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Abstract
Purpose of review—To identify and critique the most recent experimental findings regarding
the pathogenesis and therapy of thyroid-associated ophthalmopathy (TAO).

Recent findings—Much of the recent work in this field has focused on identifying genetic
alterations associated with the phenotypes of Graves' disease (GD) and TAO and investigating
their functional consequences. Identified candidate genes include CD40, cytotoxic T-lymphocyte
antigen-4 (CTLA-4), protein tyrosine phosphatase-22 (PTPN22), HLA-MHC and those associated
with the X-chromosome. Efforts to generate a complete rodent model of GD continue with little
progress. These uniformly involve the immunization of animals with the thyrotropin receptor
(TSHR). Studies conducted in vitro have focused on the actions of cytokines in orbital fibroblasts,
the potential role of the insulin-like growth factor-1 receptor and activating antibodies directed
against it as a fibroblast and T cell activation pathway. Reports continue to appear examining the
potential relationship between the TSHR and orbital adipogenesis. Regarding therapy for TAO,
small molecules and antibodies disrupting cytokine pathways and lymphocyte function are
currently under examination and have yielded promising albeit preliminary results.

Summary—TAO remains a vexing medical problem, the pathogenesis of which remains
uncertain. A number of obstacles continue to plague major advances, not the least of which is the
absence of a robust animal model. A few new insights seem to represent departure from traditional
thinking about this disease and may herald important innovation.
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Introduction
Graves' disease (GD) represents a partially genetic autoimmune process affecting the thyroid
gland as well as orbital and dermal connective tissue. Most patients present with an
enlarged, hyperplastic thyroid and hyperthyroidism. Many also manifest thyroid-associated
ophthalmopathy (TAO), a syndrome comprising proptosis, ocular edema and inflammation.
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Dermopathy, a localized infiltrative process of the lower leg occurs in very few patients. The
pathogenesis of these components of GD is poorly understood as is the mechanistic
connection between them. At the center of hyperthyroidism in GD lie activating antibodies
directed against the thyrotropin receptor (TSHR). But why tissues of the thyroid, orbit and
skin undergo remodeling remains uncertain and may be unrelated to the TSHR or its
antibodies. These tissues are infiltrated by inflammatory cells, fat expansion, and hyaluronan
accumulation. Our inability to develop a robust and complete animal model has hindered
better understanding GD.

In this brief review we attempt to identify recent progress being made in identifying the
mechanisms underlying GD and TAO. New insights are needed before we can approach
therapy more rationally. TAO remains a vexing problem associated with substantial
morbidity.

Emerging concepts in disease pathogenesis
Progress in identifying the genetic contribution to GD

Autoimmune thyroid disease (AITD) occurs with increased frequency in families harboring
susceptibility genes (1). Twin studies have revealed a pattern of familial clustering, a 35%
concordance of GD disease in monozygotic twins and have attributed 79% of disease
susceptibility to genetic factors (2). In addition to as yet unidentified environmental
factor(s), multiple genetic abnormalities appear to converge in GD and these may interact
synergistically (3). Much of the recent investigation has focused on 5 genes; CD40,
cytotoxic T lymphocyte antigen-4 (CTLA-4), protein tyrosine phosphatase-22 (PTPN22),
HLA-MHC and the X-chromosome associated genes.

i) CD40, a member of the tumor necrosis factor receptor super-family, was originally
identified as an important B-cell activation factor involved in the development of humoral
immune responses (4). Subsequently, it has been detected on the surface of many cell-types
including thyrocytes (5,6) and orbital fibroblasts (7). Activated CD4+ T lymphocytes
express CD40 ligand (CD40L, aka CD154) (4). Thus, cross-talk between thyrocytes or
orbital fibroblasts and infiltrating lymphocytes might occur through the CD40-CD40L
molecular bridge in the setting of autoimmune disease. Orbital fibroblasts from patients with
GD proliferate when incubated with autologous T cells, an effect dependent on the CD40-
CD154 pathway (8). CD40-mediated signaling results in cellular activation through the up-
regulation of specific downstream genes including those encoding IL-6, IL-8, PGHS-2, and
enhanced hyaluronan synthesis, all of which have been implicated in the pathogenesis of GD
(7,9). A single nucleotide polymorphism (SNP) C/T in the un-translated region of the CD40
gene has been associated with susceptibility to GD in Caucasian (10) and Korean (11)
populations. Recently, this SNP was also implicated in disease susceptibility in an older
cohort of Japanese (12) and has been linked to production of anti-thyroid Abs (13).
Interestingly, it was not detected in 12 mice strains known to be susceptible to GD (two
animals) and Hashimoto's thyroiditis (ten animals) (14), suggesting that any contribution of
CD40 to autoimmunity in mice and human beings may differ substantially. In man, this SNP
may alter the translational efficiency of CD40 protein (14). Jacobson and colleagues,
utilizing an in vitro transcription/translation system, demonstrated that approximately 15.5%
more CD40 protein was produced by cells harboring this SNP (14). When surface
expression of CD40 was examined by flow cytometry, rat embryonic kidney fibroblasts
(Rat2) transfected with the C/T SNP expressed 32% more surface CD40 compared to
controls. Furthermore, human B cells harboring this SNP expressed 39% and 27% higher
levels of surface CD40 at rest and following activation, respectively, compared to controls.
No difference was detected in steady state CD40 mRNA levels. It is possible that the
elevated levels of surface CD40 might amplify cell activation during tissue injury,
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potentially predisposing the host to GD. The CD40-CD40L bridge may represent an
important therapeutic target for GD and its interruption has been examined in other
inflammatory diseases (15).

ii) CTLA-4- The CTLA-4 gene encodes a negative regulator of T lymphocyte activation and
proliferation (16). In fact, CTLA-4 knock-out mice develop a lethal lymphoproliferative
disorder (17). CTLA-4 inhibits T cell responses by opposing the metabolic consequences of
CD28 activity, which ordinarily promotes several T cell functions. A SNP (CT60) in the
3′UTR of the CTLA-4 gene has been associated with increased incidence of GD in
caucasians (18) a finding recently extended to Japanese (19), Italian (20), Chinese (21) and
Taiwanese (22) populations, and confirmed in a metanalysis (23). Other alterations of the
CTLA-4 gene A49G (20,24), aT-n (20) have also been identified. Saverino et. al. recently
studied a soluble form of CTLA-4 (sCTLA-4), levels of which are elevated in serum of
subjects with GD (25). sCTLA-4 was isolated from these individuals and found to be
functional in in vitro studies. The role of sCTLA-4 and its full-length cell-bound analogue in
autoimmunity remains uncertain.

iii) PTPN22- Lymphoid protein tyrosine phosphatase (LYP, aka PTPN22) represents
another negative regulator of T cell activation. A SNP at 1858CT, 620AT of the PTPN22
gene encoding LYP has been detected with increased frequency in autoimmune diseases
such as GD (26-28). LYP inhibits T cell activation by de-phosphorylating T cell receptor
(TCR)-associated kinases (29-31). Interestingly, the 1858CT, 620AT SNP results in a gain
of function mutant phosphatase that inhibits T cell signaling more completely than wild type
LYP (31). Yu et. al. recently synthesized a highly specific salicylic acid-based inhibitor of
LYP, I-C11 (32). I-C11 inactivates LYP by binding to its active catalytic site. Furthermore,
the authors identified serine 25 as a potentially critical phosphorylation site on LYP. PKC-
dependent phosphorylation of this serine residue leads to a conformational change of the
LYP molecule and disrupts LYP's ability to recognize and bind adaptor molecules. When
phosphorylated at serine-25, LYP cannot inactivate kinases critical to T cell activation. I-
C11 as well as inhibitors of PKC dependent serine-25 phosphorylation may represent useful
agents for studying T cell activation in chronic inflammatory and autoimmune disease (32)

iv) HLA class I- HLA class II genes are associated with susceptibility to GD. The HLA
class II region codes for cell surface receptors involved in antigen presentation as well as
thymic selection/deletion of T cells. Recently HLA class I molecules also have been
implicated (33). Simmonds et. al. genotyped 871 patients with GD and 621 controls for
DRB1, DQB1 and DQA1 loci. All three loci were associated with GD (33). Further analysis
examining peptide binding domains of these molecules suggests that position B74 located
on exon 2 of DRB1 exhibits the strongest disease-association, making this peptide a prime
candidate for involvement in auto-antigen presentation.

v) Monosomy X- Female gender propensity for autoimmune disease was recognized many
years ago and women are approximately 10 times more likely than men to develop GD.
Some, but not all studies have shown linkage of AITD with regions of the X-chromosome.
Genes residing there apparently play critical roles in the maintenance of immune tolerance.
Thus, X-gene haplo-insufficiency has been scrutinized for its potential as a common
mechanism for autoimmune disease. The rate of X- chromosome monosomy, particularly in
cells of the immune system, such as T and B cells, is significantly higher in women with
AITD (34). In addition, skewed X-chromosome inactivation (>80% of cells inactivating the
same X-chromosome) occurs with a high frequency in female AITD patients compared to
controls (35,36). Brix et. al. studied skewing of X-chromosome inactivation in twins with
GD compared to healthy unrelated twin controls as well as to their unaffected twin sibling
(37). 32 female twins [mono (MZ)- and dizygotic (DZ)] with AITD were compared for x-
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chromosome skewing to 96 healthy unrelated twin controls matched for age and zygosity.
Skewed inactivation of the X-chromosome occurred in 37% of subjects with GD compared
to 14% for matched controls (37). Furthermore, the rate of skewed x-chromosome
inactivation was 32% in 26 female twins (6 MZ, 20 DZ) compared to 12% in their clinically
discordant twin. Skewed inactivation of the X-chromosome may exhibit divergence with
respect to tissue involvement. Preferential inactivation of one of the two X-chromosomes (in
more than 80% of cells) instead of the random 50%/50% may result in inadequate thymic
exposure to potential X-chromosome-encoded self-antigens. Should these antigens be
expressed in sufficiently high frequency in peripheral tissues, an immune response to these
insufficiently self tolerized X-linked antigens may lead to an organ specific autoimmune
response (37).

Animal models of GD
Attempts to develop a complete and robust animal model of GD continue (38-41). For
instance, Flynn et. al. showed that chronic stimulation of an autoimmune-prone HLA DR3
transgenic non-diabetic mouse with stimulating anti-TSHR Mab leads to sustained
hyperthyroidism. Histologic examination or the thyroid gland after 65 days revealed
enlarged, hyperplastic follicles but an absence of inflammatory infiltrates (38). Kaneda et.
al., using BALB/c mice in an electroporation (EP)-based gene transfer technique, greatly
enhanced TSHR expression in vivo and achieved a high incidence of hyperthyroidism.
Moreover, TSHR simulating Ab generation persisted for more than 8 months (40). No
thyroid lymphocytic infiltration was noted. McLachlan et. al. have implicated CD25+

regulatory T cells as important determinants of whether an induced AITD phenotype
resembles that of GD or Hashimoto's disease in mice (42). Baker et. al. failed to reproduce a
murine model of thyroiditis and TAO, developed by immunizing BALB/cbyJico mice with
the human TSHR and transferring primed T cells to a syngeneic animal. The authors
determined that the microbial environment may influence the immune responses in
experimental animals (41). Our inability to develop an animal model of GD reflects our poor
understanding of its underlying pathophysiology.

Cytokines
IL-6 plays critical roles in B cell development and differentiation. It drives Ig synthesis and
is critical to normal plasma cell development. Chen et. al. found that IL-6 production was
dramatically enhanced by IL-1β in orbital fibroblasts but not in those from other tissues
(43). The induction resulted from coordinate enhancement of IL-6 gene promoter activity
and stabilization of IL-6 mRNA. This same group reported that IL-4 induced 15-
lipoxygenase-1 gene expression and in so doing promoted the production of 15-HETE (44).
Notably this effect was shared by IL-13, another Th2 cytokine and was specific to orbital
fibroblasts from patients with TAO. 15-HETE may promote fibrosis, thus these findings
might tie together the transition from Th1 to Th2 dominated immunity found as TAO
progresses to the irreversible fibrotic tissue changes associated with late-stage disease.

The proteolytic environment surrounding cells determines a host of molecular events,
including extracellular matrix turnover and the processing of cell-surface molecules. This
environment comprises both proteases and their physiological inhibitors such as tissue
inhibitor of metalloproteinases (TIMPS). TIMP-1 is differentially regulated in TAO orbital
fibroblasts by IL-1β, an induction which is mediated through enhanced gene promoter
activity and is down-regulated by both Th1 and Th2 cytokines (45). Thus it is very likely
that pericellular proteolysis occurring in the microenvironment surrounding these cells
differs from that of other fibroblasts, perhaps accounting in part for the unique phenotypic
attributes displayed by these cells.
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IL-16, RANTES and CXCL10 represent potent T lymphocyte chemoattractant molecules,
and their production by thyrocytes (46,47) and orbital fibroblasts (48,49) represents an
important basis for lymphocyte trafficking to diseased thyroid and orbit. Serum CXCL10
levels are elevated in patients with GD, particularly early in the disease (50) and during the
active phase of TAO (51). CXCL10 production by thyrocytes is inhibited by methimazole
(52). IL-16 and RANTES production is mediated through the IGF-1 receptor (IGF-1R) (53).
Circulating activating autoantibodies against this receptor have been identified in GD and
may drive lymphocyte infiltration (46,53). The T cell phenotype in GD appears skewed
toward the IGF-1R+ phenotype (54). Their activation through IGF-1R enhances survival and
promotes proliferation, resulting in a disproportionate increase in CD45RO+IGF-1R+

memory T cells (54). Trafficking of these lymphocytes to affected tissues may be dependent
on cell surface expression of the IGF-1R (54) and CXCR6 (55) or on the tissue expression
of markers such as CD1 (56).

Adipogenesis
Orbital fat commonly expands in TAO. TSHR is expressed by orbital adipocytes in culture
(57) and the transcript can be detected in orbital fat (58). Therefore, several studies have
examined a potential connection between orbital fat and TSHR. Recently, Zhang et. al. using
retroviral vectors, introduced activating mutant TSHR (L629F and M453T) into orbital
fibroblasts (59). This receptor over-expression led to inhibition of proliferation and rendered
the cells refractory to PPARγ-induced adipogenesis (59). In another study, orbital
fibroblasts exhibited enhanced TSHR expression after adipogenesis (60). The authors
concluded that the receptor was functional because treatment with TSH and stimulating anti-
TSHR Abs resulted in small increases in cAMP generation (60). Differentiation of orbital
fibroblasts into adipocytes may be driven by infiltrating activated T cells through their
elaboration of PPARγ ligands (61). Another report examined frizzled related protein-1
(sFRP-1) and the wnt pathway. sFRP-1 inhibits signaling through this pathway and usually
attenuates adipogenesis. sFRP-1 treatment of orbital fibroblasts increased leptin,
adiponectin, and TSHR mRNA expression and was associated with enhanced Oil-Red-O
staining (62). sFRP-1 and the wnt pathway may therefore represent targets for interrupting
potentially aberrant adipogenesis in TAO.

Therapy
Treatment of hyperthyroid GD is easily accomplished with antithyroid drugs, surgical
thyroidectomy or radioactive iodine. Despite this, El Fassi et. al. administered Rituximab
(RTX), an anti CD20 mAb, to patients with uncomplicated GD (63). RTX depletes
peripheral B cells depletion through its action on CD20. In this uncontrolled study, patients
with GD were treated with antithyroid medication without or in combination with RTX.
They were then withdrawn from the anti-thyroid medication and followed longitudinally for
signs of disease relapse and elevated TSI levels. While treatment with RTX may have
sustained remission in a subset of patients with low TSI titers, the high cost, low efficacy
and potential side effects may not justify its use in uncomplicated GD. Salvi et. al.,
compared RTX to intravenous glucocorticoid therapy in a small, open label non-randomized
pilot study involving patients with mild to moderate TAO (64). The investigators concluded
that RTX positively affected the clinical course of TAO. Unfortunately, that study too was
uncontrolled and inadequately powered. Prospective trials to further investigate the efficacy
of RTX in TAO are currently underway. Somatostatin analogues were initially considered
promising therapeutic agents for TAO, based on non-randomized open trials (65). The drug
has been abandoned as therapy for TAO based on results from four recent randomized,
prospective trials (66-69) showing no efficacy.
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Emergence of anti-cytokine and small molecule therapies for other autoimmune diseases has
led to questions about their potential efficacy in TAO. TNF-α was found to be over-
expressed in orbital connective tissue in TAO (70,71), and serum levels are elevated in
hyperthyroid GD. Furthermore, a SNP in the TNFα gene promoter has been associated with
increased incidence of GD (72,73). In addition, TNF-α may activate circulating monocytes
and promote their differentiation into dendritic cells and macrophages in affected tissues
(74). Thus, TNF-α may represent a therapeutic target particularly for patients with TAO.
Agents interfering with TNF-α action have revolutionized the treatment of rheumatoid
arthritis and inflammatory bowel disease. Paridaens et. al., in a prospective but uncontrolled
study, examined the effects of Etanercept in 10 euthyroid patients with active TAO (75).
Following therapy, the mean CAS improved from 4.0 to 1.6 after 12 weeks. The majority of
clinical improvement involved the soft tissues but proptosis was unimproved. Overall, 60%
of the subjects reported moderate to marked improvement (75). Durrani et. al. reported
treating a single patient with sight-threatening TAO who may have benefited from therapy
with Infliximab (76).

Conclusion
The pathophysiology of Graves' disease remains enigmatic. Absence of a spontaneous or
contrived animal model of GD, replete with the inflammatory features characteristic of
human disease, has hindered progress in this field. Recent studies have identified multiple
genes, molecular pathways and autoantigens which represent potentially exciting avenues of
investigation to pursue. They may prove important targets for therapy development.
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