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Summary
De novo mutation plays an important role in Autism Spectrum Disorders (ASDs). Notably,
pathogenic copy number variants (CNVs) are characterized by high mutation rates. We
hypothesize that hypermutability is a property of ASD genes, and may also include nucleotide-
substitution hotspots. We investigated global patterns of germline mutation by whole genome
sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied
widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of
DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes
were attributable to compound mutation or gene conversion. Hypermutability was a characteristic
of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this
study were associated with ASD in independent exome-sequencing datasets. Our findings suggest
that regional hypermutation is a significant factor shaping patterns of genetic variation and disease
risk in humans.
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Introduction
Spontaneous germline mutation plays an important role in human disease. For severe
neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), highly-penetrant
alleles are under strong negative selection (Uher, 2009). Such alleles segregate in the
population over few generations or can frequently be observed as de novo mutations
(DNMs) in affected individuals. Thus, in order to understand this aspect of the genetics of
ASD and other human diseases, we must understand the mutational processes that give rise
to human genetic diversity and the intrinsic and extrinsic forces that shape patterns of
variation in the genome.

Mutation is a random process. However, the probability of mutation at a given site is not
uniform throughout the genome. Regional mutation rates are subject to a variety of intrinsic
characteristics (Ellegren et al., 2003) and extrinsic factors such as parental age (Crow,
2000). This is particularly evident for structural variation (SV). Rates of structural mutation
can vary between 10−4 and 10−6 (Lupski, 2007), and there are numerous examples of
hotspots for structural mutation where recurrent mutations are mediated by non-allelic
homologous recombination (NAHR) between tandem segmental duplications (Lupski, 1998;
Malhotra and Sebat, 2012).

Regional rates of nucleotide substitution are also variable (Ellegren et al., 2003); however
the factors that influence regional mutability are not well understood. In contrast to the SV
hotspots described above which are predominantly driven by meiotic recombination, rates of
nucleotide substitution occur by a variety of mechanisms and the mutation rate is influenced
to a much greater extent by mitotic mechanisms (Crow, 2000). Comparisons of genomes
from the human and chimpanzee have found evidence that regional mutability is influenced
by G+C content (Chimpanzee Sequencing and Analysis Consortium, 2005; Coulondre et al.,
1978), recombination rate (Hardison et al., 2003; Hellmann et al., 2005; Lercher and Hurst,
2002) and chromosome banding patterns (Chimpanzee Sequencing and Analysis
Consortium, 2005). These studies indicate that regional mutation rates are influenced by
various properties of the genome and that no single factor can explain the observed patterns
of genetic diversity and divergence in humans. However previous studies do not represent a
complete and unbiased view of germline mutation. The full extent of variation in mutation
rates genome-wide remains unclear (Francino and Ochman, 1999; Nelis et al., 1996;
Webster et al., 2003), and the relevance of hypermutability to common diseases such as
ASD is not known.

We have investigated global and regional rates of nucleotide substitution by direct detection
of germline mutations in monozygotic (MZ) twins concordant for ASD and their parents.
We show that the distribution of mutations in the genome is non-random. Wide variation in
regional mutation rates can be explained by intrinsic characteristics of the genome.
Furthermore we find significant evidence that genes impacted by de novo mutations in twins
are associated with autism in independent cohorts.

Results
Detection of Germline Mutations by Whole Genome Sequencing in Monozygotic Twins

We applied a whole genome sequencing (WGS) strategy to characterizing patterns of
germline mutation (Supplemental Figure 1). Central to our approach was the selection of a
MZ-twin family sample and the development of a custom machine-learning based method
for DNM calling.
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Cell line-derived genomic DNAs from ten MZ twin pairs concordant for ASD and their
parents were obtained from the NIMH genetics initiative biorepository (http://
www.nimhgenetics.org). Concordant MZ twins afford significant advantages to this study.
Disease risk can be more directly attributed to risk factors in the germline. In addition,
having complete genome sequences on identical twins allows us to readily distinguish
germline mutation from somatic and cell line mutations. To improve our power to account
for paternal age effects on mutation rate, half of the twin pairs were selected to have younger
fathers (16–29 y/o) and half were selected to have older fathers (38–41 y/o).

Deep (40X) WGS was performed at BGI using the Illumina HiSeq platform. Raw sequence
files were processed at UCSD with a WGS pipeline consisting of automated tools for
alignment and variant calling (see methods).

DNM detection was performed using a machine-learning based tool as described in
methods. Using an internal “gold standard” set generated by exhaustive validation of
putative DNM calls in one quad family (family 74–0352, see methods), we trained a
Random Forest classifier (forestDNM) that discriminates validated de novo mutations
(DNMs) from invalidated putative DNMs, based on combinations of the associated quality
metrics. When presented with new sites and quality metrics, the trained classifier could
discriminate true DNMs from false positives with high sensitivity and low false discovery
rate (FDR). Based on misclassification error on the internal test set, we estimated that
sensitivity was 91% (67 of 74 recovered) and FDR was 11.8% (9 false positives out of 76
called positives). Software specifications and validation studies are described in the
supplemental material.

We applied forestDNM to the detection of DNMs in quads, and adapted forestDNM further
to mutation detection of DNMs in trios. Mutations that were shared by monozygotic twins
constitute germline mutations. Mutations that were not shared by MZ twins constitute
somatic or cell line mutations (Koren et al, in press).

A total of 668 putative germline DNMs were detected and subject to comprehensive
validation studies by Sanger sequencing and Sequenom genotyping. Validation results on
mother, father and offspring were obtained for 652 sites and incomplete data was obtained
for 16 sites (Supplementary Table 1). De novo mutations were confirmed for 565 sites
(87%), and 87 DNM calls were invalidated, of which 34 (6%) were false positive variant
calls and 53 (9%) were true-positive inherited SNPs falsely called as negative in one parent.
Thus we confirm the high accuracy of forestDNM on new data. After excluding invalidated
DNMs, subsequent analyses were performed on the remaining set of 581 DNM calls.

Base composition of DNMs detected in this study was similar to the base composition of
segregating SNPs and DNMs reported in previous studies (Conrad et al., 2011; Lynch,
2010) (see Extended Experimental Methods). In addition, DNM calls were similar in
depth and quality to variant calls for segregating SNPs (Supplemental Table 1). Phred-like
quality scores and alternate-allele counts were slightly higher on average for validated DNM
calls as compared to randomly sampled heterozygous SNPs (by one additional alternate
allele read on average). This subtle skewing toward higher quality SNP calls had no effect
on the overall genomic distribution of variants (Extended Experimental Methods).

Variation in Genome-Wide Rates of Germline Mutation
A total of 581 germline DNMs were detected in 10 MZ-twin pairs. A mean of 58 DNMs per
offspring suggests that the average genome-wide mutation rate in humans is 1×10−8 per
generation. Our estimate is lower than theoretical estimates by a factor of two (Haldane,
1935; Kondrashov and Crow, 1993), but consistent with empirical estimates from other
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whole genome sequencing studies (Conrad et al., 2011), Total mutation burden varied
between 42 and 75 DNMs per offspring, consistent with previous observations of mutation
rate variation (Conrad et al., 2011). Paternal age accounted for a substantial proportion of
the variability in mutation burden in offspring. (P = 0.004, R2 = 0.44), see Figure 1, while
maternal age was not significant. To account for any unforeseen deviations from the
assumptions of the Poisson regression model, we also applied a permutation-based test: the
one-sided P value for the effect of paternal age on mutation rate was 0.0226. These results
allow us to quantify the accumulation of nucleotide substitutions in spermatogonial cells,
which occurs at an average rate of 1 new mutation per year. Parent of origin was determined
for 131 DNMs, of which 97 (74%) originated from the father (Supplemental Table 1).

Global Patterns of Germline Mutation
Germline de novo mutations (DNMs) displayed a remarkably non-random positioning in the
genome (P = 4.4 × 10−5, KS test). Compared to a random mutation model (uniform
probability across the assembled genome, see methods for details), there was an
overrepresentation of DNM pairs spaced more closely than the expectation (Fig. 2). The
effect is significant when considering only the distribution within the individual (intra-
individual DNM spacing) and when considering only the distribution across individuals
(inter-individual DNM spacing).

The observed distribution of DNMs reflects the underlying patterns of mutation and does not
reflect non-uniformity in our ascertainment or validation of DNMs, as mentioned previously
(see Extended Experimental Methods). As we describe in the following sections, the
distribution of mutations can be explained by intrinsic characteristics of the genome.

Mutation Clusters
As evident from Figure 2, within individual genomes we observed striking enrichment of
very closely-spaced DNMs (inter-DNM distance < 100 kb). Where parent of origin
information was known for three loci (chr16:1823255–1823256, chr3:90077648– 90077664,
chr8:3872643–3892698) closely-spaced pairs of DNMs had a single parent of origin. These
results are consistent with very closely-spaced mutations arising as part of a single mutation
event (Wang et al., 2007) within a narrow region of a chromosome. Defining a “cluster” as 2
or more DNMs located within a 100 kb span, a total of ten mutation clusters were identified
on 8 chromosomes (see Supplemental Table 2), suggesting that mutation clusters occur at a
rate of approximately 1 per generation. One mutation cluster in subject 75-0355 is evident in
the 8p23 region illustrated in Figure 5. The observation of ten dense clusters of DNMs was
statistically significant by permutation test (P<0.001).

Multiple mutational mechanisms could explain these findings, including compound
mutation (Schrider et al., 2011) or gene conversion (Chen et al., 2007). Non-allelic gene
conversion, which requires the presence of a paralogous sequence variant elsewhere in the
genome could be ruled out for a majority (8/10) clusters (see Extended Experimental
Methods). Clusters could instead be explained by compound mutation or by de novo
nucleotide substitutions that occur during allelic gene conversion events (Hurles, 2002;
Rattray et al., 2002). In all cases, we could rule out the possibility that mutation clusters are
a spurious observation due to the mismapping of reads containing a paralogous sequence
variant (see Extended Experimental Methods).

Determining Intrinsic Properties of the Genome that Influence Mutability
Regional mutation rates are subject to a combination of influences. In order to investigate
the effect of intrinsic properties of the genome, we used logistic regression to discriminate
DNMs from random genome background sites, based on the characteristics of the genome at
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these sites (and not relative or absolute genomic positions of DNMs). See Extended
Experimental Methods for details on the genomic features used. Numerous features were
found to influence site mutability. The most significant features were DNase
hypersensitivity, GC content, nucleosome occupancy, recombination rate, simple repeats
and the trinucleotide sequence surrounding the site (Fig. 3). We note that the UCSC Dennis
and MEC nucleosome occupancy tracks (Gupta et al., 2008) use scores opposite in direction
to indicate nucleosome occupancy. For both tracks, nucleosome occupancy was associated
with suppressed mutation.

In addition to testing marginal associations, we investigated whether interactions between
these genome features were predictive of mutation rate. This was done by performing two-
way ANOVA for all possible combinations of features. After correcting for multiple testing,
no two-way interactions were significant.

We next sought to construct a predictive model that could estimate nucleotide level mutation
rates, based on information contained in all the features. This was accomplished by
performing principal components analysis (PCA) on the features, and then using the
principal components (PCs) as predictors in a regularized logistic regression model (again
using “observed DNM” and “genome background” as the class labels). The output of the
model is a measure of mutability that we call the mutability index (MI). MI is an estimate of
relative mutation rate at single-nucleotide resolution (see methods for details). Throughout,
we use the term “mutability” to refer to the mutability index and we use the term “mutation
rate” to refer to the observed rate of DNMs for a given site or region.

Wide Variation in Site-Specific and Regional Mutation Rates
MI was highly predictive of site-specific (1bp resolution) mutation rates. (Fig 4), and could
explain ~90% of the variability in mutation rates at sites across and genome. As expected,
mutability was greatest for CpG dinucleotides. However, our model was highly predictive of
mutation rate independent of this phenomenon. CpG sites and non-CpG sites varied widely
in their mutability (10 fold and 100-fold respectively) and the range of CpG mutability
overlapped considerably with the range for non-CpG sites (Supplemental Fig. 2).

The validity of MI was confirmed in independent datasets of de novo mutation. MI was
highly correlated with mutation rate variation in a genome wide dataset from two trios
(Conrad et al., 2011) (Fig. 4B) and exome datasets from 4 independent trio-based studies of
autism (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2011; O’Roak et al., 2012;
Sanders et al., 2012) (Fig 4C–D). In all datasets examined, observed mutation rates varied
consistently by greater than two orders of magnitude ranging from 10−8.5 to 10−6.5.
Mutability index explained ~90% of variation of the observed mutation rates in these
studies. We conclude that our statistical model of mutability can explain a majority of the
variance in site-specific mutation rates. Having confirmed the validity and accuracy of the
MI, we apply this measure to the analysis of regional mutability.

We examined the landscape of mutability throughout the genome. Mean MI (in non-
overlapping 1Kb windows) revealed broad genomic regions of hypermutability, generally
tens to hundreds of kilobases in size. These included “hotspots” with highly elevated
mutability (≥ 7 fold) and “warm spots” with moderately increased mutability (2–3 fold)
(Fig. 5).

Genomic regions of hypermutability were then defined by segmenting the MI scores using a
5-state hidden Markov model (HMM). Parameters of the HMM were derived through
numerical optimization by fitting a 5 component Gaussian mixture to the overall distribution
of mean MI of 1kb windows of the genome. The sequence of hidden states along each
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chromosome was calculated using the Viterbi algorithm. Altogether approximately 9% and
0.02% of the genome was defined as “warm” and “hot” respectively, with 54%, 37%, and
0.5% being segmented as “baseline”, “cool”, and “cold”.

Hypermutability of these genomic regions was confirmed in this study and in 5 independent
mutation datasets. The observed rate of DNMs in genomic segments was positively
correlated with the mean MI of segments (Supplementary Fig. 3A–B). Likewise exonic
mutation rates were highly correlated with the mean MI of exons (Supplementary Fig. 3C–
D).

These results confirm that the landscape of mutability, like other characteristics of the
genome, is highly non-random, in part explaining the distribution of DNMs that we
originally observed. When we sampled a null model such that representation of sites was
consistent with predicted mutability, the observed inter-DNM distances were closer to this
null distribution (Supplemental Fig. 4).

Considering that our statistical model was developed based on a dataset of genomes largely
derived from individuals diagnosed with ASD, we examined whether the mutation rate
variation we observe is related to autism. We compared the predictive value of MI in cases
and controls in the exome datasets. MI was equivalently predictive of mutation rate in
healthy individuals (R2 = 0.91, slope = 0.78) and in ASD cases (R2 = 0.90, slope = 0.79)
(Fig. 4C–D). Likewise, we compared the total burden of DNMs in hypermutable genes
(average exonic log10 MI > 0.5), in cases and controls and observed no association with
ASD (OR=0.73, P=0.227). Therefore the mutation rate variation that we observe cannot be
attributable only to a subset of disease-associated mutations that are present in autism
genomes.

A U-shaped Relationship between Genome Mutability and Evolutionary Conservation
We examined the relationship between regional rates of mutation, evolutionary change and
genetic diversity in the human genome. Our results confirm that some hotspots have
undergone rapid evolutionary change, consistent with previous studies (Chimpanzee
Sequencing and Analysis Consortium, 2005). However patterns of germline mutation,
particularly within the exome reveal many highly-mutable regions that change little over
evolutionary time, an observation that challenges the common definition of the
“evolutionary hotspot”.

A plot of mutability, divergence and diversity reveals a distinctly U-shaped relationship
between mutability and sequence conservation (Fig. 6A). In regions that are less conserved
(the left arm of the “U”), there is clear a correlation of hypermutability, hyperdivergence and
hyperdiversity, consistent with such regions undergoing rapid evolutionary change.
Surprisingly, in highly-conserved regions (the right arm of the “U”) the opposite trend is
evident: hypermutability is correlated with highly-conserved sequence and low genetic
diversity.

We performed a similar analysis of exons and confirmed a strong positive correlation
between MI and conservation (Fig. 6B). However the right arm of the “U” (Fig. 6A) could
not be entirely explained by exonic sequences. We repeated the analysis in Figure 6A after
excluding all exons, and the same U-shaped relationship was observed (data not shown).
Lastly, we confirmed a positive correlation of conservation and mutation rate in protein-
coding exons in exome datasets of ASD (Fig. 6C). Notably, the positive correlation between
mutation rate and conservation was similar in cases and in controls. Therefore, this trend
does not appear to reflect patterns that are unique to mutations that are detected in subjects
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with ASD. The above results suggest that mutability in the genome is, to some extent,
coupled with functionality.

There are multiple genomic features that vary with evolutionary conservation in a similar
fashion, most notably GC content. However, this feature alone does not explain patterns of
mutability (see Figure 3). Importantly, genotype quality of SNPs and DNMs was not
correlated with conservation (data not shown); hence, these observations do not appear to be
an artifact of variable ascertainment.

Hypermutability is Common among Disease Genes
Genes that are subject to high mutation rates and strong purifying selection could be of
particular importance to human disease. Mutability was significantly elevated for essential
genes derived from the Online gEne Essentiality (OGEE) database (Chen et al., 2012) and
human disease genes derived from the Online Mendelian Inheritance in Man (OMIM)
database and varied by the modes of inheritance (Fig. 7A–B). Mutability was highest for
essential genes and genes associated with dominant disorders. Mutability was elevated to a
lesser extent for genes involved in recessive or polygenic traits.

Of relevance to our disease of interest, mutability of brain-expressed genes was significantly
higher on average. In addition, mutability was elevated in a literature-based set of genes that
have been implicated in ASD and in a set of genes that are associated with “syndromic”
forms of autism (Fig 7C–D). Examples of hypermutable ASD-associated genes include
NRXN1, AUTS2, GABRB3, SHANK2 and KCNMA1, which have one or more exons that
rank among the top 20% most highly mutable in the exome (Supplemental Table 3 and
Supplemental Table 4). Another particularly striking example of a disease-associated
hotspot (see Figure 5B) is the 15q11–13 region. This region is well known for having an
elevated structural mutation rate due to its local segmental duplication architecture, where
recurrent duplications are associated with ASD and deletions are associated with Prader
Willi/Angelman syndrome (Ledbetter et al., 1981). As we observe here, mutability of the
DNA sequence within 15q11–13 is also predicted to be high independent of the local
duplication architecture, suggesting that rates of nucleotide substitution are also elevated in
this region.

Exonic Mutations in MZ Twins are Significantly Associated with ASD
DNMs detected in our MZ twin samples impacted a total of 34 genes (Supplemental Table
1), including 29 protein-coding genes and 5 non-coding RNAs. We hypothesize that genetic
risk in our patient population is explained in part by de novo mutations in some of the above
genes. We investigated the frequency of DNMs in protein coding genes in larger exome
datasets on 962 cases and 590 controls from recent studies of ASD (1,035 mutations in 969
genes in cases, 564 mutations in 536 genes in controls) (Iossifov et al., 2012; Neale et al.,
2012; O’Roak et al., 2011; O’Roak et al., 2012; Sanders et al., 2012).

In our set of 29 genes, 0 exonic hits were reported in controls, consistent with the low
probability of observing an overlapping gene by chance. By contrast, seven de novo coding
mutations of five genes were detected in cases, and two genes (KIRREL3 and GPR98) were
hit twice. This constitutes a significant genetic overlap between genes mutated in concordant
MZ twins and sporadic-ASD cases for total number of hits (P = 0.006), number of double
hits (P=0.005), and number of genes (P = 0.04). See Extended Experimental Methods for
details on the calculation of these empirical P values.
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Discussion
Our model of intrinsic mutability, based on the unbiased ascertainment of germline
mutations in families, reveals wide variation in mutation rates throughout the genome. The
results of our study provide a global view of this landscape of mutability and its
corresponding influence on genetic diversity and susceptibility to disease in humans. We
show that hypermutability is a characteristic of disease genes, including genes that have
been implicated in autism.

Mutability is explained by multiple influences acting in combination. For instance a specific
di- or tri-nucleotide motif may have an elevated mutation rate. However, mutability of the
site can be further modulated by other factors, including factors acting on larger scales such
as nucleosome occupancy (~102 bp), recombination rate (~104 bp) and replication timing
(~106 bp). Mutation rate variation in somatic cells (Koren et al, in press) and cancer
(Schuster-Bockler and Lehner, 2012) is also influenced by aspects of chromatin structure,
consistent with partially-overlapping mutational mechanisms acting in germ cells and
somatic cells.

The patterns of mutability that we have uncovered provide new insights into the relationship
between mutation, genetic diversity and disease that were not evident from studies of
segregating genetic variation (Ellegren et al., 2003). We demonstrate that genome mutability
and evolutionary conservation have a U-shaped relationship. Paradoxically, some of the
mostly highly mutable sequences in the genome are in fact highly conserved.

The correlation of hypermutability and high evolutionary conservation is surprising and
could not have been predicted from previous studies based on segregating variation in
humans. We consider three possible theories to explain this finding. The first is the
hypothesis that regional hypermutability itself is a trait that could be selected for under
certain conditions, for instance where greater genetic diversity at a specific locus provides a
fitness advantage. This hypothesis is reminiscent of the classic concept of “adaptive
mutation” (Delbrück and Bailey, 1946; Rosenberg, 2001), a process by which genome wide
mutation rates in bacteria increase in response to selective pressure. The second is the
hypothesis that certain functional and highly-conserved elements originated from ancient
mutation hotspots, and have since been subject to intense purifying selection. The third is
the hypothesis that conserved hotspots could be explained simply by the fact that some DNA
repair mechanisms are coupled with gene regulation (van Attikum and Gasser, 2005) or
transcription (Svejstrup, 2002). Thus, the most highly transcribed regions in a given tissue
could be the most susceptible to mutation. Further studies are needed to determine the
underlying mutational and evolutionary mechanisms, but these findings have a significant
implication regardless: patterns of mutation in the human genome appear to favor genetic
changes that influence biological function.

Hypermutability in the genome has implications for human disease. Mutability is highest for
essential genes and genes involved in dominant disorders. To a lesser extent mutability is
elevated for genes primarily involved in recessive disorders or polygenic traits (polygenes).
Likewise, hypermutable loci are likely to be important in neurodevelopmental disorders.
Mutability was significantly elevated for a large set of genes that are preferentially
expressed in the brain and genes that have been implicated in ASD. Our results are
consistent with a prominent role for recurrent de novo mutations in autism and in other traits
that have a contribution from dominant-acting alleles. We view these results, and the
previous observation that mutation occurs at higher rates in highly-conserved elements, as
possibly two sides of the same coin. Presumably, the selective pressures that constrain
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evolutionary divergence and nucleotide diversity in mutational hotspots are acting upon
disease phenotypes such as ASD.

The genome-wide rate of mutation in individuals with ASD was not high. The average
mutation rate in the genomes of patients in this study was 1×10−8. While the present study
was under review, three studies were published using whole genome sequencing to estimate
the human mutation rate. These studies yielded estimates in the same range as ours (0.89–
2.3 ×10−8) (Campbell et al., 2012; Kong et al., 2012; Sun et al., 2012). Also, one study
documented the occurrence of compound mutations and gene conversion events (Campbell
et al., 2012). A second study also documented a paternal age effect on germline mutation
rates (Kong et al., 2012). Collectively, these studies suggest that the true mutation rate in
humans is lower than previous theoretical estimates (Haldane, 1935; Kondrashov and Crow,
1993; Nachman and Crowell, 2000), possibly by as much as a factor of two. This knowledge
has led some to consider a recalibration of the time scales of human evolution and the
divergence of human populations. (Scally and Durbin, 2012). These results also suggests
that, after accounting for any effects due to paternal age, genome-wide rate of mutation in
most individuals with autism is not significantly elevated.

The mutation rate variation that we observed in this study reflects patterns of mutation in a
sample of subjects with ASD. This fact raises the possibility that disease mutations in our
dataset could have an influence on the overall distribution of DNMs and estimates of site-
specific mutability. When we compared mutation rates in exomes of cases and controls, we
did not find evidence that mutation rate variation differs between affected and unaffected
individuals. However, due to a paucity of available genome-wide data on controls, we are
not able to compare regional mutation rates of intronic and intergenic regions in cases and
controls. Thus, we cannot rule out the possibility that the distribution of DNMs in
individuals with ASD might tend to exhibit a higher level of clustering around disease
genes.

The set of genes impacted by de novo mutations in concordant MZ twins demonstrated a
significant association with autism in independent samples, a result that was equally
surprising and tantalizing. Given that the majority of exonic DNMs in autism cohorts are
likely to be unrelated to disease (Neale et al., 2012; Sanders et al., 2012), we anticipated the
same to be true for DNMs in our MZ-twin pairs. To the contrary, a set of independent
exome sequencing studies (962 cases and 590 controls) detected 7 exonic mutations in 5
genes exclusively in cases, a result that is unlikely to occur by chance. This result suggests
that exonic mutations in our MZ twin sample may be enriched in causal variants as
compared to DNMs in the more typical sporadic/simplex cases.

These results do not provide conclusive evidence implicating individual genes in autism.
However mutations detected in our concordant twin sample and in independent studies
highlight some intriguing candidates. These include GPR98 and KIRREL3, where three de
novo point mutations of each have been detected exclusively in cases and a balanced
translocation disrupting KIRREL3 has been reported in a recent study (Talkowski et al.,
2011). In addition, the TCF4 gene is a strong candidate given the documented involvement
of this gene in Pitt Hopkins syndrome (Amiel et al., 2007; Zweier et al., 2007) and
Intellectual disability (Hamdan et al., 2012; Need et al., 2012), and the observation of
multiple de novo mutations of TCF4 in ASD (this study and in O’Roak et al. 2012).

As exemplified by early success from the preceding waves of CNV (Sebat et al., 2007) and
exome-sequencing (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2012; Sanders et
al., 2012) studies in ASD, new technologies for detection of mutations in the genome hold
promise for understanding the genetic basis of this disorder. WGS provides another major
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boost to our ability to ascertain point mutations and CNVs (Michaelson and Sebat, 2012).
This considerable improvement in mutation discovery comes at a relatively modest increase
in sequencing cost. As the field continues its rapid transition toward incorporating
comprehensive data on genomic variation and de novo mutations into genetic studies, we
anticipate progress toward a deeper understanding on the underlying mechanisms of genome
evolution and disease.

Experimental Procedures
Whole Genome Sequencing

Genomic DNAs from ten identical twin pairs and their parents were obtained from the
NIMH genetics initiative biorepository (http://www.nimhgenetics.org). All DNA samples
were derived from EBV-immortalized lymphoblastoid cell lines. A list of the 40 samples is
provided in the Extended Experimental Methods. Deep (40X) whole genome sequencing
was performed at BGI using the Illumina HiSeq Platform (500 bp library, 90 bp reads). Prior
to sequencing, samples were randomized to minimize batch effects. Genomes were aligned
to hg18 with BWA (Li and Durbin, 2009), and all subsequent analyses were performed with
hg18 as the reference unless otherwise stated.

Alignment and Variant Calling
Alignment and variant (SNP) calls were generated on quad families using our WGS analysis
pipeline implemented on the Triton compute cluster at UCSD (http://
tritonresource.sdsc.edu/). Short reads were mapped to hg18 reference genome by BWA
version 0.59 with the following parameters: “aln -o 1 -e 63 -i 15 -I -l 31 -k 2 -t 6”.
Subsequent processing was carried out using SAMtools version 0.18, GATK version 1.2–52
(DePristo et al., 2011), and Picard tools version 1.52, which consisted of following steps:
merging and sorting of the BAM files, indel realignment, fixing mate pairs, removal of
duplicate reads, base quality score recalibration for each individual. Variant calls for each
family were made (in “trio” mode) by running the unified genotyper for all four family
members.

DNM Detection
Based on experience from our earlier CNV-based studies of de novo mutation (Malhotra et
al., 2011; Nord et al., 2011; Sebat et al., 2007), an unfiltered set of putative DNMs is highly
enriched for errors. In order to accurately distinguish true de novo variants from errors, we
employed a custom machine learning pipeline we call forestDNM. A detailed description of
the development and validation of this software is provided in Extended Experimental
Methods. Briefly, a Random Forest (RF) classifier was trained based using quality metrics
(see Supplemental Table 5) on an initial set of positive and negative training examples
obtained by comprehensive validation of unfiltered putative DNMs from a single family
(family 74–0352). See Supplemental Figure 5 for a depiction of the predictive importance of
each quality metric. The trained classifier had an estimated sensitivity of 91% (67 of 74
recovered) and an estimated specificity of 11.8% (9 false positives out of 76 called positives.
We used this trained RF classifier to predict the validation status of the putative DNMs in all
families. In total, we predicted 668 DNMs in the 10 families.

Experimental Validation
Putative DNMs were validated by genotyping offspring using two independent validation
methods. Sanger sequencing and Sequenom MassArray genotyping technologies (see
Extended Experimental Methods). Parental genotypes were obtained using the Sequenom
platform and additionally by Sanger sequencing if an informative Sequenom assay could not
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be designed. A total of 565/668 putative DNMs sites were validated and 87 sites were
invalidated (34 as false heterozygous calls in the twins, 53 as inherited variants),
corresponding to an overall observed FDR of 13%. In all subsequent analyses, we combine
sites with complete validation data (565) with sites with incomplete validation data (16) for
a total of 581 DNMs. Given the demonstrated low FDR of the classifier, we only expect 2 of
the 16 incompletely validated sites to be false positives, so their inclusion is justifiable.

Parental Age Effect
We used Poisson regression to test the relationship between paternal and maternal age and
DNM burden (Fig. 1 and Supplemental Table 1). In a fit using both paternal and maternal
age as covariates, paternal age was significant (P=0.01) but maternal age was not (P=0.6).
We thus discarded maternal age and fit a model using only paternal age, which had a
significant effect (P=0.0039) and a slope of approximately 1 DNM/year.

Analysis of the Effect of DNA and Chromatin Features on de novo Mutation
We investigated whether quantitative genomic features (see Extended Experimental
Methods for details on training data and features) had individual associations to DNM
mutation by fitting logistic regression models (classes: observed DNM or genome
background site), using each of the genome features as covariates. The coefficients and their
standard errors are shown in Figure 3, and those features with significant (FDR < 0.10)
associations have been noted in bold-faced type. Positive coefficients indicate a positive
association between the value of the feature and DNM as the predicted class, whereas
negative coefficients indicate a negative association.

Modeling Intrinsic Mutability of the Genome
With an unbiased set of germline mutations as training data, we used regularized logistic
regression to predict mutability of sites based on intrinsic characteristics of the genome (see
Extended Experimental Methods for details). We assembled quantitative genome features
(conservation, transcription, GC content, simple repeat entropy, replication timing,
recombination rate, DNase hypersensitivity, histone marks, nucleosome occupancy, lamin
B1 association) and summarized them at several scales by taking the mean value in windows
of 10 bp, 100 bp, 1 kb, 10 kb, 100 kb, 1 Mb, 10 Mb. The bulk of these data were derived
from UCSC Genome Browser tracks (http://genome.ucsc.edu), and their provenance is
outlined in detail in Supplemental Table 6. In addition to these features, we included a
numerical variable that indicated predisposition to DNM, based on the trinucleotide
sequence centered at the site (see Extended Experimental Methods for details).

Using these genomic features directly in the model would be problematic because they are
highly correlated, with large-scale variation in GC content being one major source of the
correlations. In order to mare fully exploit the information carried in the features, we
performed principal components analysis (PCA), to produce 78 decorrelated features (i.e.
the principal components or PCs).

PCs represent the unique signals in the data, and were used in place of the genome features
as predictors in the model. Using these, we fit the model to the training data and defined a
linear relationship between the class membership probability and the logarithm of the fold
DNM excess at that probability. The relationship between genomic features, the PCs, and
the model coefficients is shown in Supplemental Figure 6. We define the “mutability index”
(MI) as the log10 of the fold-excess of training set DNMs observed for a given predicted
class probability. This fold excess is an estimate of relative mutation rate. Using the model,
we determined MI for every position in the genome. The genome and exome-wide
distribution of MI at the single nucleotide level is given in Supplemental Figure 7.
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To define regional patterns of mutability, we segmented the genome-wide map of mutability
with a 5-state (cold, cool, baseline, warm, hot) hidden Markov model (HMM), see
Supplemental Table 7. In all analyses involving exons, the exon boundaries were used to
define regions, and the mean MI over the exon was used as the representative mutability.

Genomic Distribution of DNMs
We computed two types of inter-DNM distance, considering first the nearest neighboring
DNM within an offspring (i.e. a twin pair) and then the nearest neighboring DNM in another
unrelated offspring. We call these the within-individual inter-DNM distance and the
between-individuals inter-DNM distance, respectively. We then computed null distributions
by sampling random positions from the genome (excluding assembly gaps) while
maintaining the number and family-wise allocation per chromosome of DNMs, then
calculating both inter-DNM distances as described. Using the KS test we found that both
observed distributions were significantly enriched (at α=0.05) for smaller inter-DNM
distances compared to the simulated null distributions (Fig. 2), suggesting that observed
DNMs are spaced more closely than expected by chance.

In light of our exploration of genome wide mutability, we hypothesized that if the null
distributions were sampled such that a site’s probability of inclusion in the sample were
proportional to its MI, the deviation of the observed inter-DNM distance distribution from
the expectation would be attenuated. This was indeed the case for both inter-DNM distance
measures (Supplemental Fig. 4), as shown by the difference in P values where both uniform
sampling and weighted (i.e. by MI) sampling were used to construct the null distributions.

Correlation of Mutability Index with Mutation rate
Site-level analysis—The genome was binned with respect to nucleotide-resolution MI in
increments of 0.1 on the log10 scale, and both the proportion of the genome scored within
that bin, as well as the diploid mutation rate of sites scored within that bin, were calculated.
We used sites from this work, (Conrad et al., 2011) and (Iossifov et al., 2012; Neale et al.,
2012; O’Roak et al., 2011; O’Roak et al., 2012; Sanders et al., 2012) which were lifted over
from hg19 to hg18 coordinates, in the calculation of these mutation rates (Fig. 4).

Regional analysis—We examined whether the trend of increasing mutation rate with
increasing MI also held when looking at a regional scale. For whole genome sequencing
studies (this study and (Conrad et al., 2011)), we used the previously described HMM
segments, with their mean MI as the representation of regional mutability. We then binned
such that each bin contained an equivalent number of DNMs (10%), and then calculated the
diploid mutation rate (Supplemental Fig. 3A–B). For exome studies (Supplemental Fig. 3C–
F) we used the mean MI of exons as the measure of regional mutability, again binned the
exons such that each bin contained 10% of DNMs from the respective study, and finally
calculated the diploid mutation rate. Linear regression models were fit for each study
independently, and all studies showed a positive correlation between MI and mutation rate
(all slopes were significant at α=0.01 except (Conrad et al., 2011) which had the fewest
DNMs).

Conservation, Segregating Variation, and Mutability
We investigated the relationship between MI, segregating variation, and evolutionary
conservation (Fig. 6) by first binning regions (genomic HMM segments and exons)
according to the percentiles of their mean conservation values (yielding 100 bins). We then
calculated the bin’s mean MI, mean conservation, and SNP density. SNPs were compiled
from the families in this study, and the total number of observed SNPs was counted per bin,
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rather than the number of polymorphic sites (this places more emphasis on common
variation).

Mutability and the Genetic Mode of Disease Genes
We compared trends in mutability when classifying genes according to the genetic basis of
their related disease phenotype (Fig. 7A–B). For polygenic disease traits, we consulted the
NHGRI GWAS catalog (Hindorff et al., 2009) and selected the most commonly studied
diseases: diabetes (types I and II), coronary heart disease, Crohn’s disease, ulcerative colitis,
multiple sclerosis, and rheumatoid arthritis. We selected genes that had a SNP (i.e. within its
boundaries) referenced in the GWAS catalog and classified them as “polygene” (296 genes).
For the recessive and dominant categories, we downloaded the OMIM database (http://
omim.org) and extracted genes that were connected to diseases with “recessive” and
“dominant” in the title, respectively (122 and 86 genes). Essential genes were extracted from
the OGEE database (Chen et al., 2012) for a total of 1394 genes. Together, these sets of
genes comprised our “disease genes”, and all remaining genes were considered as the
background set. We computed gene and exon mean MI for all genes, and compared trends in
mutability by performing a t-test on each category, with the “background” set of genes as
the reference group. To show the trends of enriched mutability in each category, we
calculated a bootstrapped group mean. This was accomplished by bootstrap sampling equal
numbers (100 and 1000 for genes and exons, respectively) from the category under
consideration (background, polygene, recessive, dominant, or essential) and computing the
mean of each sample. This was performed 1000 times for each group.

Mutability of Brain and Autism Genes
An approach similar to that described above was used for investigating the trend of
mutability in brain and autism genes, compared to the background set of all other genes (Fig.
7C–D). A list of genes preferentially expressed in the brain was assembled (totaling 2577)
according to the approach used in (Raychaudhuri et al., 2010). We also assembled two sets
of autism genes. The first was an inclusive set of ASD genes based on the strength of their
connection to autism in the literature. This was accomplished by using NCBI mappings
between Entrez gene IDs and PubMed IDs together with Fisher’s exact test to find genes
significantly associated with autism publications. We thresholded the list at FDR < 0.01,
resulting in 93 literature-supported genes that have been implicated in ASD. The second was
a partially-overlapping set which included only “syndromic-ASD” genes (CACNA1C,
CNTNAP2, FMR1, MECP2, NLGN3, NLGN4X, PTEN, SHANK3, TSC1, TSC2 and
UBE3A) and “ASD-related” genes (AGTR2, ARX, ATRX, CDKL5, FOXP2, HOXA1,
NF1, SLC6A8) from a previous study (Sakai et al., 2011). We added to this list 3 additional
syndromic ASD genes, including KCNMA1 (Laumonnier et al., 2006), AUTS2 (Huang et
al., 2010), SHANK2 (Berkel et al., 2010). Again we used t-tests and bootstrapped means to
compare the distributions of brain and autism-implicated genes against the background set
of all other genes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Paternal age effect explains 44% of variation in genome-wide mutation rates
Data points represent the total number of autosomal DNMs detected in offspring. See also
Supplemental Figure 1 and Supplemental Table 1.
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Figure 2. Non-random distribution of DNMs in the genome
Quantile-quantile plots of the observed distribution of inter-DNM distances within and
between individuals and the expected distribution based on a random mutation model.
Differences are statistically significant at α=0.05 by the KS test. See also Supplemental
Figure 4 and Supplemental Table 2.
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Figure 3. Individual associations of genome features with de novo mutation
Predisposition to de novo mutation is influenced by sequence and chromatin characteristics.
A variety of quantitative genome data were tested for associations with de novo mutation
sites, including conservation, DNase hypersensitivity, GC content, histone marks, lamin B1
association, nucleosome occupancy, recombination rate, replication timing, transcription in
human embryonic stem cells, simple repeats at the site of DNM, and the particular
trinucleotide sequence centered at the site of DNM. The data were tested for association at
different scales (i.e. window sizes at which the genome data were averaged), indicated on
the x-axis. The strength and direction of association between the features and DNM are
indicated by logistic regression coefficients (y-axis), which are shown with their standard
errors. Significant associations (FDR < 0.10) are indicated in bold type. A summary of the
relationship between these features and the principal components used in the predictive
model is provided in Supplemental Figure 6. A detailed legend of the feature names and
their descriptions is provided in Supplemental Table 6, and further details relating to the
origin and construction of the features can be found in methods.
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Figure 4. Intrinsic characteristics of the genome explain variation in observed mutation rates
Mutability index at the site level (1 bp) is highly predictive of the mutation rate in (A) ASD
genomes in this study, (B) Control genomes in Conrad et al., 2011, and in ASD cases (C)
and controls (D) of previous exome studies (combined data from O’Roak et al. 2011 and
2012, Iossifov et al., 2012, Sanders et al., 2012, and Neale et al., 2012). Mutability index
explains a majority of the variability in site specific mutation rates, and the degree of
mutation rate variation was similar in cases and controls. CpG sites and non-CpG sites
varied widely in their mutability and the range of CpG mutability overlapped considerably
with the range for non-CpG sites (Supplemental Fig. 2). Mutability index was also
predictive of regional mutation rates (Supplemental Fig. 3).
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Figure 5. Landscape of mutability in the genome
(A) The 1 kb average mutability index (MI) across a 20 Mb genomic region of chromosome
8p21–23 indicates the existence of extended regions of hypermutability. “Hotspots” (red),
“warm spots” (orange) as well as “cold spots” were defined by segmenting the MI scores
using a 5 state HMM (see Supplemental Table 7). Predicted mutation rates (y-axis) were
computed by multiplying the arithmetic mean MI by the baseline mutation rate of 10−8, then
transforming to the log10 scale. The genome- and exome-wide distributions of MI are
depicted in Supplemental Figure 7. The locations of DNMs are also shown and include a
dense cluster of DNMs from individual 74–0355 (red, DNMs < 100 kb apart marked by
asterisk). (B) The lower panel displays segmentation results for a second genomic region at
15q11–13. This region is notable for having a high rate of recurrent structural mutation. In
the same region, the predicted rate of nucleotide substitutions is highly elevated.
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Figure 6. U-shaped relationship of mutability and evolutionary conservation
(A) Throughout the genome, we observe a correlation of hypermutability, hyperdivergence
and hyperdiversity, consistent with previous studies. By contrast, in highly conserved
regions the opposite trend is evident. MI and conservation were averaged in 1kb windows
genome-wide. Windows were then binned according to percentiles of conservation. (B)
Specifically within exons, there is a strong positive correlation of mutability and
evolutionary conservation (also binned by percentiles of conservation). (C) The positive
correlation between mutation rate and average exon conservation was confirmed by data
from exome studies. Note that the positive relationship exists for both cases and controls.
Under the null hypothesis, in which exons are hit with probability proportional to their
length, this relationship is not observed.
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Figure 7. Disease genes are characterized by high mutability
Disease genes are more mutable than non-disease genes (A) within genes and (B) within
exons. In both cases, mutability is highest for genes involved in dominant disorders and
mutability is increased to a lesser extent for genes involved recessive and polygenic traits.
Mutability is significantly elevated for genes preferentially expressed in the brain (C- D) as
well as genes involved in ASD (see methods for details). An asterisk indicates a significant
difference compared to the respective background set (at α=0.01 by a two-sided t-test). See
also Supplemental Table 3 and Supplemental Table 4 for the mean mutability index of exons
and genes, respectively.
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