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Abstract
Many clinical trials fall short of their accrual goals. This can be avoided with accurate accrual
prediction tools. Past researchers provide important methodological alternative models for
predicting accrual in clinical trials. One model allows for slow accrual at the start of the study,
which eventually reaches a threshold. A simpler model assumes a constant rate of accrual. A
comparison has been attempted but we wish to point out some important considerations when
comparing these two models. In fact, we can examine the reasonableness of a constant accrual
assumption (simpler model) which had data 239 days into a three-year study. We can now update
that and report accumulated from the full three years of accrual data and we can demonstrate that
constant accrual rate assumption was met in this particular study. We will use this report to frame
future research in the area of accrual prediction.
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1. Introduction
Zhang and Long (2010) provide an important methodological contribution to the literature
for predicting accrual in clinical trials. They accurately describe their effort as an extension
of Gajewski, Simon and Carlson (2008). An important parallel result was provided by
Anisimov and Fedorov (2007), and was derived and published independently.

The model developed by Zhang and Long allows for slow accrual at the start of the study,
which eventually reaches a threshold. The Gajewski et al. model is simpler in that it assumes
a constant rate of accrual. Zhang and Long compare their methodology to Gajewski et al.,
but we wish to extend some important considerations when comparing these two models.

Zhang and Long assert that “in most real trial situations, the constant accrual rate
assumption does not hold”. We have found evidence to the contrary. In fact, we can examine
the reasonableness of a constant accrual assumption using data cited in Gajewski et al.
which had data 239 days into a three-year study. We can now update that and report
accumulated from the full three years of accrual data and we can demonstrate that constant
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accrual rate assumption was met in this particular study. We will use this report to frame
future simulations in the area of accrual prediction.

2. Review of Gajewski et al. Model & Bayesian Runs Test
Before reporting the prediction results, we will review the model in Gajewski et al. (constant
accrual). We also report here a new Bayesian runs test that we claim is an important
diagnostic that should be computed for any accrual problem.

2.1 Review of Model
We wish to predict accrual after accruing m patients. Let w1, w2,…, wm represent the gap in
time that each new patient is accrued. The goal of the accrual monitoring process is to
develop a model for the yet to be observed waiting times Wm+1, Wm+2,…, Wn, where n is
the actual patient accrual at the end of the trial.

We assume that wi|θ ~ exp(1/θ) where exp(·) is the exponential distribution and E(wi) = θ.
In Gajewski et al. two priors were proposed: a flat prior and an informative prior. These
were respectively θ ~ IG(k = 0,V = 0) and θ ~ IG(k = 175, V = 1.5), where IG(·) is the
inverse gamma distribution. The 175 and 1.5 comes from answering two questions: (1) How
long will it take to accrue n subjects? (2) On a scale of 1–10, how confident are in your
answer to (1)? The answer to (1) provides T and the answer to (2)/10 provides P. In
Gajewski et al. we have T =3 years and P=0.5. We arrive at our informative prior since k =
nP and V = T P (the flat sets P = 0).

This conjugate prior results in alternative posteriors (flat- and informative-based) θ|w ~

IG(m, tm) and θ|w ~ IG(175 +m,1.5 +tm), where  represents the time the last patient
was accrued.

2.2. Review of Prediction Algorithm
The overall goal is to predict n with m gap times. First we predict the n − m data Wm+1,…,
Wn. To achieve this, first we randomly select θ1 from the posterior distribution and then
randomly select waiting time n − m random variables from Wm+1,1,…, Wn,1 from an
exponential distribution with parameter θ1. This process is repeated for θ2, θ3, …, θb. The
sum of observed and simulated waiting times, S b(n) = w1 + w2 + · · ·+ wm + Wm+1,b + · · · +
Wn,b represents b estimates of the total duration of the clinical trial of size n. However, n is
the unknown, so we use this process to obtain a posterior predictive sample size (np). Let T
represent the time point at which the study ends (for the purposes here T = 3 years). We then

compute partial sums S b(m+1), S b(m+2),… until the partial sum exceeds T. The values 
which represent the largest values where the partial sums do not exceed T, provides a
realization of the predictive distribution of sample sizes. Replication of this process provides
the posterior distribution nP. In this paper we will use observations in 1/12 year increments
to explore the cross validated prediction of the true accrual (n = 265) for T = 3 years of
accrual.

2.3. New Bayesian Runs Test
A Bayesian runs test, motivated by (Gelman, 2004, Chapter 6), tests the assumption of
independence and identical distribution. This test is performed using all n = 265 gap data
points. First, the number of runs of the observed gap data (w1, w2,…, wm) relative to
posterior mean (θb) is calculated. This is repeated for posterior predictive gap data (W1,b,
…, Wn,b) and posterior mean (θb).
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3. Results of Prediction
The probability of observed runs larger than predictive runs is 0.3986, suggesting
independent and identically distributed gap data. A graphical examination of the accrual data
(Figure 1) supports the use of exponential waiting times rather than a more complex waiting
time distribution. We evaluate the prediction accuracy using the expected absolute deviation
from the true accrual (n = 265), E(|np − 265|). Figure 2 displays the monthly prediction
across 36 months using a non-informative prediction and an informative prediction. The first
column displays the true three-year accrual (n = 265) and the point estimate with 95%
prediction intervals using only the data up to that point. We can see that the informative
prior does much better than the flat prior early on. Past the two-year point the flat and
informative versions essentially agree. The second column displays the error across time as
measured by E(|np − 265|). This can be described in terms of error %= E(|np − 265|)/265.
Early in the process (first year) the error for the flat prior is above 20% (20–60%) whereas
during that same timeframe the informative prior is always less than 20%. The true a prior
defined informative simple prediction model (Exponential) was extremely useful for
prediction in this clinical trial.

4. Direction for Future Research
Our experience is that a constant rate of accrual seems quite reasonable. One difference,
perhaps, between our experience and the experience of Zhang and Long is that we work in
an academic setting with smaller trials, typically at a single location. We do not know if our
experience, or the experience of Zhang and Long hold for most other researchers and
suggest that data be collected in a systematic fashion to better understand accrual patterns in
most clinical trials.

It is clear that a more complex model can be superior to a simpler model. We are in favor of
more complex models in some settings, but a further assessment would note the drawbacks
of a more complex model. First, specifying a prior distribution is far more difficult.
Important elements in a complex model, such as the number of knots in the cubic spline
(Zhang & Long, 2010) are not incorporated at all into the prior distribution, and those
elements which are incorporated are too complex for the average researcher to fathom.
Second, a more complex model is frequently inefficient with limited data. Limited data, of
course, occurs early in the study. We believe that accurate early predictions are very
important because small changes to the study at an early stage to improve a sagging accrual
rate are easier and more efficient than changes made later in the trial. Third, a simple model
of accrual has a closed form solution for the posterior predictive distribution that is
intuitively plausible. The mean of the posterior predictive distribution, for example, is
simply a weighted average of the data and the prior mean. A closed form solution also
means that tracking accrual throughout a clinical trial could be conducted directly by the
researcher on a daily or weekly basis, perhaps even on a simple spreadsheet.

Perhaps a compromise between complexity and simplicity is most appropriate. In fact, we
are looking at a linear piecewise regression model as an alternative to a complex spline and
a compromise between the two approaches. The piecewise approach would allow for slow
early accrual rates (both a step and elbow).

Regardless of using simple, complex, or compromise we would like to propose guidance for
evaluating the approaches with simulation studies. While it is impossible to conduct a
simulation study that covers every possible research scenario, we believe a broad number of
conditions need consideration to show scenarios where a simple model would perform well.
Here are some suggested conditions:
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1. performance under a constant accrual model. We believe that a simple model will
perform well relative to the complex model in settings where a comlex model over
fits the data.

2. performance early in the trial. We believe that a simple model will perform well
relative to a complex model when only a small fraction of the accrual data is
available. For example, in Zhang and Long, the simulation examined the
performance of the model only when 30% and 60% of the accrual data was
available. It would be very valuable to see the performance when only 5% or 10%
of the accrual data was available.

3. performance under slow accrual rates. The average threshold accrual rate in the
Zhang and Long simulation was 12 patients per day. While this may be normal in
large multi-center trials, our experience with smaller academic center trials is that
accrual rates of fewer than one person per day is more common. It would be
instructive to test the cubic spline model with data where the Poisson counts are
mostly zeros and ones.

4. performance under a weak, but not totally data driven prior. While we suggested an
initial approach for getting a prior distribution using a simple question (how
confident are you on a scale of 1 to 10), that prior was not intended to be plugged in
thoughtlessly. Instead, that initial assessment would be used to examine the
behavior of the predictive distribution. Review of that distribution would then lead
the researcher to revise the prior accordingly. With a total sample size of 3,000
patients (much larger than the norm in an academic setting), P=0.5 constitutes an
extremely strong prior. It says that after accumulating 1,500 patients, the prior and
the data should still have equal weight. We would suggest that P=0.1 might be a
more reasonable prior with such a large sample size, even when the researchers had
strong prior information. In fact, all models need to be testing with a range of
informative priors which needs to be balanced between two competing models of
different complexity.

5. Conclusion
A simpler model (e.g. Gajewski et al.) can and should be used in many other settings. The
availability of both a simple and a complex (e.g. Zhang and Long) model of accrual will
allow researchers to choose the approach that best fits their needs. Carefully crafted
simulation studies designed to better understand the tradeoffs between simplicity and
complexity would be most beneficial.

Acknowledgments
This work was supported in part by DHA Supplementation and Pregnancy Outcomes 1R01 HD047315 (BJG &
SEC) and Kansas Frontiers: The Heartland Institute for Clinical and Translational Research CTSA UL1RR033179
(BJG). The contents are solely the responsibility of the authors and do not necessarily represent the official views of
the NIH

References
Anisimov V, Fedorov VD. Modelling, prediction and adaptive adjustment of recruitment in multicen-

tre trials. Statistics in Medicine. 2007; 26(27):4958–4975. http://dx.doi.org/10.1002/sim.2956.
[PubMed: 17639505]

Gelman, A.; Carlin, JB.; Stern, HS.; Rubin, DB. Bayesian Data Analysis. 2. Washington DC:
Chapman and Hall/CRC; 2004.

Gajewski et al. Page 4

Int J Stat Probab. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi.org/10.1002/sim.2956


Gajewski B, Simon S, Carlson S. Predicting accrual in clinical trials with Bayesian posterior predictive
distributions. Statistics in Medicine. 2008; 27(13):2328–2340. http://dx.doi.org/10.1002/sim.3128.
[PubMed: 17979152]

Zhang X, Long Q. Stochastic modeling and prediction for accrual in clinical trials. Statistics in
Medicine. 2010; 29(6):649–658. http://dx.doi.org/10.1002/sim.3847. [PubMed: 20082363]

Gajewski et al. Page 5

Int J Stat Probab. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi.org/10.1002/sim.3128
http://dx.doi.org/10.1002/sim.3847


Figure 1.
Probability plot for Exponential distribution fit of the gap data after three years
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Figure 2.
Monthly prediction across 36 months using a non-informative prediction with 95% intervals
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