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Abstract
Background—Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac
performance and impaired contraction and dilation of the left (or both) ventricles. Blood markers –
known as “biomarkers” allow insight into underlying pathophysiologic mechanisms and biologic
pathways, while predicting outcomes and guiding heart failure management and/or therapies.

Content—In this review, we provide an alternative approach to conceptualize heart failure
biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment
with clear interaction between these entities which may impact cellular processes involved in the
pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic
dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c)
cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g)
neurohormones and (h) renal biomarkers.

Summary—Biomarkers provide insight into the pathogenesis of DCM while predicting and
potentially providing prognostic information in these patients with heart failure.
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Cardiomyopathy is defined as an alteration in the structure and function of the myocardium,
leading to deterioration of myocardial performance often resulting in the development of
clinical heart failure. Dilated cardiomyopathy (DCM), a common cardiomyopathy leading to
heart failure, has a prevalence of 1:2500 [1] and is characterized by enlargement of one or
both of the ventricles with associated systolic dysfunction. Many diverse etiologies, either
primary (solely or predominantly confined to the heart muscle) or secondary (myocardial
involvement from a systemic disease process), may lead to the DCM phenotype. A diagnosis
of DCM requires evidence of dilation and impaired contraction of the left ventricle or both
ventricles (e.g., left ventricular ejection fraction (LVEF) < 40 percent) [2]. The disease is
considered idiopathic if primary and secondary causes of heart disease are excluded. Of
note, in the literature, the term DCM is usually an all-encompassing term for a non-ischemic
cardiomyopathy with depressed left ventricular (LV) function.

Macroscopically, DCM consists of hearts that are heavy (increased LV mass) with
geometric changes indicating eccentricity (defined as low relative wall thickness - normal or
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reduced wall thickness in relation to a dilated LV chamber size) [3]. Microscopically,
cardiomyocytes in DCM often consist of a classic histological triad – myocyte hypertrophy,
myocyte loss, and interstitial fibrosis [4]. However, these findings are imprecise in
identifying underlying etiologies for cardiomyopathies. In addition, the natural course of
DCM can be variable, contingent on multiple factors, including etiology and initial cardiac
phenotype of the cardiomyopathy, on-going cardiac insults and genetic underpinnings of an
individual’s resistance to adverse cardiac remodeling.

Heart failure is a clinical syndrome that manifests as a consequence of the progression of the
underlying cardiomyopathy. It is a complex process and features pressure and/or volume
overload leading and ventricular remodeling. Diverse etiologies, presentations, and
outcomes are seen thus, making the classification of cardiomyopathies challenging. Equally
challenging is categorizing biomarkers of heart failure as they are often described according
to their mechanism (e.g., neurohormonal, oxidative stress etc.). However, an alternative
method to conceptualize biomarkers in heart failure is to approach the classification from
three vantage points: the cardiomyocyte, its surrounding microenvironment, and the
macroenvironment (Figure 1). In heart failure, the cardiac myocyte is subjected to many
stressors – such as mechanical, oxidative and pro-inflammatory, resulting in structural and
functional changes (i.e., hypertrophy, necrosis/ apoptosis, altered myocyte energetics,
impaired contraction and relaxation). The myocyte “microenvironment”, the environment
immediately surrounding a myocyte, includes the cardiac interstitium, cardiac fibroblasts,
and other factors that interact or cross-talk with cardiomyocytes. Lastly, the
“macroenvironment” in heart failure refers to the interaction of the heart and other organ
systems and the impact of those systems on the heart (e.g., insulin resistance, cardiac
cachexia, obesity, cardiorenal syndrome and ventricular-vascular coupling). The intimate
relationship between the micro- and macroenvironment with the cardiomyocyte may result
in downstream cellular or signaling changes which may be important in the initiation and
propagation of DCM or reflect changes that have already taken place in DCM.

For the purpose of this review, emerging biomarkers in DCM will be the primary focus.
Although 20-35% of DCM has been genetically correlated with greater than 20 loci and
associated genes [1], genetic biomarkers are out of the scope of this review and will not be
discussed. The biomarkers reviewed are not unique to DCM, and we do not provide an
exhaustive list (Table 1) but provide insight into underlying pathophysiologic mechanisms
and biologic pathways important in, but not specific to DCM. Some of these biomarkers
may prognosticate outcomes, enable guidance in heart failure therapeutics and may be used
for monitoring treatments in DCM.

THE CARDIOMYOCYTE
Myocyte stress/stretch

One of the most well-described and studied biomarkers in heart failure and ventricular stress
is B-type natriuretic peptide (BNP) and its amino terminal fragment (NT-pro-BNP).
Activation of the BNP gene (natriuretic peptide B), in response to myocardial stress
(predominantly via stretch) results in the production of both peptides. Both biomarkers
diagnose acute heart failure syndromes [5, 6] but without predicting DCM or LV systolic
dysfunction (LVSD). While NT-proBNP and BNP are both higher in patients with LVSD, in
sub-studies modest correlations were seen predicting LVEF [7-9]. In a recent meta-analysis
pooling biomarker-guided therapy trial data, a significant reduction in mortality was seen
utilizing these natriuretic peptides in chronic heart failure management [10] but with varied
baseline LVEF and with no specific analysis in DCM patients. Recently, however, the Use
of NT-proBNP Testing to Guide Heart Failure Therapy in the Outpatient Setting study
specifically looked at chronic LVSD (mean LVEF < 30%, of which a third had a non-
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ischemic etiology) and found a statistically significant reduction in total cardiovascular
event rates, improved quality of life, and reduction in LV chamber size as shown by LV
end-systolic and -diastolic volume indexes, thus indicating improved cardiac remodeling
with NT-proBNP guided therapy compared to standard of care [11]. Moreover, recent
advances in BNP physiology have targeted the up-stream 108 amino acid prohormone of
BNP and NT-pro-BNP, pro-BNP1-108 to identify asymptomatic LVSD in conjunction to
known predictive abilities of BNP and NT-proBNP [12-14].

Atrial natriuretic peptide (ANP), is secreted predominantly from the atria during times of
stretch, although can be released from ventricular myocytes in times of ventricular stress
[15]. ANP has recently been evaluated in the context of the precursor pro-ANP peptide
using a sandwich assay of the mid regional sequence of ANP (MR-proANP), which is more
stable and less susceptible to enzymatic degradation compared to ANP [16]. Two recent
studies in patients with lower LVEF showed that elevated MR-proANP was able to identify
LVSD and to predict mortality [17, 18].

Soluble ST-2 (sST2) is a truncated soluble receptor of the interleukin-1 receptor family and
is a biomarker of mechanical strain and fibrosis in conjunction with IL-33 (a ligand of ST2,
synthesized by cardiac fibroblasts) [19, 20]. In a small cohort of DCM patients, sST2 (in
addition to NT-proBNP) predicted sudden cardiac death [21]. In acutely decompensated
heart failure patients with depressed LVEF (median 34%), sST2 levels predicted mortality
risk [22]. In an echo sub-study for the pro-BNP investigation of Dyspnea in the Emergency
Room, sST2 levels correlated with cardiac structure (LV end-diastolic and systolic
dimensions) in addition to predicting mortality [23], indicating the poor prognosis of cardiac
remodeling and potentially the utility of sST2.

Myocyte injury
We will not discuss cardiac troponin I and T in this review, but refer the reader to Table 2
where other biomarkers not discussed in this review are listed. Cardiac troponins are the
most common markers of myocyte necrosis. Release of troponin in heart failure is due to
myocyte injury, regardless of the mechanism involved and low circulating levels are present
in chronic LVSD and DCM [24, 25].

Myocyte apoptosis
Heart-type fatty acid binding protein (H-FABP) is a cytosolic, non-enzymatic protein,
which transports long-chain fatty acids into cardiomyocytes and is released into the
circulation when the myocardium is injured [26]. In heart failure patients, H-FABP levels
together with cTnT, were more sensitive in detecting worse New York Heart Association
(NYHA) functional class and identified a higher risk group when cTnT levels were normal
but H-FABP levels were elevated [27]. Several studies showed that H-FABP levels were
strongly predictive of cardiac mortality and heart failure re-hospitalizations in multivariate
analyses [27-29]. Thus, its strength in prognosis is likely because this biomarker represents
ongoing myocardial damage and identifies a higher risk subset and likely provides insights
into ongoing adverse cardiac remodeling.

Similarly, soluble markers of apoptosis, specifically soluble apoptosis stimulating
fragment (sFAS) may eventually allow earlier prognostication in patients with heart failure.
In low LVEF patients, sFAS independently predicted the composite outcome of all-cause
mortality and rehospitalization for worsening heart failure [30]. Inflammatory mediators,
such as such as IL-6 and TNF-α (Table 2), appear to be important determinants of the FAS-
FAS ligand pathway [31] – thus, the inflammatory milieu of heart failure contributes to the
apoptotic process in patients with LVSD.
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Myostatin (also known as growth differentiating factor-8, GDF-8), a member of the
transforming growth factor-beta (TGF-β) superfamily, is a secreted factor that inhibits
muscle differentiation and growth. Myostatin is produced predominantly in skeletal muscle
and is a negative regulator of skeletal muscle mass [32]. However recent evidence now links
myostatin to cardiomyocyte homeostasis, since myostatin is up-regulated in patients with
severe heart failure and DCM. Increased myostatin levels are seen as a possible protective
counter-regulator of cardiomyocyte hypertrophy in advanced heart failure [33, 34]. A recent
study in patients with depressed LVEF and heart failure (mean LVEF 22.6%) showed
increased myostatin levels correlated with worsening NYHA classification [35]. Whether
myostatin serum levels correlates with the skeletal muscle wasting phenomenon in heart
failure and cardiac cachexia, still remains to be studied.

THE MICROENVIRONMENT
Cardiac interstitium

In DCM, the myocardial interstitium is in a constant state of flux with increased
extracellular matrix turnover and decreased collagen linking, leading to a distorted and
defective matrix architecture [36, 37]. A loss of alignment of the cardiomyocyte fascicles
contributes to LV dilation and a loss of the matrix-myocyte interface likely weakens the
myocyte-shortening force transduction, leading to impaired myocardial force and systolic
performance [38]. Matrix metalloproteinases (MMPs), myocardial interstitium proteases
that are pivotal in myocardial remodeling, are held in delicate balance by tissue-inhibitors of
matrix metalloproteinases (TIMPs) [39]. The overall change in matrix proteins in DCM
favors increased MMP-mediated matrix proteolysis with up-regulation noted in MMP-2,
MMP-3, MMP-9, MMP-13 and MT1-MMP with decreases seen in MMP-1 and varied
responses of TIMP-1, TIMP-2, and TIMP-3. However, these findings were measured by
tissue samples and not by blood protein characterization [36, 37, 40]. Plasma MMP-9 levels
in the Randomized Evaluation of Strategies for LV Dysfunction (RESOLVED) study were
inversely related to LV systolic function – suggesting a role for monitoring ongoing cardiac
remodeling [41]. Plasma TIMP-1 levels correlated with cardiovascular risk factors, LV mass
and hypertrophy and were inversely associated with cardiac function (fractional shortening)
in a community-based cohort [42] – suggesting these proteins may provide early predictive
information in patients at greatest risk for developing heart failure.

In addition to the regulators of collagen matrix formation, serum procollagen peptides have
been evaluated to characterize and understand extracellular matrix turnover. Circulating
amino-terminal propeptide of type III procollagen (PIIINP) portend a higher risk of death
and hospitalization, particularly in lower LVEF patients [41]. Reverse remodeling after LV
assist device implantation supports an initial increase in serum N-terminal pro-peptide for
Type I collagen (PINP) and PIIINP which may provide insight to adverse cardiac
remodeling [43]. Additional studies in a specific DCM cohort with serum markers are
needed to further elucidate their role in risk prediction and prognosis.

Galectin-3, a β-galactoside-binding protein secreted by immune cells, has been associated
with myocardial fibrosis, ventricular remodeling, and left ventricular dysfunction [44, 45].
In two recent studies evaluating chronic heart failure patients, galectin-3 predicted mortality
and heart failure hospitalization and correlated positively with LV end-systolic and end-
diastolic volumes [46, 47]. Similarly, galectin-3 was associated with all-cause mortality and
an increased risk of incident heart failure, thus implicating the predictive role of galectin-3
in detecting asymptomatic fibrosis and early adverse remodeling [48].
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Inflammation
Many markers of inflammation have been implicated in the pathogenesis of heart failure
with TNF-α being one of the most well studied [49, 50]. We will not be discussing TNF-α
in this review (see Table 2 for references).

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the TNF
factor family, is a trans-membrane protein that is released in a truncated, active form to bind
to fibroblast growth factor inducible-14 (Fn14). Fn14 is a highly inducible cell-surface
receptor that is involved in multiple signaling pathways, including the NF-κB pathway.
TWEAK plays a role in cardiomyocyte proliferation, myocardial hypertrophy, and cardiac
fibrosis during cardiac remodeling. However there is conflicting data about the use of
TWEAK levels as a biomarker. On the one hand increased levels of TWEAK after
myocardial infarction with cardiac remodeling has been shown to portend adverse outcomes
[51]. Conversely lower levels of soluble TWEAK have been associated with increased
mortality in heart failure patients [52, 53]. Thus the role of TWEAK in heart failure and
LVSD require further clarification.

Osteoprotegerin (OPG), a member of the TNF receptor superfamily, binds to the receptor
activator of NK-κB ligand (RANKL) and prevents the interaction between RANKL and its
receptor. In a cohort of stable heart failure patients with LVSD (mean LVEF 32%) with both
ischemic and non-ischemic etiologies, OPG levels were elevated in heart failure patients
compared to controls and were positively correlated with worse NYHA functional class,
degree of myocardial dysfunction (cardiac index), and neurohormonal activation (N-BNP)
[54]. Additionally, in chronic heart failure patients, OPG levels are associated with
mortality, independent of other risk factors of death. Thus OPG levels may assist in risk
stratification in these patients [55].

Pentraxin-3 (PTX3), a member of the pentraxin superfamily (which includes C-reactive
protein and serum-amyloid P), is an inflammatory marker that is part of the innate immunity
system which is produced by endothelial cells, smooth muscle cells, and macrophages [56].
PTX3, not C-reactive protein, proved to be an independent predictor of adverse events –
including all-cause mortality and hospitalization for worsening heart failure in several heart
failure studies including GISSI-heart failure and CORONA cohorts [57, 58].

Cardiotrophin-1 (CT-1), is a cytokine and a member of the IL-6 family of cytokines. CT-1
mediates its effects by interacting with the glycoprotein 130 (gp130)/leukemia inhibitory
factor receptor beta (LIFR) heterodimer. It has potent hypertrophic and survival effects on
cardiac myocytes. CT-1 activates phosphatidylinositol 3-kinase in cardiac myocytes and
enhances transcription factor NF-κB DNA-binding activities. CT-1 levels are increased in
patients with DCM and are significantly correlated with the LV mass index, suggesting that
CT-1 plays an important role in structural LV remodeling [59].

Oxidative Stress
Increased oxidative stress is characterized by the excessive production of reactive oxygen
species (ROS) which overwhelms the host’s antioxidant defenses. Oxidative stress is present
in many cardiovascular disorders, such as heart failure. Increased ROS in heart failure may
mediate many pathways that play a role in adverse cardiac remodeling including the
propagation of apoptosis, deleterious effects on endothelial function, activation of
neurohormonal systems [60], as well as direct effects on cardiomyocytes that can impair
cardiac performance (i.e. ROS-induced structural modifications of the sarcomere) [61].
Many methods exist to characterized levels of ROS, however, only recently have there been
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human studies evaluating biomarkers that measure indirect markers of free radicals and
assess their role in heart failure.

One biomarker of interest is myeloperoxidase (MPO), a leukocyte-derived heme
peroxidase that is associated with neutrophil activation and inflammation with direct effects
on ventricular remodeling in the post-infarct setting [62, 63]. In patients with LVEF < 35%,
MPO was associated with right ventricular dysfunction and a more restrictive diastolic
dysfunction pattern, on echocardiography. MPO was also more predictive of increased
future adverse clinical events even after multivariate adjustment [64]. In addition, combined
with other markers of inflammation (like high-sensitivity C-reactive protein) MPO levels
provided incremental risk prediction in chronic systolic heart failure patients [64]. Thus
MPO levels may also provide a means of monitoring anti-inflammatory effects with heart
failure therapy [65] and determining on-going risk in heart failure patients.

Another marker of oxidative stress, plasma oxidized low-density lipoprotein (oxLDL)
levels, was shown to be elevated in the coronary sinus of the heart compare to aortic root
samples in DCM patients demonstrating increased oxidative stress in heart failure patients
[66]. This transcardiac gradient of oxLDL correlated inversely with LV systolic function
with oxLDL levels have been shown to be an independent predictor of mortality and adverse
cardiac events in heart failure patients [66-68].

THE MACROENVIRONMENT
Myocyte energetics

Alterations in cardiac metabolism and energy substrate utilization have been described as
pathological consequences as well as therapeutic targets for heart failure [69, 70].
Adipokines are secreted by adipose tissue and are implicated as playing a role in the
pathogenesis of heart failure [71, 72]. Adiponectin, an insulin-sensitizing hormone, is
secreted not only by adipose tissue but also cardiomyocytes during cardiac stress.
Adiponectin activates AMP activated protein kinase (AMPK) leading to downstream effects
such as inhibiting LV hypertrophy as well optimizing energetics by preferentially supporting
the major cardiomyocyte fuel, fatty acids, which is responsible for ~70% of the cardiac
energy needs [73]. Recent studies have implicated changes in serum adipokine levels
between compensated and decompensated heart failure as well as evidence of adiponectin
resistance that is reversed in the setting of left ventricular assist device (LVAD) therapy [74,
75]. Adiponectin modulates cardiac dysfunction by its interaction with several intracellular
signaling pathways [76]. Depressed levels of adiponectin reflect greater cardiovascular risk
and inflammation, in conditions such as hypertension, coronary artery disease, obesity and
insulin resistance [77-79]. On the contrary, in humans with LVSD and heart failure [33, 80,
81], adiponectin levels are elevated [71] and associated with the severity of heart failure
symptoms, disease severity and mortality [80, 82, 83]. It has been proposed that elevated
adiponectin in LVSD is a state of ‘adiponectin-resistance’ and reflects an attempt to mitigate
pro-inflammatory or impaired metabolic states and demonstrates a balance between
protective and harmful pathways in the failing heart.

Neurohormones
Neurohormones such as norepinephrine, renin, angiotensin II and aldosterone (see Table 2
for references) have been well described in prior reviews of biomarkers in heart failure [60].
Novel neurohormones including adrenomedullin (ADM), a peptide which is released by
many tissue types, including the kidney and adrenal medulla and is stimulated by pressure
and volume overload. ADM belongs to the calcitonin gene-related peptide family and is
implicated in vasodilation via nitric oxide with resultant cardioprotective effects such as
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increasing cardiac output, decreasing afterload, and modulating cardiac fibroblast
proliferation [84]. Mid-region-proADM is a stable prohormone fragment of ADM that is
easier to measure. It independently predicted 2-year mortality, particularly in LVSD with
non-ischemic etiology and NYHA Class II or worse functional class [85].

Copeptin, the C-terminal portion of the precursor peptide of the neurohormone arginine
vasopressin (AVP or antidiuretic hormone), is a surrogate biomarker for AVP, which
exerts its primary effects in the hypothalamus by stimulating adrenocorticotrophic hormone,
on vascular tissue causing vasoconstriction, and in the kidneys resulting in water retention.
Increased copeptin levels in LVSD populations is linked to decreased survival rates,
particularly in symptomatic NYHA class II-IV heart failure patients [86]. In the
OPTIMAAL (Optimal Trial In Myocardial Infarction with Angiotensin II Antagonist
Losartan) neurohormonal substudy which included a mixed population of acute heart failure
syndrome plus LVSD patients, copeptin levels were a predictor of mortality post-myocardial
infarction and performed better than BNP and NT-proBNP levels [87].

Renal markers
The relationship between renal dysfunction and heart failure is tightly intertwined with
activation of neurohormones and release of stress biomarkers that are associated with
adverse cardiac outcomes [88]. Neutrophil gelatinase-associated lipocalin (NGAL) is
secreted by many cell types including renal tubule cells, hepatocytes, endothelial, and
smooth muscle cells in response to cellular stress, inflammation and ischemia [89]. NGAL,
in patients with acutely decompensated heart failure at the time of discharge, was a strong
predictor of 30-day heart failure readmissions and all-cause mortality [90]. In addition,
NGAL predicted acute kidney injury in heart failure patient with LVSD [91] and correlated
strongly with markers of anemia even after multivariate adjustment, such as renal function
and markers of inflammation [92], suggesting that NGAL initially produced as a
compensatory response may not simply be a risk marker but an active player in the heart
failure syndrome.

Beta-trace protein (BTP), a glycoprotein produced in all tissues (except the ovaries)
converts prostaglandin H2 to prostaglandin D2 and cystatin C, a competitive inhibitor of
cysteine proteases is produced by all nucleated cells. Both have been purported to be novel
markers of glomerular filtration [93]. In acutely decompensated heart failure patients, both
BTP and cystatin C predicted risk of death/and or heart failure hospitalizations and were
superior to creatinine, estimated glomerular filtration rate, and blood urea nitrogen [93].
However, characterization of these biomarkers specifically in DCM has not been evaluated
and merits further investigation.

Kidney injury molecule-1 (KIM-1) is also a glycoprotein that is expressed in the proximal
tubule in renal injury. Both KIM-1 and NGAL levels were increased in patients with LVSD
and may provide prognostic information in LVSD patients with mild renal insufficiency.
These findings suggest an important role for biomarkers in cardiorenal interactions in heart
failure [94].

Increasing evidence shows that the heart secretes factors to maintain its performance and
coordinate cellular activities in response to cardiac stress as outlined above. However, newer
proteins secreted from cardiac tissue have been identified. These cardiac-secreted factors are
termed cardiokines.

Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine induced by
cardiac stress. GDF-15 in conjunction with other biomarkers may add prognostic value for
predicting death, overall cardiovascular events, and heart failure in community based studies
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[95]. Importantly elevated circulating levels of GDF-15 are evident in end-stage DCM
patients at the time of LVAD implantation and levels decrease after mechanical unloading.
GDF-15 correlates with myocardial fibrosis and kidney function [96].

Follistatin-like 1 (Fstl1), also referred to as TSC36 (TGFβ stimulating clone 36), is a
divergent member of the Follistatin family of extracellular glycoproteins, and it functions in
a non-canonical manner relative to other family members. Fstl1 is poorly understood with
regard to its function, but has been shown to suppress cell growth and invasion. Fstl1 has
both anti-inflammatory [97, 98] and pro-inflammatory [99] actions. Fstl1 is also regulated in
human heart failure. In a collaborative effort between the Sam and Eschenhagen labs, we
examined protein expression of Fstl1 in failing explanted human myocardium. Circulating
Fstl1 levels were measured in a well-characterized cohort of chronic heart failure patients
with LVSD. Fstl1 levels were significantly elevated and significantly associated with LVH
and circulating levels of BNP [100]. Other groups have shown that myocardial Fstl1 mRNA
levels are elevated in severe systolic heart failure that return to normal when LV function
recovers after LVAD explantation [101].

In this review, newer and perhaps mechanistically more important biomarkers in DCM (and
likely other cardiomyopathies) were selected, that have shown to confer predictive and
prognostic abilities in symptomatic and asymptomatic heart failure patients. Importantly
several of these biomarkers have been evaluated in other cardiomyopathies that have
mechanistic overlap (e.g., increased fibrosis in heart failure with preserved ejection fraction
(HFpEF), amyloidosis, hypertrophic cardiomyopathy etc). Of the aforementioned
biomarkers, NT-proBNP, BNP, PTX-3, GDF-15, galectin-3 and ST-2 have been implicated
in both the prediction of incident heart failure and also cardiovascular outcomes in HFpEF
phenotypes [102-109]. Osteoprotegerin levels predict cardiovascular outcomes and incident
heart failure events in patients with ischemia as well as in chronic ischemic heart failure
[110, 111]. Mid-region pro-ADM levels have been shown to predict mortality in light chain
cardiac amyloidosis [112]. KIM-1 levels have been implicated not only in LVSD but also in
the prediction of incident HF [113]. Biomarkers, such as sFas, MPO, and follistatin-like 1
have been measured in patients with LVSD (and non-ischemic etiologies), but not
specifically in DCM.

Thus, biomarkers in heart failure provide insight into the pathobiology of the
cardiomyopathy and into mechanisms at the myocyte level, the micro- and macro-
environment. Importantly, they provide diagnostic, predictive and prognostic information
while offering opportunities for potential targets for emerging therapies for heart failure.
Measurements of biomarkers, even those that are not independent risk predictors or specific
to DCM, remain clinically important as they provide mechanistic information about the
pathogenesis of heart failure. Although biomarkers have been studied and validated
individually, recent studies have utilize multiple biomarker panels to help augment risk
prediction, integrate multiple biologic pathways, and potentially increase specificity in heart
failure groups. Ky and colleagues found that a score derived from multiple biomarkers
(which encompassed diverse biologic pathways) improved the prediction of adverse events
beyond current measures in heart failure patients with LVSD [114]. Similarly recent work
from our group in patients with cardiac amyloidosis with LVSD, we showed that biomarkers
in aggregate (MMP-2/TIMP-2 in combination with BNP and cTnI) had a potential
discriminative ability for distinguishing between the different types of cardiac amyloidosis
prompting more invasive diagnostic interventions and presumably therapies in these patients
[115]. Furthermore assessment of these aggregate biomarkers suggests that therapeutic
intervention that reduces collagen deposition should be studied in these patients [115]. Thus
a greater focus and emphasis on multiple biomarker panels may be more important and
clinically relevant, in terms of detection, prediction, diagnosis specificity, prognosis and
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therapeutic response. Combined with clinical assessments, biomarkers may lead to a better
understanding of the various types of heart failure, allowing use of a more personalized
approach in identifying and treating patients with LVSD and cardiomyopathy.
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Fig 1. Interaction of heart failure biomarkers between the cardiomyocyte, the
microenvironment, and the macroenvironment
Stressors on the cardiac myocyte lead to structural and functional changes (hypertrophy,
apoptosis, altered myocyte energetics, and contraction apparatus modifications).
Microenvironment refers to the immediate environment of the myocyte – the interstitium,
cardiac fibroblasts, and inflammatory mediators. Lastly, the macroenvironment includes
other organ systems and their impact on the heart in heart failure (e.g. adipose tissue, cardiac
cachexia, cardiorenal syndrome, neurohormones, and ventricular-vascular coupling). Clear
overlap exists between these domains contributing to the development and propagation of
heart failure.
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Table 1

Biomarkers in Dilated Cardiomyopathy (DCM)

CARDIOMYOCYTE
-Brain natriuretic peptide*
-N-terminal brain natriuretic

peptide*

-Atrial natriuretic peptide*

-Soluble ST2*
-Heart-type fatty acid binding

protein*
-Soluble apoptosis stimulating

fragment*
-Myostatin

MICROENVIRONMENT
-Matrix metalloproteinases*
-Tissue inhibitors of

metalloproteinases*

-Collagen propeptides*

-Galectin-3*
-Tumor necrosis factor-like weak
inhibitory of apoptosis

-Osteoprotegerin*

-Pentraxin-3*
-Cardiotrophin-1

-Myeloperoxidase*
-Oxidized-low density lipoprotein

MACROENVIRONMENT
-Adipocytokines (adiponectin)*
-Neutrophil gelatinase-associated

lipocalin (NGAL)*

-Beta-trace protein*

-Cystatin-C*
-Kidney injury molecule-1
-Endothelin
-Adrenomedullin

-MR-proADM*

-Copeptin*

-Growth differentiation factor-15*
-Follistatin-like 1

*
Biomarker shown to have predictive abilities in cardiovascular outcomes
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Table 2

Additional Biomarkers in Dilated Cardiomyopathy (DCM)

Inflammatory markers

• TNF-α116-118

• C-reactive protein119,120

• Interleukin (IL) 6117,120 , IL 10117,121,122, IL 18123-125

• TNF-related apoptosis inducing ligand (TRAIL)30,126

Neurohormones

• Norepinephrine127,128

• Renin127-129

• Aldosterone130,131

• Angiotensin II132

• Arginine vasopressin127,133,134
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