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ABSTRACT
Background: Among patients with hepatitis C virus (HCV) mono-
infection, 25-hydroxyvitamin D [25(OH)D] concentrations are pos-
itively associated with a response to peg-interferon/ribavirin. Data
on the relation between 25(OH)D concentrations and HCV treat-
ment response in HIV-infected patients are limited.
Objective: The objective was to determine whether baseline 25(OH)D
concentrations predict virologic response in HIV/HCV co-infected pa-
tients and to examine variables associated with 25(OH)D concentra-
tions $30 ng/mL.
Design: Data and samples from 144 HCV genotype 1, treatment-naive
patients from a completed HCV treatment trial were examined in this
retrospective study. Early virologic response (EVR) was defined as$2
log10 reduction in HCV RNA and/or HCV RNA,600 IU/mL at week
12 of peg-interferon/ribavirin treatment. Baseline 25(OH)D was mea-
sured by liquid chromatography/tandem mass spectrometry.
Results: Compared with the non-EVR control group (n = 68), the
EVR group (n = 76) was younger, had fewer cirrhotic subjects, had
a higher proportion with the IL28B CC genotype, had a higher
albumin concentration, and had a lower HCV viral load at baseline
(P # 0.05). The difference in baseline 25(OH)D concentrations
between EVR and non-EVR patients was not statistically significant
(median: 25 ng/mL compared with 20 ng/mL; P = 0.23). Similar
results were found for sustained virologic response (SVR). In mul-
tivariable analysis, white and Hispanic race-ethnicity (OR: 6.26;
95% CI: 2.47, 15.88; P = 0.0001) and ritonavir use (OR: 2.68;
95% CI: 1.08, 6.65; P = 0.033) were associated with higher 25
(OH)D concentrations ($30 ng/mL).
Conclusion: Baseline 25(OH)D concentrations did not predict EVR
or SVR. Because ritonavir impairs the conversion of 25(OH)D to
the active metabolite, utilization of 25(OH)D may have been im-
paired in subjects taking ritonavir. This trial was registered at www.
clinicaltrials.gov as NCT00078403. Am J Clin Nutr
2013;98:423–9.

INTRODUCTION

Hepatitis C virus (HCV)5 co-infection occurs in about one-
third of subjects infected with HIV in the United States and
Europe (1, 2). Liver disease is now a leading cause of mortality
in HIV-infected patients, and chronic HCV infection is the most
common etiology (3–5). HIV/HCV co-infected patients who
achieve a sustained virologic response (SVR) to HCV treatment
have increased survival (6) and a reduced risk of subsequent
antiretroviral-related toxicities (7); however, responses to the

current standard of care—dual therapy with pegylated interferon
(PEG) and ribavirin—are generally poor (8–10).

Several studies have examined viral and host factors predicting
HCV virologic response (11–20). Recently, vitamin D status was
proposed as a predictor of HCV treatment outcome. The hy-
pothesis that vitamin D might improve treatment responses is
based on evidence that vitamin D enhances both innate and
adaptive immune responses, reduces inflammation, and retards
fibrogenesis (21–27). In HCV mono-infected patients, vitamin D
deficiency has been associated with poor treatment response
and with more advanced liver fibrosis (28–33), although con-
trary findings have also been reported (34). Vitamin D supple-
ments have been reported to improve treatment outcomes
in HCV mono-infected individuals (35–37). In a study of
HIV/HCV co-infected patients carried out in France (38), lower
25-hydroxyvitamin D [25(OH)D] concentrations were associ-
ated with more advanced liver fibrosis, but not with HCV treat-
ment failure. In contrast, a study carried out in Austria showed a
positive relation between 25(OH)D concentrations and response
to HCV treatment (39). To our knowledge, the relation between
25(OH)D concentrations and treatment response has not been
examined in HIV/HCV patients in the United States, which has
a racially and ethnically diverse population.

Apart from its possible effect on treatment outcome and liver
disease progression, the vitamin D status of HIV/HCV-positive
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patients is important because vitamin D promotes the absorption
of dietary calcium and strengthens bone. HIV/HCV co-infected
patients often have low bone density (40–42) and are exposed to
antiretroviral drugs that disturb vitamin D and calcium metab-
olism: efavirenz reduces 25(OH)D concentrations (43), ribavirin
reduces serum calcium concentrations (44), ritonavir impairs
bioactivation of vitamin D (45), and tenofovir causes elevations
in parathyroid hormone that are especially pronounced in pa-
tients with 25(OH)D concentrations ,30 ng/mL (46–49).

The most widely used clinical indicator of vitamin D status is
25(OH)D. This molecule is the precursor of the active metabolite
1,25-dihydroxyvitamin D [1,25(OH)2D], which is a steroid hor-
mone. The optimal concentration of 25(OH)D for an individual
is difficult to establish. The Institute of Medicine determined
that 20 ng/mL is adequate for 97.5% of healthy adults (50);
however, HIV practice guidelines recommend concentrations
.30 ng/mL (51).

In this study, we examined the relation between baseline
25(OH)D concentrations and response to PEG/ribavirin treat-
ment in HCV treatment-naive patients with genotype 1 HCV
from the completed AIDS Clinical Trials Group (ACTG) A5178
study (52). We also identified factors associated with 25(OH)D
concentrations $30 ng/mL in this study group.

SUBJECTS AND METHODS

Subjects

The design of A5178 was previously described (52). Briefly, it
was a multicenter prospective trial conducted by the ACTG to
elucidate the role of maintenance PEG therapy in HCV treatment
nonresponders with HIV co-infection (52). The trial enrolled 330
subjects from August 2004 to April 2007 from 36 ACTG sites
within the United States. In Step 1, all subjects were treated with
pegylated-interferon-a 2a 180 mg/wk plus weight-based ribavirin
for 12 wk to distinguish treatment responders from nonresponders
by early virologic response (EVR), defined as a $2 log10 de-
crease from baseline or undetectable HCV RNA (,600 IU/mL)
at 12 wk. Patients with an EVR received a total of 72 wk of PEG/
ribavirin therapy, whereas patients without an EVR were followed
in a maintenance trial. All A5178 subjects provided written in-
formed consent, and 87% provided consent for genetic testing
through a separate protocol. The institutional review boards of all
sites participating in the parent study approved the study protocol.
Guidelines of the US Department of Health and Human Services
and those of the authors’ institutions were followed in the conduct
of this research. The current study was a retrospective analysis of
144 subjects with genotype 1 HCV who were treatment-naive and
who consented to IL28B genotyping as part of a separate study
(19). The study group included 47 non-Hispanic whites, 76 non-
Hispanic blacks, and 21 Hispanics (19 of whom were white and 2
of whom were black). In several analyses whites were grouped
with Hispanics, in keeping with the methods used in the parent
study. Only one Asian was eligible for the study, and this person
was excluded to reduce heterogeneity.

Vitamin D concentrations

The 25(OH)D concentration was measured centrally in base-
line serum samples by HPLC tandem mass spectrometry (Quest

Diagnostics). The interassay CV across the analytic range of the
assay is 7%. Serum samples were pristine and stored at2708C at
local sites until shipment on dry ice to the central repository and
ultimately the central laboratory. 25(OH)D was analyzed as a
continuous variable and as a dichotomous variable by using a
cutoff of $30 ng/mL (51).

Viral load tests and treatment outcomes

HCV RNA was tested by using the Roche Cobas Amplicor
assay with a lower detection limit of 600 IU/mL for the quan-
titative assay (during the first 12 wk) and 60 IU/mL for the
qualitative assay (to assess SVR). HIV RNAwas tested by using
Roche Ultrasensitive HIV reverse transcriptase–polymerase chain
reaction with a lower limit of quantification of 50 copies/mL.
EVR was defined as a $2 log10 reduction in HCV RNA and/or
HCV RNA ,600 IU/mL at week 12 by using the quantitative
assay. SVR was defined as undetectable HCV RNA at 24 wk after
treatment cessation.

Covariates

The following covariates were of interest to characterize the
study population: sex, age at enrollment, race-ethnicity (non-
Hispanic blacks vs. white and Hispanics), BMI, current or prior
intravenous drug use, cirrhosis, season when baseline sample was
collected, region of site enrollment in the United States [north,
.408N/south, ,408N], and baseline clinical laboratory values,
including estimated glomerular filtration rate (GFR), platelet
count, alkaline phosphatase, albumin, HOMA-IR, CD4 cell count,
HIV-1 RNA concentration, HCV viral load, CD4 nadir, IL28B
genotype, use of highly active antiretroviral therapy (HAART;
defined as a combination of$3 antiretroviral drugs, one of which
could be ritonavir as a pharmacokinetic booster). GFR was esti-
mated by using the Chronic Kidney Disease Epidemiology Col-
laboration equation (53). HOMA-IR was calculated by using the
subject’s fasting glucose and fasting insulin concentrations:
HOMA-IR = (fasting glucose 3 fasting insulin)/405.

Statistical analysis

Wilcoxon’s rank-sum test was used to test differences in
continuous measures between 2 groups, including comparison
of 25(OH)D concentrations between EVRs and non-EVRs,
and Van Eltern’s test was used for stratified rank-based com-
parisons. Fisher’s exact tests were used for comparisons of
binary and categorized variables between 2 groups, except for
IL28B, for which the Cochran-Armitage trend test was used.
Logistic regression models were developed to assess factors
associated with 25(OH)D. The following factors were con-
sidered: sex, age, race, ethnicity, BMI, intravenous drug use,
cirrhosis, region, season of sample collection, use of HAART,
use of specific antiretroviral drugs (efavirenz, ritonavir, and
tenofovir), platelet counts, GFR, baseline CD4+T cell count,
HIV viral load, and IL28B genotype. The analyses were done
by using SAS (version 9; SAS Institute). A statistical signif-
icance level of 0.05, 2-sided, was used. Because of the ex-
ploratory nature of the analysis, no adjustment for multiple
testing was made.

424 BRANCH ET AL



RESULTS

Comparison of EVR and non-EVR groups

The 144 study subjects were predominantly male and non-
Hispanic black and had a median age of 48 y (Table 1). Most
subjects (79.2%) were receiving HAART, and 38.2% were
taking ritonavir, which was used only as a pharmacologic
booster. The median 25(OH)D concentration was 22.5 ng/mL
[quartile 1 = 14.0; quartile 3 = 29.0]. Slightly more than half of
the subjects met the criteria for EVR. Compared with the non-
EVR group (n = 68), the EVR group (n = 76) was younger, had
a higher percentage of non-Hispanic whites, had a lower per-
centage with liver cirrhosis, had a higher albumin concentration,
had a lower HCV viral load, and had a higher percentage with
the favorable IL28B CC genotype (Table 1).

The difference in baseline 25(OH)D concentrations between
EVR and non-EVR patients was not statistically significant (P =
0.23): median of 25.0 ng/mL (quartile 1 = 13.0; quartile 3 = 30.5)
compared with 20.0 ng/mL (quartile 1 = 14.0; quartile 3 = 27.5),
respectively. The trends were similar between blacks (non-Hispanic)
and non-blacks (whites and Hispanics). Median 25(OH)D concen-
trations were 19.0 and 17.0 ng/mL among EVR and non-EVR
blacks, respectively, and 28.0 and 26.0 ng/mL among EVR and
non-EVR non-blacks. Hence, adjustment for race-ethnicity in
the analysis did not change the conclusion (P = 0.78). An
analysis that adjusted for ritonavir use also did not change the
conclusion (P = 0.29). The 25(OH)D concentrations did not
differ significantly (P = 0.51) between SVR (n = 43) and non-
SVR (n = 101) patients: median of 26.0 ng/mL (quartile 1 = 12.0;
quartile 3 = 31.0) compared with 21.0 ng/mL (quartile 1 = 14.0;
quartile 3 = 28.0), respectively. To examine the relation between
25(OH)D concentrations and treatment outcome further, addi-
tional analyses were performed in which 25(OH)D was analyzed
as a dichotomized variable. None showed a statistically signifi-
cant relation between 25(OH)D measurements and EVR or SVR.

Variables associated with 25(OH)D concentrations
‡30 ng/mL

Three of 18 variables differed significantly between the group
with 25(OH)D concentrations $30 ng/mL (n = 35) and the
group with lower values (n = 109) (Table 2). The group with
higher 25(OH)D measurements had a lower percentage of non-
Hispanics blacks (22.9% compared with 62.4%), more HAART
users (94.3% compared with 74.3%), and, specifically, more
ritonavir users (57.1% compared with 32.1%). These 3 variables
were included in a multivariable logistic regression analysis
(Table 3). In the multivariable analysis, a 25(OH)D concentra-
tion $30 ng/mL was positively associated with white and His-
panic race-ethnicity and ritonavir exposure.

DISCUSSION

We found no significant association between the baseline
serum 25(OH)D concentration and EVR or SVR in this clinical
trial of PEG/ribavirin treatment of HIV/HCV co-infected sub-
jects. The median value among EVRs was 25.0 ng/mL compared
with 20.0 ng/mL among non-EVRs, and this difference was not
statistically significant. The lack of association between serum
25(OH)D concentration and HCV virologic response was not

confounded by race or any other measured covariate in this
analysis. One interpretation of these results was that vitamin D
status is unrelated to treatment response in HIV/HCV co-infected
patients; however, there were several caveats.

The study had a relatively small sample size of 144 patients.
Our study also had the limitation of being a retrospective study
from a completed trial. In addition, vitamin D status was de-
termined by a single baseline measurement of 25(OH)D. In the
future, longitudinal measurements and/or genetic analysis of
polymorphisms that affect 25(OH)D concentrations might pro-
vide a clearer understanding of the relation between 25(OH)D
concentrations and treatment responses.

A further consideration is that 25(OH)D is only a surrogate
marker of vitamin D status. Using skeletal health as the outcome,
the Institute of Medicine determined that 50% of the adult
population is vitamin D replete at a 25(OH)D concentration of
16 ng/mL, whereas the other 50% require up to 20 ng/mL, or
more, to achieve optimal vitamin D status. If these estimates
are correct, they indicate that almost 50% of the population
changes from a state of vitamin D repletion to one of vitamin D
deficiency as 25(OH)D concentrations fall by 4 ng/mL. As a
result, 25(OH)D concentrations in the range 16–20 ng/mL are
expected to have limited ability to predict vitamin D status. In
future studies, measurements of additional factors that indicate vi-
tamin D status, such as parathyroid hormone, calcium, phosphate,
and markers of bone turnover, might allow patients with and without
vitamin D deficiency to be distinguished more accurately than is
possible when 25(OH)D is used as the sole determinant.

The need to use a combination of factors to establish vitamin D
status is especially great in patients receiving HAART because
antiviral drugs cause complex alterations in vitamin D and
calcium metabolism. This is illustrated by published data dem-
onstrating that parathyroid hormone elevations occur in tenofovir
users who have 25(OH)D concentrations,30 ng/mL (46–49). In
the current study, a different type of alteration was observed in
ritonavir users. Ritonavir exposure was associated with higher
25(OH)D concentrations. A recent study of 672 HIV-positive
patients found this same association between higher 25(OH)D
concentrations and ritonavir exposure (54). Ritonavir blocks the
activity of the 1a hydrolyase that converts 25(OH)D into its
biologically active form, 1,25(OH)2D (45). Because the physi-
ologic effects of vitamin D require adequate concentrations of
1,25(OH)2D, we propose that ritonavir (and possibly other
drugs) distorts the relation between 25(OH)D measurements and
vitamin D status by blocking the conversion of 25(OH)D to
1,25(OH)2D. More information about the effect of antiviral
drugs on vitamin D and calcium metabolism could improve the
design of future studies of the relation between vitamin D status
and treatment outcome in HIV/HCV co-infected patients.

Our results add to the growing literature on 25(OH)D
concentrations and virologic responses to HCV therapy (28–
33, 35–37-39). Previously, an investigation in HIV/HCV co-
infected patients conducted in Austria reported a positive
relation between 25(OH)D concentrations and SVR (39),
whereas a study conducted in France found no association
(38), in keeping with our results, which were obtained in a US
study group that was 52.8% black and 14.6% Hispanic. The
inconsistent results across studies suggest that the effect of
baseline 25(OH)D on treatment outcomes may be modest, if it
exists. However, given the very high costs and toxicity of
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TABLE 1

Baseline characteristics by EVR status1

EVR status

Total (n = 144) EVR (n = 76) Non-EVR (n = 68) P value

Sex, male [n (%)] 119 (82.6) 66 (86.8) 53 (77.9) 0.192

Age (y) 0.0063

Median 48 47 49

Q1, Q3 41.5, 52.0 40, 50 44, 53

Race-ethnicity [n (%)] 0.0142

White, non-Hispanic 47 (32.6) 33 (43.4) 14 (20.6)

Black, non-Hispanic 76 (52.8) 33 (43.4) 43 (63.2)

Hispanic 21 (14.6) 10 (13.2) 11 (16.2)

BMI (kg/m2) 0.773

Median 25.7 25.5 25.9

Q1, Q3 22.8, 29.3 23.0, 28.5 22.7, 29.6

IV drug use history [n (%)] 91 (63.2) 44 (57.9) 47 (69.1) 0.172

Cirrhosis [n (%)] 18 (12.5) 5 (6.6) 13 (19.1) 0.0412

Platelet count (103/mm3) 0.143

Median 206 209 198

Q1, Q3 159, 250 172, 257 155, 236

Alkaline phosphatase (U/L)4 0.823

Median 94 92 96

Q1, Q3 78, 120 74, 124 79, 114

Albumin (g/dL)4 0.0033

Median 4.15 4.30 4

Q1, Q3 3.90, 4.40 4.00, 4.50 3.80, 4.30

GFR (mL $ min21 $ 1.73 m22)5 0.823

Median 101.5 99.8 104.4

Q1, Q3 84.3, 113.5 87.1, 111.8 81.7, 113.8

HOMA-IR (mg/dL $ mU $ mL21 $ 40521)6

Median 3.15 3.37 2.76 0.442

Q1, Q3 1.76, 5.10 1.88, 5.51 1.59, 4.65

Baseline CD4 (cells/mm3) 0.973

Median 507 507 504

Q1, Q3 380, 703 384, 645 356, 719

Nadir CD4 (cells/mm3) 0.123

Median 247 205 258

Q1, Q3

Baseline HIV-1 RNA [n (%)] 1.002

Undetectable, ,50 copies/mL 101 (70.1) 53 (69.7) 48 (70.6)

Baseline log10 HCV RNA (IU/mL) 0.0432

Median 6.54 6.50 6.60

Q1, Q3 6.15, 6.88 5.88, 6.87 6.40, 6.89

IL28B genotype [n (%)]7 0.0248

TT 23 (21.5) 7 (12.5) 16 (31.4)

CT 49 (45.8) 27 (48.2) 22 (43.1)

CC 35 (32.7) 22 (39.3) 13 (25.5)

Season, summer [n (%)]9 73 (50.7) 37 (48.7) 36 (52.9) 0.622

Antiretroviral medication use [n (%)]

HAART 114 (79.2) 62 (81.6) 52 (76.5) 0.542

Ritonavir 55 (38.2) 31 (40.8) 24 (35.3) 0.612

25(OH)D (ng/mL) 0.233

Median 22.5 25 20

Q1, Q3 14.0, 29.0 13.0, 30.5 14.0, 27.5

1CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; EVR, early virologic response; GFR, glomerular filtration rate; HAART, highly active

antiretroviral therapy; HCV, hepatitis C virus; IV, intravenous; Q1, first quartile (25th percentile); Q3, third quartile (75th percentile); 25(OH)D, 25-hydroxyvitamin D.
2 Fisher’s exact test.
3Wilcoxon’s test.
4Total n = 142 (n = 75 for EVR and n = 67 for non-EVR).
5CKD-EPI equation.
6Total n = 70 (n = 37 for EVR and 33 for non-EVR).
7Total n = 107 (n = 56 for EVR and n = 51 for non-EVR).
8Exact Cochran-Armitage trend test.
9 June–November.
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HCV treatment, even a modest beneficial effect could be
clinically and economically significant if it can be obtained
through the use of vitamin D supplements. With further in-
vestigation, it may be possible to identify the characteristics
of patients most likely to benefit from higher 25(OH)D con-
centrations and from adjunctive treatment with vitamin D
supplements before and during HCV treatment; moreover,
given the high prevalence of bone disease in HCV-infected
patients (42, 55–59), HIV-infected patients (60), and HIV/HCV
co-infected patients (40, 41), it may be prudent to consider vi-
tamin D supplements for all patients with 25(OH)D concentra-
tions ,20–30 ng/mL, regardless of the anticipated effect on
HCV treatment response.

In summary, this study of 144 HIV/HCV co-infected patients
did not show a significant relation between baseline 25(OH)D
concentrations and EVR or SVR. Ritonavir exposure and white

TABLE 3

Factors associated with 25(OH)D $30 ng/mL in multivariate analysis1

OR 95% CI P value

White and Hispanic race-ethnicity 6.26 2.47, 15.88 0.0001

HAART use 3.23 0.65, 16.11 0.15

Ritonavir use 2.68 1.08, 6.65 0.033

1Total n = 144; n = 109 for 25(OH)D ,30 ng/mL and n = 35 for

25(OH)D $30 ng/mL. HAART, highly active antiretroviral therapy;

25(OH)D, 25-hydroxyvitamin D.

TABLE 2

Baseline characteristics by 25(OH)D concentrations1

Dichotomized 25(OH)D2

Total (n = 144) ,30 ng/mL (n = 109) $30 ng/mL (n = 35) P value

Sex, male [n (%)] 119 (82.6) 89 (81.7) 30 (85.7) 0.803

Age (y)

Median 48 48 47 0.924

Q1, Q3 41.50, 52.00 32, 66 35, 59

Race [n (%)]

Black non-Hispanic 76 (52.8) 68 (62.4) 8 (22.9) ,0.0013

Hispanic, regardless of race 21 (14.6) 14 (12.8) 7 (20.0) 0.293

BMI (kg/m2)

Median 25.74 25.83 25.50 0.734

Q1, Q3 22.84, 29.33 23.05, 29.03 22.64, 30.20

IV drug use history [n (%)] 91 (63.2) 71 (65.1) 20 (57.1) 0.423

Cirrhosis [n (%)] 18 (12.5) 14 (12.8) 4 (11.4) 1.003

Region, north [n (%)] 60 (41.7) 49 (45.0) 11 (31.4) 0.173

Season, summer5 73 (50.7) 52 (47.7) 21 (60.0) 0.253

Antiretroviral medication use [n (%)]

Efavirenz 39 (27.1) 32 (29.4) 7 (20.0) 0.383

Ritonavir 55 (38.2) 35 (32.1) 20 (57.1) 0.0103

Tenofovir 32 (22.2) 23 (21.1) 9 (25.7) 0.643

HAART 114 (79.2) 81 (74.3) 33 (94.3) 0.0153

Platelet count (103/mm3)

Median 206.5 206 219 0.254

Q1, Q3 159, 250 156, 237 166, 265

GFR (mL $ min21 $ 1.73 m22)6

Median 101.53 100.29 102.97 0.794

Q1, Q3 84.27, 113.50 89.38, 112.53 79.89, 113.68

Baseline CD4 count (cells/mm3)

Median 507 495 549 0.384

Q1, Q3 380, 703 384, 645 356, 719

Baseline HIV-1 RNA (copies/mL)

Undetectable (,50) 101 (70.1) 77 (70.6) 24 (68.6) 0.833

IL28B genotype [n (%)]7

TT 23 (21.5) 18(22.8) 5 (17.9) 0.658

CT 49 (45.8) 36 (45.6) 13 (46.4)

CC 35 (32.7) 25 (31.6) 10 (35.7)

1CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; GFR, glomerular filtration rate; HAART, highly

active antiretroviral therapy; IV, intravenous; Q1, first quartile (25th percentile); Q3, third quartile (75th percentile); 25(OH)D,

25-hydroxyvitamin D.
2Cutoff = 30 ng/mL.
3 Fisher’s exact test.
4 Wilcoxon’s test.
5 June–November.
6CKD-EPI equation.
7Total n = 107; n = 79 for 25(OH)D ,30 ng/mL and n = 28 for 25(OH)D $30 ng/mL.
8Exact Cochran-Armitage trend test.
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race were associated with 25(OH)D concentrations $30 ng/mL.
Future studies are needed to identify methods for accurately
determining the physiologic vitamin D status of patients re-
ceiving antiviral therapy for HIV and to clarify the effect of the
new direct-acting antiviral drugs for HCV on vitamin D and
calcium metabolism.
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