088
2. Effects on reproduction
(a) Invertebrates
The effects of moonlight on reproduction are summarized

in the electronic supplementary material, table S1. One of the

most prominent examples of light-dependent behaviour in

Anthozoans is the synchronized spawning at the Great Barrier

Reef in Western Australia [7–10], Hawaii [11], the Caribbean

[12] and Okinawa [13]. Hundreds of species of corals and

other invertebrates spawn simultaneously several nights after

the full Moon. The timing of annual coral spawning varies

geographically around the Earth but is consistent and predict-

able at any location [13,14]. Environmental factors, such as

sea temperature, salinity, tidal periodicity, food and day

length have been suggested as inducers for gametogenesis

and spawning [7,10,15], while actual spawning appears to be

triggered by the level of lunar irradiance [7,13,16–18].

Sesarma haematocheir is a terrestrial crab, common in

Japan. One population of this species live as adults in the

mountains above the Ogamo river, but adult females have

to climb down the mountain to release their offspring into

the sea. They do so only during new or full Moon, when

spring tides occur [19]. This semilunar rhythm is entrained

by moonlight cycles and not by tides [20,21].

The small marine chironomid Clunio marinus [22] larvae

live in algae mats in the lowest intertidal zone of the European

Atlantic coast. When new or full Moon is approaching, the

mature larvae pupate and few days later the adults eclose at

local low tide, when their habitat has fallen dry. The males

eclose first, search for a female pupa, help the wingless

female to eclose from the pupal case and mate with her.

After mating, the males bring the females to favourable

places, where the fertilized eggs are deposited; shortly after-

wards the adults die. The insects use a circasemilunar clock

to time these events and the moonlight cycles as zeitgeber in

southern populations [23]. Northern populations use water

turbulence as zeitgeber, because northern summer nights are

short and the Moon is too low at the sky to be able to be a

reliable zeitgeber.

Lunar rhythms in reproduction exist also in marine

species that do not experience tidal fluctuations, such as the

swarming of the Palolo worm Eunice viridis in the Pacific

ocean [24], and in species living in tropical lakes, as plankton

and mayflies [25,26]. The mayfly Povilla adusta develops in

Lake Victoria, West Africa. Povilla mayflies eclose in large
numbers from their pupal case 2 days after full Moon. This

synchrony is necessary because adults live only 1–2 h and

during this short time span they have to perform their

mating flight, copulate and lay eggs. They do so during the

time when the bright Moon lengthens twilight [27].

(b) Amphibians
Anurans typically use either explosive or prolonged breeding.

Explosive breeders show a very high degree of synchroniza-

tion. A study which analysed various parameters related to

reproductive activity for a range of anuran and urodele species,

sites and years found lunar periodicity in the large arrival

and spawning events, the number of animals in amplexus

and first sightings of individuals [28]. Female Tungara frogs

(Physalaemus pustulosus) change their mate choice in response

to changing light levels: in dim light, females prefer males

with simple, louder calls, which indicate a closer male, than

in the dark. These differences in male call preference in

response to changing light levels probably reflect the increased

predation risk caused by movement towards the chosen male

when light levels are high [29].

(c) Birds
Several species of nightjars synchronize their nesting cycles

with the lunar cycle: the whip-poor-will (Caprimulgus
vociferous) hatching tends to occur during new Moon

nights, so that the highest energy demand of the nestlings

coincides with the period with most moonlight [30]. In

the visually oriented insectivores, fierynecked nightjar

(Caprimulgus pectoralis), egg laying starts with the full Moon

in September and is further stimulated by the next two full

Moon periods. Parents feed their brood during twilight and

full Moon [31], enabling longer foraging activity which

coincides with the highest energy demand of the brood.

In the moluccan megapode (Megapodius wallacei), egg

laying peaks during the week after full Moon, and decreases

just after new Moon. Moreover, during full Moon nights, the

egg burrows are more distributed and are deeper than during

new Moon [32].

(d) Mammals
In the Euroasian badger (Meles meles), squat marking and

raised-leg urination, which increase in frequency during

reproductively active period, as well as mattings, are highest

around new Moon [33].

To sum, in many cases, Moon phase acts as a synchroni-

zer for reproduction, allowing explosive breeders (such as

amphibians), species which use external fertilization (such

as anthozoans) or species with extremely short lifespan (may-

flies) to synchronize reproductive activity. In these cases,

Moon phase serves as a synchronizing cue between individ-

uals, which is expected to result in increased reproductive

success. In other groups, Moon phase serves as a cue for

other environmental parameter (spring tides, food availability)

which effect reproductive success.
3. Effects on communication
The effects of moonlight on communication are summarized in

the electronic supplementary material, table S2. Moonlight
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presents a powerful source of light, which may greatly affect

the ability to use visual communication.

(a) Birds
Eagle owls (Bubo bubo) use visual signalling for intraspecific

communication. Vocal display is more frequent, and per-

formed on higher elevation call-posts in moonlit nights,

increasing the conspicuousness of the white throat feathers

that appear during the vocal display [34]. Calls of the Mexican

spotted owl (Strix occidentalis lucida), which does not display

white plumage when calling, are more frequent during the

waning and new Moon quarters [35]. Call frequency of noctur-

nal seabirds (petrels) are very low during moonlit nights,

possibly to avoid predation [36].

Several species of nightjars vocalize more during moon-

light nights. It is possible that the high light intensity

results in increased time available for foraging and ease in

moving and defending territories, as well as better ability

to detect and evade predators, which result in increased

call frequency [31,37,38].

(b) Mammals
Coyotes (Canis latrans) use three different types of howling:

lone, group and group-yip howling. Group and group-yip

howling used for territorial advertisement are more frequent

during new Moon nights [39], implying increased territorial

defence. Alternatively, under low visual acuity, the coyotes

may prefer to hunt larger prey, which demands hunting in

groups and hence communication [39].
4. Effects on foraging and predation
(success and risk)

The effects of moonlight on foraging and predation are sum-

marized in electronic supplementary material, table S3. Many

studies have documented an influence of moonlight on fora-

ging that could result from the effects of light conditions on

visual detection of food items, including prey, and therefore

may also influence predation risk. Many species are both pred-

ator and prey, and the demand of avoiding predation while

foraging, both of which may be influenced by light, makes fora-

ging a complex decision. In case the increased predation risk

outweighs the increase in foraging success, a lower activity

level during moonlight nights is expected. Conversely, if the

increase in foraging success outweighs predation risk, a

higher activity level during moonlight nights is expected. The

effect on predation success may be caused by increased

visual acuity during moonlit nights, but may also result from

changes in prey activity, which may in turn respond to the

lunar cycle.

(a) Invertebrates
Doodle bug larvae (Myrmeleon obscurus) dig funnel-shaped

traps into the sand at the bottom of which they lurk for

insect prey [40]. These funnels are rebuilt every day: around

full Moon the pits are large, during new Moon small; perhaps

the higher probability to catch prey during moonlit nights is

worth the investment. This is an endogenous lunar rhythm,

since it is observable also under continuous darkness in the

laboratory [41].
The nocturnal bee, Sphecodogastra texana, shows a clear

lunar rhythm in foraging. Pollen collection occurs during

dusk and is extended during moonlit night; the bees do not

leave their nest during new Moon nights [42]. Even for the

diurnal honeybee a lunar rhythm in foraging activity is

reported in North Africa (Morocco) during winter, whereas

foraging shows a semilunar rhythm during the summer [43].

(b) Reptiles
Most reptiles are active during daytime; there are very few

studies on the effect of Moon phase on reptiles. Most studies

found that snakes are less active during full Moon nights,

among them a small cryptic desert snake, the desert night-

snake (Hypsiglena chlorophaea), which feeds on other small

reptiles [44], the habu (Trimeresurus flavoviridis), a venomous

pit viper species endemic to the Ryukyu Islands of Japan

[45], and the fish eating snake Lake Tanganyika water

snake (Lycodonomorphus bicolor) [46]. Bright moonlight avoid-

ance by snakes may be a strategy that reduces detection by

visually hunting predators and may also be influenced by

the activity patterns of their nocturnal rodent prey. A differ-

ent response was observed in the Florida cottonmouth snakes

(Agkistrodon piscivorus conanti) which are terrestrial, and feed

on fish carrion dropped by nesting birds. They are nocturnal,

and their only potential predators are owls. The availability

of fish carrions is indifferent to light levels, eliminating the

complexities of availability of the prey. Activity of these

snakes is positively correlated with Moon phase, and snakes

are significantly more active during full Moon nights. The

higher activity during full Moon nights is the opposite of the

expected response to predation risk from owls, and probably

results from the better visual detection of the fish carrions [47].

Two studies looked at the effect of moonlight on habitat

selection in snakes under laboratory conditions: one found

that adult prairie rattlesnakes (Crotalus viridis viridis) decrease

activity in general and especially in open microhabitats during

moonlit nights [48]. The other tested the combined effect of

moonlight and prey availability on habitat selection in the

brown tree snake (Boiga irregularis) which enabled them to

differentiate between the direct effect of light on perceived pre-

dation risk and prey detection. The snakes were able to detect

the prey presence in the open microhabitat during both full

and Moon nights, but descended from the tree canopy microha-

bitat only during new Moon nights, indicating that microhabitat

selection in this species is a predator avoidance strategy [46].

(c) Birds
Movement of breeding eagle owls (Bubo bubo) is highest

during full Moon nights. This may reflect an increase in the

time needed to find prey, resulting from an effect of Moon

phase on prey behaviour. Accordingly, hunting effort in

this species peaked during dark nights, possibly compensat-

ing for a decreased hunting efficiency due to the decreased

ability to detect prey visually [49]. However, it may also

result from the time owls devote to vocal communication dis-

plays, which involve frequent and rapid movements from one

call post to another, during full Moon nights (see the com-

munication chapter in [49]).

Nightjars, visually oriented insectivores, exhibit increa-

sed foraging efficiency by moonlight and avoid activity at

dark nights; some species enter torpor during these nights

[50–53]. The whip-poor-will (Caprimulgus vociferous) increases
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locomotor activity, nest visits and vocalization during full

Moon nights [30]. However, Moon heights and not percentages

of moon-face illuminated affect foraging activity, suggest-

ing that some lunar light is necessary to allow activity,

but above a threshold level other factors are important

[44]. Two species of tropical nightjars, the standard-winged

nightjar (Macrodipteryx longipennis) and the long-tailed nightjar

(Caprimulgus climacurus), show the greatest crepuscular activity

during new Moon nights. However, foraging during crepuscu-

lar twilight impose a high risk of predation to nightjars, and

when moonlight conditions allow them to forage during the

night, they avoid the twilight and forage during nights. More-

over, during the wet season, Moon light promoted flight

activity of insects, increasing prey availability [54]. The freckled

nightjars (Caprimulgus tristigma) forage for insects in moon-

light, and become torpid when light levels are low. When the

full Moon was covered by clouds, the nightjars did not

forage and entered torpor, indicating that effects of the lunar

cycle on foraging and thermoregulation are a direct response

to light conditions [53]. Australian owlet-nightjars (Aegotheles
cristatus) do not increase foraging during moonlit nights, poss-

ibly because risk of predation during full Moon nights

outweighs the benefits of foraging [50].

Lapwings (Vanellus vanellus) feed by day and roost by night

for most of the lunar cycle, except for a few full Moon nights

during summer, when the pattern is reversed [55].

Many bird species migrate at night. Decreased lunar light is

correlated with increased number of departures during fall

migration of land birds [56]. The arrival date of Barau’s

petrel (Pterodroma baraui), a tropical seabird, to their breeding

colonies, occurred around the last full Moon of the austral

(Southern Hemisphere) winter, and their night-time sea

activity exhibited a clear cycle of about 29 days, with higher

activity during full Moon nights, suggesting that nocturnal

foraging is regulated by Moon phase [57].
(d) Mammals
The effect of moonlight as an indirect cue for predation risk

for rodents received considerable attention during the last

decades [4,58–60]. Rodents are preyed upon by owls and

mammalian predators, whose predation efficiency increases

during full Moon nights [4,59,61–64]; consequently, many

rodent species reduce activity or shift it to more sheltered

habitats [58,65–70].

Most bat species which respond to moonlight decrease

their activity during moonlit nights (lunar-phobia). However,

pteropodid bats feed on fruits and rely on vision for foraging,

and it is expected that locating fruits will be easier during

moonlit nights. Nevertheless, during full Moon nights the

Mexican fruit bat (Artibeus jamaicensis [71]) decreases its

activity, and the eastern tube-nosed bat (Nyctimene robinsoni)
has significantly lower body temperature, reflecting reduced

activity [72]. Common vampire bat Desmodus rotundus are

most active during new Moon nights and darker periods of

the night, and most bats do not leave their roost during full

Moon nights [73]. Fruits (and prey of vampire bats) avail-

ability should be similar in full and new Moon nights, but

may be easier to find during full Moon lights, so it is possible

that the bats are able to forage more efficiently during moon-

lit nights, and therefore need to invest less time in foraging.

Alternatively, the reduction in activity may reflect predation

avoidance. Studies on islands, where most of the visual bat
predators are absent, found no effect of lunar phase on

activity [74,75], supporting the latter hypothesis.

Insectivores and fish eating bats are both predators and

prey, and their own prey may respond to the lunar cycle.

Thus, moonlight may increase their foraging success and pre-

dation risk. Moreover, their prey may reduce activity levels in

response to high illumination and predation risk, thus redu-

cing food availability. Many studies of insectivorous bats

found no effect of Moon phase on activity levels. Others

found such an effect, and attributed it to increased predation

risk, decreased prey availability or both. The greater fishing

bat, Noctilio leporinus, significantly increases its activity in

low light conditions [76] including the dark parts of full

Moon nights, suggesting that they respond directly to light

conditions. Interestingly, these bats preferred to forage in

well-lit areas by dock or boat lights; these areas appear to

have the highest concentration of surface disturbances from

fish activity, i.e. the bats appear to be responding to the

effect of light on their prey behaviour [76]. Another water

surface forager whose activity is negatively correlated with

moonlight is Daubenton’s bat (Myotis daubentonii) [77].

A study of activity levels of the white-throated round-eared

bat (Lophostoma silvicolum), a gleaning insectivorous bat

which relies mainly on passive acoustic cues to find prey,

and its main prey item katydids, found that both were signifi-

cantly more active during the dark periods associated with

new Moon [78], suggesting that the reduced activity can be

attributed to reduced prey availability [78].

The fringe-lipped bat (Trachops cirrhosis) preys on frogs

which it locates acoustically through the frogs calling behav-

iour. When the frogs detect this bat, they immediately stop

calling, reducing predation risk. On dark nights, the frogs are

not able to visually detect the bats, which may affect predation

success of the bats, and therefore their activity levels [79].

Another possible response to moonlight is a change in

microhabitat selection. A study of bat community comprising

insectivorous species in Vancouver Island found no evidence

for the effect of moonlight intensity. However, height of

activity within the forest changed depending on Moon

phase, and there was a significant interaction between moon-

light and height. The authors suggest that bats adjust use of

microhabitats to match prey distribution [80].
(i) Large mammalian predators
Darwin suggested that human innate fear of darkness is

an adaptation for avoiding risk of predation by nocturnal

predators [81]. A study of African lions found that food con-

sumption is negatively correlated with Moon light levels.

This result accords with studies showing highest hunting suc-

cess during dark nights [82]. Lions were more likely to make

a daytime kill after full Moon nights. Human victims were

significantly more likely to be attacked during new Moon

nights and during the darkest hours of the night [82].

While herbivores are most likely to be attacked during the

first and third quarter, humans were most likely to be

attacked during the first week after full Moon. This difference

probably stems from the difference in behaviour between her-

bivores and humans: while herbivores remain outdoors all

night, humans sleep in shelters, are not active throughout

the night and are most exposed to predators during the eve-

ning. The first hours of the night are darkest during the week

following full Moon, and the lions are hungriest at that time
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because of the low predation success during full Moon

nights, producing a lunar pattern in human predation [82].

Wild maned wolves (Chysocyon brachyurys), which hunt

for small rodents and ground living birds, reduce their

activity during full Moon nights, possibly in response to

reduced activity of their prey [83]. The reduced activity

level could also result from increased predation efficiency.

African wild dogs (Lycaon pictus) are considered diurnal or

crepuscular. However, when more than 49 per cent of the

Moon is visible, starting 7 days before full Moon, and

ending 6 days after full Moon, they hunt also at night [84].

In another study, the number of pray taken by European

wolves (Canis lupus lupus) was highest during dim light;

dawn, dusk and moonlit nights [61,64].

Cats hunt primarily using visual and auditory cues.

Moonlight increases visibility for cats, and therefore vulner-

ability of their prey. A study of activity levels of jaguars

(Panthera onca) and their most important prey armadillos

(Dasypus novemcinctus) found that armadillos were less

active above ground during nights with high Moon illumina-

tion levels, while that of the jaguar shifted from armadillo

habitats to other habitats [85].

(ii) Primates
Most nocturnal primates are largely dependent on moonlight

for their foraging activity [86–89]. They show a remarkable

lunarphilia, with nocturnal activity tracking the 24.8 h lunar

periodicity. The presumed benefits include predator avoidance,

competitor avoidance and optimized foraging opportunities.

Nocturnal activity in primates is restricted, probably by the

availability of Moon light, which may be a consequence of

the importance of the visual system in primates.

To sum, moonlight effects activity pattern of a forager if it

affects its ability to use its senses for locating its food, or if

it affects the availability of its prey. Prey species whose preda-

tion risk is influenced by moonlight are expected to reduce

their activity and/or change their microhabitat selection in

response to changing moonlight levels.
5. Mechanisms underlying lunar chronobiology
(a) Clock entrainment by moonlight
In many of the above-mentioned examples, the monthly

rhythms are controlled by endogenous circalunar clocks. In

other cases, the endogenous circadian clocks respond to

moonlight and the daily activity phases are shifted when

compared with moonless nights (figure 1). In any case, the

animals have to perceive the Moon phase and moonlight.

The mechanisms and photoreceptors used to detect moon-

light and entrain or shift the endogenous clock were

revealed in only few organisms.

(i) Invertebrates
In corals, the repeated episodes associated with broadcast

spawning year after year is controlled by the environment

(Moon phase and moonlight) and an endogenous biological

clock. Jokiel et al. [18] experimentally manipulated moonlight

phases, which resulted in asynchronous planula release from

Pocillopora damicornis colonies when they were maintained in

constant full/new Moon conditions. Biophysical evidence

shows that corals exhibit photoreception in the blue region
of the light spectrum [90] and are extraordinarily sensitive to

blue spectra matching blue moonlight irradiance levels [91].

Nevertheless, the molecular elements underpinning the detec-

tion and response to the low intensity blue moonlight has

remained undescribed for many years, and only recently Levy

et al. [92] reported the presence of an ancient family of blue-

light-sensing photoreceptors, cryptochromes (CRYs), in the

ubiquitous reef-building coral, Acropora millepora. In addition

to being CRYs from the simplest eumetazoan described to

date, cry2 gene was expressed preferentially during full

versus new Moon nights, suggesting a key role in mass coral

spawning. cry2 codes for the ‘mammalian type’ CRY that

works as transcription factor in the core circadian clock of

mammals and is suggested to have similar function in non-

Drosophilid insects, but is absent from Drosophila melanogaster.
Recent studies have begun to unravel the genetic basis of

the lunar and circadian clock, as well as moonlight photore-

ception in the marine midge Clunio marinus. Mapping of

clock genes and light receptors identified ciliary opsin 2 as a

candidate to be involved in both lunar and diurnal timing;

cryptochrome 1 (cry1 ¼ ‘Insect type’ cryptochrome; main

photoreceptor of the circadian clock in D. melanogaster) as a

candidate gene for lunar timing; and two timeless (tim2,

tim3) genes as candidate genes for diurnal timing [93]. tim2
is also called timeout and is involved in chromosome stability

and light entrainment of the circadian clock in D. melanogaster
[94]. The function of tim3 is still unknown, but it has sequence

similarities to tim2 and is also present in mosquitoes as Aedes
aegypti and Culex quinquefasciatus [93]. The photoreceptor

responsible for moonlight detection is most probably located

in the larval ocelli [95]. The latter show a lunar-rhythmic
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change of shielding pigment transparency indicating that

they do not only function as moonlight receptors, but that they

are also controlled by the circalunar clock itself, hence being

primary candidates for tracing input and output pathways

of the lunar pacemaker. Additionally, the reversible optical

change of shielding pigment transparency in Clunio reveals a

mechanism to enhance photosensitivity under the condition of

very dim light.

The fruitfly D. melanogaster does not show any lunar

periodicity, but its circadian clock has been shown to be very

sensitive to light [96,97] . The locomotor activity of fruitflies

can be easily entrained to moonlight-dark cycles, and when

artificial moonlight is given during the dark period of a 12 L :

12 D cycle, the flies’ usual crepuscular activity patterns turn

more nocturnal: the flies shift their activity largely into the

night [98]. Fruitflies seems to be active at dim light [99]; thus,

part of their nocturnality is due to moonlight-stimulated

activity without shifting the circadian clock [100]. Such

responses are also called masking effects (see below). Neverthe-

less, a significant part of the flies’ nocturnal activity is caused by

a phase shift of the molecular clock in response to moonlight

[98]. Thus, moonlight is capable of shifting the clock and can

act as significant zeitgeber in fruitflies. Interestingly, the blue-

light photopigment cryptochrome (CRY1) seems to be dispen-

sible for the phase-shifting capability of the clock, since flies

without functional CRY1 can still shift activity into the night,

whereas eyeless flies cannot [98]. Notably, the effect of moon-

light on Drosophila’s activity rhythm was entirely studied in

the laboratory at constant moderate temperatures. A recent

study shows that the flies do not increase activity during full

Moon nights in nature [101], most probably because of the

lower night-temperatures. The same applies for other nocturnal

activities as mating that can be observed under certain con-

ditions in the laboratory [102]. Nevertheless, the laboratory

studies showed unequivocally that the fruitflies have the

capability to respond to moonlight.

(ii) Mammals
In hamsters, constant night-time illumination at or below

moonlight intensities have at least four effects on the circa-

dian system: re-entrainment is accelerated following a shift

in the light cycle [103]; reproductive responsiveness to shor-

tened day lengths is enhanced [104]; the propensity to split

activity rhythms is augmented [105,106]; the range of entrain-

ment is increased [103]. The authors hypothesized that dim,

natural light at night may normally modify the phase

relationships between multiple circadian oscillators.

(b) Masking effect of moonlight
The term ‘masking’ [107] describes an immediate effect of a

stimulus that overrides an animal’s endogenous clock. The

masking effect of light is different in nocturnal and diurnal

species: light typically increases activity in diurnal mammals

(positive masking) and suppresses it in nocturnal ones (negative

masking), while darkness acts in the opposite way [108–111].

Masking has the adaptive value of confining animals to their

temporal niche, and may complement the circadian clock in

fine-tuning activity patterns in response to environmental

stimuli [112]. Although masking is presumably involved in

the response to moonlight; in many cases, it is rather difficult

to rigorously differentiate its contribution from that of other

mechanisms such as circadian or a circalunar clock.
One study showed clearly that ultraviolet light reflected

from the Moon acutely increased the amplitude of the circa-

dian rhythm in visual sensitivity of the horseshoe crab

[113]. Because these animals use vision to find mates and

prefer night-time high tides, moonlight presumably boosts

their visual sensitivity as they approach the shallows where

UV levels are elevated and competition for mates is high.

Owl monkeys (A. azarai boliviensis) and red-fronted lemurs

(Eulemur fulvus albifrons) increase nocturnal activity with

increased intensities of moonlight in either field studies or

seminatural conditions, suggesting a masking effect [87]. Sev-

eral studies have looked at the effect of clouds covering the

Moon [53,114], and even the effect of eclipse of the Moon

on activity [89]. These effects suggest that the moonlight-

associated activity of these primates is a product of acute

stimulatory effects of moonlight on nocturnal activity as evi-

dent in the reduced travelled distances in the lemur [115] and

reduced activity in the owl monkey [89] during full Moon

eclipses and by the effect of clouds covering the Moon on the

activity of nightjars [53]. During new Moon nights, owl mon-

keys become diurnal, compensating for the lack of nocturnal

activity. Thus, the switch of the temporal distribution of

activity from nocturnal to diurnal in the owl monkeys results

from masking of their truly nocturnal circadian system.

A field experiment using open enclosures which tested

the effect of two nights 3 h light pulse (2 lux) during new

Moon nights on the activity of common and golden spiny

mice (Acomys cahirinus and A. russatus, respectively) found

that while diurnal golden spiny mice did not respond, noc-

turnal common spiny mice reduced activity and body

temperature in response to the light pulse, suggesting that

negative masking was responsible for the observed pattern

[116]. Another study of these species found that during full

Moon nights foraging activity is low and cortisol metabolite

levels in faeces are elevated [70]; possibly mice respond to

increased light levels by increasing cortisol levels, which

affect their foraging. Moreover, glucocorticoids (GC) may

prepare the individual to an expected stressor [117]; GC con-

centrations may increase in anticipation of a challenge. Light

pulses, constant light or dim light during the night may cause

elevated GC levels in laboratory rats and mice, and in Nile

grass rats [118–123], although in some cases, it was reported

to have no effect or even decrease GC release [124,125]. It was

recently reported that aberrant light may directly affect mood

and cognitive functions in mice [123]; GC treatment was

shown to increase anxiety and conditioned fear [126–129],

and acute corticosterone elevation enhanced anti-predator

behaviours in tree lizard species [130].

GC affects behaviours that may reduce foraging. For

example, in a light dark box test, GC treatment resulted in

increased latency to leave the dark compartment, and in the

elevated plus maze, it increased time spent in the sheltered

arms [126–129]. Tree lizards treated with GC responded more

quickly to predators and hid longer [130], and in the Adelie

penguin (Pygoscelis adeliae) individuals with high pre-foraging

corticosterone levels spent less time foraging, and stayed

closed to the colony [131]. Interestingly, a recent paper [123]

found an increase in corticosterone levels in mice kept under

3.5 L : 3.5 D cycle, but not in melanopsin-knockout mice,

which also show impaired masking responses to light [132],

supporting the hypothesis that hormonal changes, stress

responses and other acute changes form at least part of the

mechanism underlying the masking response to moonlight.
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6. Physiological and behavioural effects of
artificial light at night on animals

We have highlighted the role of natural light at night in shap-

ing the daily activity patterns of animals. In the era of

industrialization, artificial illumination is becoming a major

force. While the effects of light at night on human health

have been the subject of extensive research [133–135], studies

on animals are less common and have only begun to acceler-

ate in recent years [136]. Light at night was shown to have

negative effects in rodents when chronically administered at

intensities comparable with those of street lamps (approx.

5–20 lux): it can suppress immune-function in hamsters

[137] and cause obesity in male mice [138]. Even exposure

to dim light at night may negatively affect the circadian

system of mammals, especially rodents, as evident by

changes in clock genes expression patterns [139]. Rotics

et al. [140] found reduced nocturnal activity and increased

intraspecific encounters in nocturnal common spiny mice

(Acomys cahirinus) kept in a field enclosure with artificial illu-

mination [140]. Similarly, nocturnal Santa Rosa beach mice

(Peromyscus polionotus l.) fed less and had less foraging

success in heavily lit beach patches [141]. In bat colonies

roosting inside lit buildings, dusk emergence was signifi-

cantly delayed and of longer duration, and juveniles were

smaller and lighter [142]. Furthermore, the installation of

street lights in a previously dark area can shift the timing

of activity and alter choice of commuting routes from roost

to foraging grounds [143]. Light at night, however, provides

some bat species with a good foraging ground as they hunt

for insects that are attracted by streetlights [144,145].

Perhaps, one of the most reported effect of light pollution is

the nocturnal singing of songbirds. Correlative field studies

have documented a significant relationship between the pres-

ence of artificial lights and earlier onset of dawn song in

several species [146,147]. In addition, female provisioning

rate to the chicks during the second part of the nestling

phase was increased in great tits (Parus major), suggesting

that there might be fitness consequences due to the high
workload [148]. Furthermore, besides affecting daily cycles,

light pollution has been found to advance the growth of the

reproductive system in European blackbirds (Turdus merula)

[149] and the time of egg laying in the blue tit (Cyanistes caeru-
leus) [147] and has therefore been hypothesized to be one of the

driving factors responsible for the earlier onset of reproduction

in birds thriving in urban areas [150,151].

If recent studies have started to elucidate the effects of arti-

ficial light on terrestrial species, very little research has been

conducted so far in aquatic ecosystems (but see [152]). Scien-

tists reported reduced overall activity and altered mating

behaviour in green frogs [153]. Moreover, artificial light has

been extensively used in aquaculture to increase fish growth

rates [154]. Nonetheless, negative effects on fish communities

have been hypothesized as a consequence of reduced vertical

movements of zooplankton in highly lit water bodies [155].

Despite the growing evidence of the circadian physiological

and behavioural effects of light pollution, we have still very lim-

ited understanding of its ultimate fitness consequences. Given

that the response of a species to artificial lighting is likely to

have food web level consequences, it is high time for scientists

to elaborate a conceptual framework directed to clarify possible

effects of artificial light on predator–prey interactions and

ecosystem function.
7. Summary and perspectives
There is no doubt that moonlight confers information that is

being used by diverse species as a cue. This influence is only

starting to reveal itself, and more study is needed in order to

fully understand its role. The mechanisms underlying these

responses is even less understood. The study of moonlight

chronobiology is extremely important in our era of industrial-

ization, when artificial illumination is becoming widespread

while its consequences to humans and ecological systems

are poorly understood.
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