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Abstract
Manganese (Mn) is an essential dietary nutrient but excess or accumulations can be toxic. Disease
states, like manganism, are associated with overexposure or accumulation of Mn and are due to
the production of reactive oxygen species, free radicals and toxic metabolites, alteration of
mitochondrial function and ATP production and depletion of cellular antioxidant defense
mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies
that support them as well as provides an overview of the absorption, distribution, and excretion of
Mn and the stability and transport of Mn compounds in the body.
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Introduction
Manganese (Mn) serves as a constituent of metalloenzymes and as an enzyme activator so
the absorption and excretion of Mn is tightly controlled in order to maintain stable tissue Mn
levels for essential reactions. The most widely known enzyme requiring Mn is manganese
superoxide dismutase (MnSOD), whose primary function is detoxification of superoxide
free radicals. Mn2+ is a central component of some metalloenzymes and an activator of
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many metal-enzyme complexes. Mn activates these enzymes by binding the protein directly
or by acting through an intermediate interaction with a substrate, like ATP, to initiate a
conformational change and activate enzymatic activity [1]. Mn3+ is found in the essential
enzymes manganese catalase and MnSOD, both of which break down oxidants using the
Mn3+ in their reactive catalytic centers. Catalase converts hydrogen peroxide into oxygen
and water, aiding in reducing oxidative stress. MnSOD is involved in the dismutation of
superoxide in mitochondria to decrease oxidative stress. Oxidative stress is also significant
in Mn-induced dopaminergic (DAergic) neurodegeneration. Mn is an essential nutrient and
as such it is required as part of a healthy diet; however exposure to excess levels yields
toxicity. Mn is available as a nutritional supplement as well as a component in most infant
formulas and total parenteral nutrition given to some neonates.

The primary source of Mn toxicity is occupational exposures, which are chiefly inhalational.
Workplace exposure to Mn-containing fumes or dusts can be a concern in the iron and steel,
ferromanganese, dry-cell battery, welding and smelting industries with the highest concern
in the welding industry. Exposure to high levels of Mn can lead to a condition referred to as
manganism, characterized by behavioral changes, including slow and clumsy movements,
tremors, difficulty walking and facial muscle spasms. Slowed hand movements, irritability,
aggressiveness and hallucinations are other symptoms of exposure that may precede
manganism, and patients may be asymptomatic for months or years following exposure.

Mn toxicity is mediated, at least in part, by the autoxidation or turnover of intracellular
catecholamines, production of free radicals, reactive oxygen species and toxic metabolites,
depletion of cellular antioxidant defense mechanisms and alterations of mitochondrial
function and ATP production. These mechanisms will be discussed in this review. Evidence
supporting Mn-induced cell death through the mechanisms described above will be
presented as well as a subsection on the use of mitochondrially-targeted antioxidants as
therapeutics.

Mn Stability and Transport
Mn has several valence states; with Mn3+ most commonly found in enzymes and Mn2+ in
the diet [2]. The valence of Mn can be changed within the body and studies suggest that
Mn3+ is more cytotoxic than Mn2+, due to higher oxidative reactivity [3]. Enhanced
oxidative stress induction by Mn3+ was supported by a study in rats given either Mn2+ or
Mn3+ [4]. Mn2+ does not readily bind to sulfhydryl (-SH) groups or amines, and does not
vary in its stability constants for endogenous ligands glycine, cysteine, riboflavin, and
guanosine [2].

Mn2+ enters the portal circulation from the gastrointestinal tract and binds to plasma alpha2-
macroglobulin or albumin. It is then secreted in the bile, and some is oxidized to Mn3+ by
ceruloplasmin. The plasma carrier protein for Mn3+ is transferrin, and Mn3+ entry into
neurons occurs via transferrin receptor-mediated endocytosis and/or the divalent metal
transporter (DMT-1) [5–7]. In the case of Mn toxicity DMT-1 facilitates the accumulation of
Mn in DA-rich areas [8]. There are several studies that suggest that Mn can cross the blood-
brain barrier through the choline transporter [9, 10], voltage-gated and store-operated
calcium channels [11, 12], ionotropic glutamate receptor Ca2+ channels [13] and a Mn
citrate transporter [14]. Additional evidence points to Mn transport through the Zn
transporters, ZIP8 and ZIP14 [15, 16], and a through ATP13A2, a P-type transmembrane
ATPase protein [17].
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Mn Administration, Distribution and Excretion
Adults consume between 0.7 and 10.9 mg of Mn per day [18] with normal ranges of Mn at
4–15μg/L in blood, 1–8μg/L in urine and 0.4–0.85μg/L in serum. Mn complexes with other
substances, resulting in low plasma and tissue concentrations, making it difficult to assess
overexposure [19]. Mn2+ is more readily cleared than Mn3+. High iron diets have been
shown to suppress Mn absorption, aiding in protection from toxicity, and deficiencies in
other essential nutrients, such as magnesium (Mg), may increase the toxicity of Mn [20–24].
It has also been shown that DMT-1 and Mn levels increase with low brain iron
concentrations [25]. Mn can readily cross both the blood-brain and placental barriers.

The route of exposure governs the distribution, metabolism, and neurotoxicity of Mn [26,
27]. Only a small fraction of ingested Mn is normally absorbed into the body and in
response to high dietary Mn, gastrointestinal absorption is reduced [28]. Several studies
have shown that animals with high dietary Mn have increased liver metabolism and
excretion of Mn into bile and pancreatic fluids [29–33]. This suggests that ingested Mn is
tightly regulated probably due to its essentiality in the diet. In addition to the influence of
other nutrients, genetics and disease states can also influence Mn concentrations in the body.
In one study of individuals with chronic hepatic encephalopathy, elevated blood Mn
concentrations and brain MRI changes consistent with elevated Mn levels have been
reported [34]. Following inhalational exposure, increased Mn absorption from the
respiratory tract, slower blood clearance of absorbed Mn, and direct olfactory or trigeminal
presynaptic nerve endings transport aid in more efficient delivery of Mn to the brain [26].

Suarez and colleagues set out to determine if Mn3+ bound to transferrin (MnTf) is
responsible for mediating the neurotoxicity of Mn. They compared Mn bound to
pyrophosphate (MnPPi) and MnTf in human neuroblastoma cells (SH-SY5Y). Parameters
studied were mitochondrial dehydrogenase activity, cell growth and survival. MnPPi was
more toxic than MnTf in their cell line. Membrane permeability was significantly altered in
cells exposed to Mn PPi, whereas MnTf did not change membrane permeability
significantly. They concluded that while both complexes inhibited mitochondrial enzyme
activity, MnPPi was more toxic in affecting morphology, cell number and general
membrane permeability [35].

In a study using adult rats, the biological half-life of Mn in the brain was between 51 and 74
days [36]. In humans given intravenous 54Mn tracer doses, an elimination half-time of 53
days was reported from the brain [37]. In accordance, a study in macaque monkeys given
MnCl2 via an implanted subcutaneous osmotic minipump reported an elimination half-time
of 53 days [38]. This group also exposed two cynomolgus monkeys to aerosolized 54MnCl2
via an endotracheal tube and observed an estimated half-life of elimination of greater than
220 days from the head [38]. The slow elimination time may be due to the elimination of
Mn from the skull and not from the brain itself. Neonatal rats given Mn orally throughout
lactation had Mn concentrations similar to controls when assessed at PND 73, suggesting
that the half-life of elimination from young adult rat brain occurs prior to PND 73 [39],
which is consistent with human findings [37]. They also found that brain delivery of inhaled
Mn is influenced by particle solubility as MnSO4 was more rapidly cleared from the rat lung
than Mn phosphate or Mn tetroxide [39].

Cotzias and colleagues (1968) reported that Mn elimination was dose-dependent in miners
exposed to Mn dusts [37]. Absolute amounts of Mn absorbed from Mn-containing dusts are
unknown. Two additional studies showed enhanced biliary Mn excretion following
inhalation [40, 41]. Smaller particles can also directly enter the blood stream through the
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gastrointestinal epithelial lining following mucociliary elevator clearance from the
respiratory tract [2].

Mn is transported to the liver, conjugated to bile and then passed to the intestine for fecal
excretion. Reabsorption through the enterohepatic circulation is possible and Mn can also be
detected in small amounts in urine, sweat and breast milk [42]. Absorption, distribution and
excretion following dermal exposure have not been documented.

Brain Mn Targets
The distinct neurological effects seen with Mn toxicity are due to its preferential uptake by
the brain. Entry of Mn to the brain occurs in one of three ways: (1) from the nasal mucosa to
the brain olfactory bulb through olfactory neural connections; (2) from the blood through
capillary endothelial cells of the blood-brain barrier; and (3) from the blood to the cerebral
spinal fluid via the choroid plexuses [43]. In the cell, Mn is found primarily in the
mitochondria in both neurons and astrocytes, in the nucleus and in synaptosomes [44–47]. In
the brain, the striatum, globus pallidus and substantia nigra are reported target sites, with the
globus pallidus as the primary site for Mn accumulation and toxicity [19, 48]. In addition to
cell death, several studies have reported pathologic changes in the globus pallidus [48–50].
The damage has been reported to be the result of dis-inhibition of inputs to the globus
pallidus [51] and the high rate of oxidative phosphorylation in this region may also account
for its susceptibility. The DAergic system is a major target of Mn. Various studies, even
those dating back as early as the 1920’s documented the susceptibility of the globus pallidus
to Mn-induced cell death [52–55]. More currently, a study of rhesus monkeys chronically
exposed to Mn dusts reported decreased levels of dopamine (DA) in several brain regions,
including the caudate and globus pallidus [56]. In another study, rhesus monkeys that
received Mn through intravenous injection exhibited gliosis of the globus pallidus and
substantia nigra as well as an extrapyramidal syndrome, a condition reflective of deregulated
DA release and reuptake [49]. Two independent studies in primates, using either intravenous
injection or inhalation showed widespread Mn accumulation in the brain via T1-weighted
MRI [57, 58]. In the inhalational studies, Dorman and colleagues, observed Mn
accumulation in the globus pallidus ranging from 1.6 to 6.0 fold relative to controls [57].
Following intravenous injection, Guilarte reported 5 fold increases in Mn in the globus
pallidus [58]. Mn preference for the DAergic system was also corroborated by a study that
linked Mn exposure in welders to a higher prevalence of Parkinsonian symptoms and
reduced [18F]fluoro-L-DOPA (FDOPA) in asymptomatic welders [59].

Manganism and PD share in their etiology common cellular mechanisms such as preferential
accumulation of Mn within mitochondria resulting in oxidative stress [60], and selective
DAergic neurotoxicity [61] (Table 1). Manganism commonly occurs in response to acute
Mn exposures, whereas PD likely reflects long-term exposure to relatively low Mn
exposures. Manganism features less frequent and kinetic tremor, or no tremor vs. patients
with PD. Acute high Mn exposures also lead to dystonias and a “cock-walk” with symptoms
becoming progressive and irreversible. In addition to affecting the basal ganglia, manganism
is also known to affect other brain regions, including the cortex and hypothalamus and at the
morphological level leading to neuronal loss and reactive gliosis in the globus pallidus and
substantia nigra pars reticulata (SNpr) in the absence of Lewy bodies, which are a hallmark
of PD. Furthermore, in manganism, damage to the striatum (caudate nucleus and putamen)
and subthalamic nucleus may occur, while the substantia nigra pars compacta (SNpc) is
generally spared whilst PD is predominantly characterized by neuronal loss in the SNpc.
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Mn and autoxidation of catecholamines and other neurotransmitters
The effects of Mn on DA metabolism have received considerable attention due to
preferential accumulation of Mn in the substantia nigra, globus pallidus and striatum, all
DA-rich brain regions that are sensitive to oxidative injury. The free radicals that originate
from DA autoxidation have been postulated to cause degeneration of DAergic cells [62–64].
Mn3+ is a much more potent oxidizing agent than Mn2+ and has been shown to readily
oxidize DA, leading to higher concentrations of damaging DA quinone products [65, 66].
Mn-induced toxicity resulted from the production of hydrogen peroxide and DA quinone
and the depletion of DA due to its oxidation [66]. This study also tested ascorbic acid and
thiamine as potential antioxidants and results showed that they completely inhibited DA
oxidation however they did so in both the absence and presence of Mn, suggesting a
complicated mechanism [66]. The oxidization of DA by Mn3+, which does not require
oxygen, results in decreased overall DA. The resulting quinone can initiate superoxide
radicals by the reduction to the semiquinone, by NADH or NADPH-dependent
flavoproteins, which is then readily oxidized by molecular oxygen to form superoxide
radicals. The reaction, which is irreversible, can be prevented by NADH, GSH, and ascorbic
acid [67]. The mitochondria are import cellular targets in Mn-induced apoptosis in DAergic
cells [44].

Desole and colleagues (1994) observed that 22mg Mn/kg/day administered orally in 6-
month-old rats resulted in increased concentrations of the DA oxidation product, DOPAC,
and uric acid but overall DA levels were unchanged. Higher doses of Mn significantly
decreased concentrations of DA, DOPAC, glutathione and ascorbic acid and increased uric
acid concentrations in the striatum compared to controls [68]. These results provided support
for Mn oxidization of DA.

In a C. elegans study investigating the effects of Mn on intra and extracellular DA,
investigators showed that Mn causes a dose-dependent degeneration of DAergic neurons,
which required the presence of the reuptake transporter, DAT-1. Knockdown of this
transporter abolished loss of GFP-fluorescence in Mn-induced DAergic GFP-labeled
neurons. Toxicity was prevented by loss of tyrosine hydroxylase function and loss of the
vesicular monoamine transporter, which normally aids DAergic neurons in releasing DA at
the synaptic cleft, there was increased tolerance to Mn indicating that DA synthesis is
required for DAT-1- dependent Mn toxicity and that extracellular DA, and not intracellular
DA, is involved in Mn neurotoxicity [69].

Mn-induced DA oxidation and cell death of neurons in the globus pallidus is likely the result
of dis-inhibition of inputs to the globus pallidus [51] and the high rate of oxidative
phosphorylation in this region. Although the globus pallidus accumulates a higher
concentration of Mn than other regions, it is important to note that other parts of the brain
that have lower accumulation may still be vulnerable and neurotransmitters other than DA
can be affected. Mn has been shown to cause reduced glutamine synthetase (GS) in the
globus pallidus, which is important for conversion of glutamate to glutamine [70].
Additionally, a handful of studies in rodents have shown increased glutamate levels in the
brain after exposure to Mn [71–73]. Another study looking specifically at brain regions
showed increased glutamate in frontal cortex but decreased glutamate in the globus pallidus
[74]. Glutamate transporters have been shown to be decreased in in vitro studies [22] and
primates showed increased mRNA expression and decreased protein of two glutamate
transporters and decreased GS in multiple brain regions [70]. Multiple studies looking at γ-
aminobutyric acid (GABA) have presented conflicting data [71–73, 75–78], leaving the
exact role of GABA in Mn toxicity somewhat unclear. For example, several groups using
rodents showed Mn induced increases in striatal GABA levels [71–73, 77, 79, 80] however,
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decreases in GABA levels in the striatum and frontal cortex were also reported by several
groups [76, 81]. Still other studies have reported no effect on Mn on GABA levels [75, 82].
A short-term study in Welders showed no effect on Mn fumes on GABA located in DAergic
regions of the brain [83]. MRI studies of presymptomatic smelters exposed to Mn showed
Mn accumulation in globus pallidus and elevated GABA levels in the thalamus and adjacent
basal ganglia via MRI [84]. Contradictory conclusions about the role of GABA are likely
due to differences in route and duration of exposure, age at time of exposure and/or the
contribution and alteration of other neurotransmitter systems.

Reactive oxygen species
Mn is known to enhance production of reactive oxygen species (ROS), which contributes to
Mn toxicity. ROS is the name commonly given to highly reactive oxygen radicals and
peroxides generated by a number of mechanisms within cells. The most common of these
ROS are superoxide radical, hydrogen peroxide and hydroxyl radical. Common sites of
production of these ROS include the mitochondrial electron transport chain (ETC), NADPH
oxidases, enzymatic activation of cytochrome p450, xanthine oxidase and cyclooxygenase 1
and 2; however, for most types of cells the greatest production is by the mitochondrial ETC
[85–88]. In mitochondria the superoxide radical (O2

−•) is generally the initial ROS species
formed. Superoxide radical can be converted into hydrogen peroxide (H2O2) by superoxide
dismutase. In the mitochondrial matrix MnSOD catalyzes this reaction, while in the
intermembrane space and cytosol it is catalyzed by copper/zinc superoxide dismutase (Cu/
Zn SOD). In the presence of iron or other transition metals such as Mn, H2O2 can be
converted into the very reactive hydroxyl radical (OH•) [89].

The seven known sites of superoxide production in mitochondria are: the flavin site in
complex I (site IF), the ubiquinone-binding sites in complexes I and III (sites IQ and IIIQ0,
respectively), glycerol 3-phosphate dehydrogenase, the electron transferring flavoprotein:Q
oxidoreductase of fatty acid beta-oxidation (ETFQOR) and pyruvate and α-ketoglutarate
dehydrogenases [90]. Most of the work on mitochondrial production of ROS has focused on
superoxide production at complexes I [91–97] and III [92, 93, 95, 98]. All of the
mitochondrial sites produce O2

− • in the matrix space while site IIIQo and glycerol 3-
phosphate can also produce O2

− • in the intermembrane space; i.e., the space between the
inner and outer mitochondrial membranes [90, 96]. Of these mitochondrial sites those
associated with ubiquinone binding at complexes I and III in the ETC have the largest
maximal rates of O2

− • production [90]. A simple, intuitive view of O2
− • production by the

ETC would picture electrons moving between ETC complexes and between binding sites
such as flavins, iron-sulfur proteins and cytochromes within each complex. Some of these
sites would be near the protein-lipid interface between the ETC complex and the
phospholipid of the membrane. Because molecular oxygen (O2) partitions to about 3 times
higher concentration within the phospholipid membrane than in the aqueous portions of the
cell [94], this O2 occasionally captures an electron from a nearby binding site in the ETC
complex and forms O2

− •.

Mitochondrial O2
− • production has been shown to increase as the membrane potential (Δψ)

or electrochemical proton gradient (ΔμH) increases [92, 93, 95, 96]. ATP production by
oxidative phosphorylation or mild uncoupling decreases these gradients and significantly
decreases ROS production. Other factors that increase mitochondrial ROS production
include uptake of cations such as Ca2+ and Mn2+ [99–102], induction of the mitochondrial
permeability transition (MPT) [103, 104], inhibition of the ETC [90, 94], and hyperglycemia
[105].
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While it is not known definitively where normal mitochondrial O2
− • production occurs in

vivo [90], this would generally take place during ATP production and, therefore, at
decreased Δψ and ΔμH. Under these conditions, O2

− • production probably occurs at most
of the mitochondrial sites with most of the O2

− • produced at complexes I and III [90, 94].

Most of the mitochondrial production of O2
− • occurs in the mitochondrial matrix with only

a small fraction being produced in the intermembrane space [90, 94]. Furthermore, since
O2

− • is a charged species, it does not easily penetrate membranes. However, the O2
− • in the

matrix is quickly converted into H2O2 by Mn SOD, and H2O2 readily crosses the membrane
[94]. Therefore, the H2O2 produced from mitochondrial matrix O2

− • can readily move into
the intermembrane space, the cytosol and even the nucleus of the cell.

Each of the three primary ROS species, O2
− •, H2O2 and OH• can cause damage to nucleic

acids, proteins and phospholipids within mitochondria and within cells [106, 107].
Mitochondrial DNA is particularly sensitive to ROS damage because of the lack of
protective histones in mitochondria and the lack of repair mechanisms such as those found
in the nucleus [106, 107]. Furthermore, mitochondrial ROS can contribute to induction of
the mitochondrial permeability transition (MPT), which can, in turn, induce apoptosis [95,
108–112]. This will be discussed in more detail below.

While we do not have experimental evidence for the mechanisms through which
intramitochondrial Ca2+ or Mn increase ROS production, we know that intramitochondrial
Ca2+ activates a series of sites within the mitochondrion which increase the rate of ATP
production by oxidative phosphorylation including activation of three dehydrogenases in the
TCA cycle which catalyze increased production of NADH [113–115]. Activation of these
dehydrogenases increases the NADH/NAD+ ratio and the metabolic rate, which should, in
itself lead to a higher rate of ROS production. Mn2+ binds to almost every Ca2+ binding site
and could increase ROS production by simply functioning as a Ca2+ analog. However, we
also know that Mn2+ inhibits the rate of ATP production through inhibition sites in the
electron transport chain, the TCA cycle and at other loci [60, 116, 117]. The known sites of
mitochondrial production of O2

− • represent loci at which the probability of electron capture
by O2 is relatively high [90]. Any inhibition caused by Mn2+ binding to intramitochondrial
sites which cause a buildup of occupancy in these sites of O2

− • production could also cause
an increase in ROS production [90].

Not all ROS effects are negative; ROS have also been shown to be important in cell
signaling [118]. For example, H2O2 is important in stabilizing Hif-1a, which is probably the
most important factor in inducing the changes that enable a cell to survive hypoxia [119,
120]. H2O2 has also been found to activate mitochondrial uncoupler proteins (UCP’s),
which through uncoupling effects decrease Δψ and ΔμH, and thereby decrease ROS
production [121]. ROS signaling has also been implicated in a number of activities which
can be beneficial to the cell, including: activation of transcription factors [122] including
nuclear factor 2 (erythroid-derived 2)(Nrf2), which protects against ROS damage [123, 124];
cell proliferation and regulation of the cell cycle [125, 126]; regulation of apoptosis [127];
regulation of metalloproteinase [128]; and activation of protein kinases and phosphatases
[128, 129].

There are mechanisms present both in the cell cytosol and in mitochondria that protect
against ROS-induced damage. One of the most effective protective molecules is the short
peptide glutathione (γ-L-glutamyl-L-cysteinyl glycine or GSH) [130]. GSH is made in the
cytosol and transported into the mitochondrion. The enzyme catalase, present in both the
mitochondrial matrix and the cytosol, can convert H2O2 to H2O and O2, eliminating the
ROS danger. Cytochrome c is not only important as part of the ETC, but can also serve a

Martinez-Finley et al. Page 7

Free Radic Biol Med. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



protective function. It is present in the intermembrane space at concentrations greater than
those needed for its electron transport function, and it can scavenge O2

− • radicals and return
the electrons to complex IV of the ETC [131]. Similarly, ubiquinol (reduced co Q10), when
present in excess, has been reported to scavenge hydroperoxyl radical [132], which like
ubiquinol is lipophilic, and return the electron to the ETC. Finally, while mitochondrial
DNA does not have protective histones and elaborate repair mechanisms, as the nucleus
does, mitochondria do contain many copies of mitochondrial DNA so that if one is damaged
by ROS there are many other copies to take its place.

It has been shown that antioxidants, particularly mitochondrially-targeted antioxidants can
ameliorate a range of specific disease conditions associated with increased ROS production
and extend the lives of test animals which show these conditions [133–143], however the
results of experiments designed to show that treatment with antioxidants leads to longer
lifespan generally have not been convincing [144]. Autophagy is a process through which a
cell breaks down and reuses components of misfolded proteins and malfunctioning
organelles. Many antioxidants inhibit basal and induced autophagy [145]. Since induction of
autophagy is associated with increased lifespan, the answer to this apparent inconsistency
may lie in the inhibitory effects of antioxidants on autophagy [145]. Essentially, antioxidants
only extend lifespan in cases where increased production of ROS contributes to cell death.

Mitochondria, the mitochondrial permeability transition, and apoptosis
Mitochondria in higher eukaryotes carry out many important cellular functions including
production of over 90% of the cell’s ATP by oxidative phosphorylation [146], cytosolic
[Ca2+] buffering [111, 147], partial control of apoptosis [148–150], β oxidation of fatty
acids [151], a role in the urea cycle [151], and a role in the synthesis and metabolism of
iron-containing proteins [152, 153]; however, oxidative phosphorylation was undoubtedly
their initial and is now their most important function. Since intramitochondrial [Ca2+] is
understood to be a major factor in controlling the rate of ATP production by oxidative
phosphorylation [113–115, 154], and since it also plays a major role in inducing the
mitochondrial permeability transition (MPT) (described below), mitochondrial Ca2+

transport takes on added importance. Mitochondria contain an elaborate system for Ca2+

sequestration and control consisting of two mechanisms of influx, the Ca2+ uniporter and the
rapid mode or RaM, and two mechanisms of efflux, the Na+-dependent and the Na+-
independent efflux mechanisms [147]. An additional mechanism, a mitochondrial ryanodine
receptor, has also been reported in heart mitochondria [155–157]. In addition, a very unusual
mitochondrial mechanism called the MPT, which will be discussed in more detail below,
also affects and is affected by intramitochondrial [Ca2+]. Because Mn2+ almost always binds
to Ca2+ binding and transport sites, the mitochondrial Ca2+ transport mechanisms are
important to Mn toxicity as well. The role of [Ca2+] in activating ATP production by
oxidative phosphorylation and the mechanisms of mitochondrial Ca2+ transport is important
in Mn toxicity for several reasons. First, the mitochondrial Ca2+ uniporter has been shown to
transport Mn2+ as well as Ca2+ [158–161]. Second, many studies on Mn toxicity have
indicated Mn interference with energy metabolism [60, 76, 117, 162–167] and inhibition of
oxidative phosphorylation [60, 116, 117, 167]. Finally, Mn2+ has been found not to be
transported out of mitochondria via the Na+-dependent efflux mechanism, which is by far
the dominant mechanism in brain mitochondria, but only to be transported outward by the
Na+-independent efflux mechanism, which is much less active in brain mitochondria [168].
This means that once Mn2+ is sequestered within brain mitochondria, the target tissue for
Mn toxicity by the rapid uniporter mechanism, it is very difficult for the Mn2+ to be
transported out again. This also explains the relatively long half-life of Mn within the brain.
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Mitochondria can undergo a dramatic change in permeability of the inner membrane caused
by the opening of a very large pore called the permeability transition pore (PTP). The
process is referred to as inducing the MPT [108, 110, 111, 169, 170]. Opening of the PTP
rapidly dissipates ΔμH and blocks oxidative phosphorylation. It is quite remarkable that a
process, which dissipates ΔμH and turns off production of over 90% of the cell’s ATP is
highly conserved within eukaryotes. This must be because the function of the MPT is very
important to the organism. While still speculative, it is likely that the importance of the MPT
lies in its relationship to apoptosis and the mitochondrion’s role in control of apoptosis,
which is discussed further below [147].

By the middle 1970’s, the MPT had been described in mitochondria as a process which
causes rapid swelling and ultrastructural changes, and also allows NADH and NADPH to
directly enter the mitochondrial matrix, something which they cannot otherwise do [171–
173]. This transition was originally referred to as the Ca2+-induced MPT, because
intramitochondrial Ca2+ was always required for its induction. Hunter and Haworth noted
that what was known about the MPT could be explained by the opening of a proteinaceous
pore, later called the PTP [174, 175]. The opening of the PTP was found to have the
following characteristics: 1) it could be induced by Ca2+ alone or by smaller amounts of
Ca2+ in the presence of other agents called “inducing agents” [111]; 2) common endogenous
inducing agents include inorganic phosphate, oxaloacetate and acetoacetate, while Mg2+,
ADP and ATP act as endogenous inhibitors of PTP opening [108, 111, 170]; 3) molecules
with a molecular weight less than 1,500 Daltons penetrate the PTP rapidly [175], while even
larger molecules can slowly penetrate the PTP [176]; 4) PTP opening is greatly aided by
production of ROS [108, 110, 111, 169, 170], whereas, acidic pH and a high mitochondrial
Δψ are potent inhibitors of PTP opening [177, 178]. Commonly used non-endogenous
inducing agents include phenylarsine oxide, tert butyl hydroperoxide, atractyloside and
carboxyatractyloside, while commonly used inhibitors are cyclosporin A, bongkrekate,
adenine nucleotides and chelation of Ca2+ [111, 170].

The discovery that the immunosuppressant cyclosporin A (cys A) was a potent inhibitor of
PTP opening [179, 180] was followed by studies establishing that this inhibition occurs by
its binding to a mitochondrial matrix protein, cyclophilin D (cyp D). This led to efforts to
determine the makeup of the pore protein and the development of the hypothesis that the
crucial step in pore opening was the Ca2+-induced binding of cyp D to the adenine
nucleotide translocase (ANT). Evidence showed that cys A inhibited this process by binding
to cyp D, therefore keeping it from binding to ANT [112, 181, 182]. Later Wallace’s
laboratory demonstrated the MPT in mitochondria from the livers of newborn mice that had
been genetically modified to lack the ANT, thereby establishing that the ANT was not
required for the MPT [183]. Many still support the hypothesis that the Ca2+-induced binding
of cyp D to the pore protein is the crucial step in PTP opening with the modification that a
set of mitochondrial membrane proteins and not just the ANT can form the basis for the pore
[184].

The MPT is viewed as an important component of the mechanisms which give mitochondria
a significant role in control of apoptosis or programmed cell death, and ROS are viewed as
playing a significant role in induction of the MPT and therefore in apoptosis. Unlike
necrosis, apoptosis preserves components of cells for reuse by other cells, usually
macrophages [150]. Characteristics that are commonly observed in apoptosis include
contraction of cell volume rather than the swelling seen in necrosis, chromatin condensation,
nuclear fragmentation, blebbing of the plasma membrane, and the formation of apoptotic
vesicles containing cellular material that can be taken up and reused by the surrounding cells
[150]. In recent years the relatively clear distinction between apoptotic and necrotic cell

Martinez-Finley et al. Page 9

Free Radic Biol Med. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



death has been blurred somewhat. It is presently believed that many types of cell death
include both apoptotic and necrotic characteristics [95].

Mn, ROS, the Mitochondria and Apoptosis
In terms of electron structure, Mn2+ ion has a half filled d shell, giving it spherical symmetry
similar to that of Ca2+ and Mg2+, and its ionic radius is intermediate between that of Ca2+

and Mg2+ [160, 161]. For these reasons, it binds to almost every Ca2+ or Mg2+ binding site,
and can often either substitute for Ca2+ or Mg2+ in biological processes or act as an inhibitor
of these processes. Therefore, it comes as no surprise that Mn2+ can interfere with Ca2+’s
role in activating ATP production by oxidative phosphorylation.

Using a C. elegans model, Benedetto and colleagues demonstrated extracellular Mn-induced
oxidation of synaptic DA, generating ROS and leading to lipid peroxidation [69]. In their
study, SKN-1 (mammalian NRF2 homolog) and BLI-3, proteins important for antioxidant/
oxidant homeostasis, were linked to the Mn-induced toxicity. Loss of function of SKN-1
increased sensitivity to Mn, and Mn was able to induce expression of antioxidant proteins
through SKN-1 [69]. BLI-3 is a dual oxidase involved in di-tyrosine bond formation in the
worm cuticle; pathogen-induced ROS production and loss of this gene resulted in no
increase in ROS production by Mn [69].

Gavin and colleagues, using isolated mitochondria and concentrations of Mn2+ greater than
1μM, showed evidence that Mn2+ causes impairment of energy metabolism [60, 168]. In
another study of Mn inhibition of energy metabolism, Brouillet and colleagues measured
ATP and lactate levels following injection of 2 μM Mn in the rat striatum. They reported N-
methyl-D-aspartate (NMDA) excitotoxic lesions as well as a 51% reduction of ATP and a
97% increase in lactate compared to control. Dose-dependent decreases in DA, GABA, and
substance P were also noted. These data suggest that oxidative metabolism was impaired
following exposure to Mn [76].

Additional support for oxidative stress as a mechanism of toxicity comes from studies on the
use of antioxidants to combat Mn-induced ROS. Hazell and colleagues (2006) co-treated
rats with N-acetylcysteine (an antioxidant) and 50mg/kg MnCl2 for 4 days. Addition of N-
acetylcysteine prevented the pathological changes observed in Mn exposed animals [185]. In
another study using catecholaminergic cells, Stredrick and colleagues found that
supplementing culture media with glutathione or N-acetylcysteine protected against Mn
cytotoxicity [61]. Brenneman et al (1999) measured ROS in the brains of neonatal rats
exposed to 22mgMn/kg/day and reported no increase in ROS in the striatum, hippocampus
or hindbrain at postnatal day (PND) 21 but a significant increase in ROS levels in the
cerebellum. Interestingly, Mn levels were not significantly increased in the cerebellum but
were increased in the striatum when measured at PND 49 [186]. Klockgether and Turski
reported that the pathophysiology of PD is due to dis-inhibition of glutamatergic inputs to
the globus pallidus regulated by differential activation of glutamate receptor subtypes in the
basal ganglia [51].

The death of cultured cells and cells in the brains of non-human primates [187] exposed to
Mn has largely been described as apoptotic and is often associated with increased ROS
production. The primary tools used to measure the increase in ROS are 2′,7′-
dichlorofluoroscein (DCF) and its acetate form, DCF-DA. DCF fluorescence was used to
show an increase in ROS induced by Mn addition to a primary culture of astrocytes [99] and
to a culture of neural stem cells [102], with cell death showing apoptotic characteristics.
DCF-DA was used with primary mesencephalic cells prepared from ventral mesencephalic
tissues of fetal rat brain to show an ROS increase and cell death with apoptotic
characteristics [101]. Latchoumycandane et al reported strong evidence for apoptotic cell
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death in a rat mesencephalic DAergic N27 cell line. Cytochrome c release, caspase 3
activation, DNA fragmentation and the effects of the apoptosis inhibitors Z-DEVD-FMK
were all studied, and showed apoptotic characteristics [188]. Guilarte’s laboratory found
signs of apoptosis in the brains of cynomolgus macaques after treatment with 3.3 – 5.0 mg
Mn/kg body weight weekly for 10 months [187, 189].

In an effort to study the contribution of Mn to L-DOPA toxicity, Migheli and colleagues
used the 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow
cytometry, fluorescence microscopy and TUNEL staining to measure apoptosis in PC12
(catecholaminergic) cells. They showed that neither exposure to a subtoxic dose (0.2mM) of
MnCl2 or 10–20 μM L-DOPA alone affected any of their experimental parameters but
apoptotic cell death occurred following MnCl2 and L-DOPA co-exposure [190]. Use of N-
acetylcysteine (NAC) inhibited apoptosis and decreases in cell viability [190]. Additionally,
Ramesh and colleagues (2002) measured the DNA binding activity of nuclear factor kappa
B (NF-κB) after exposure to Mn in PC12 cells [191]. They reported a five-fold induction of
NF-κB following Mn exposure for just 30–60 minutes and activation of mitogen activated
protein kinase kinase (MAPKK); the authors suggest that this activation could lead
downstream to excessive transcription of proteins that contribute to cell death [191].
Kitazawa and colleagues, using the same cell line, highlighted the importance of proteolytic
activation of protein kinase Cδ (PKCδ) by caspase-3 in mediating apoptosis following Mn
exposure [192]. Mitochondrial membrane depolarization, cytochrome c release, caspase-3
activation and DNA fragmentation were all reported in Mn exposed cells. These events, as
well as the proteolytic cleavage of PKCδ, were blocked by overexpression of Bcl-2.
Expression of the catalytically inactive mutant PKCδ attenuated apoptosis and
administration of active recombinant PKCδ induced DNA fragmentation [192]. Taken
together, this evidence points to apoptosis as a mechanism of toxicity and the involvement
of PKCδ and caspase-3 in mediating apoptosis following Mn exposure.

A case of the use of mitochondrially-targeted antioxidants
Untargeted antioxidants have been shown to ameliorate Mn-induced damage. Vitamin E was
assessed as an antioxidant treatment option and it was found that pretreatment attenuated the
Mn-induced increase in cerebral isoprostanes and protected medium spiny neurons from
dendritic atrophy and dendritic spine loss [193].

L-DOPA has been tested for Mn-toxicity due to the similarities between manganism and
PD. Some of the motor symptoms associated with manganism were reversed by L-DOPA
treatment albeit with serious side effects [52]. Treatment with anti-Parkinsonian drugs may
be less effective due to the preferential accumulation of Mn in the globus pallidus, rather
than the cell death in the substantia nigra seen in PD.

Treatment of cells and isolated mitochondria with Mn2+ has also been found to cause
inhibition of ATP production by oxidative phosphorylation [60, 116, 117, 167]. Inhibition of
the ETC could cause the proximal part of the ETC to become even more reduced and
therefore more likely to produce O2

− •, and increases of O2
− •, production of this type have

been reported [194–197]. These observations as well as those reported above showing an
increase in ROS production following Mn treatment [99, 101, 102] suggest that Mn-induced
ROS production and probably opening of the PTP are involved with induction of the form of
apoptosis leading to cell death in the globus pallidus. If untargeted antioxidants can
ameliorate damage in Mn toxicity, how much more clinically effective could drugs that
protect against ROS damage, MPT induction and apoptosis at the mitochondrial level be in
treating Mn toxicity [198]. A number of different drugs are currently being developed to be
used to treat conditions like apoptotic cell death. These drugs are sequestered into
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mitochondria where they act as reducing agents and detoxify mitochondrial ROS [137–139,
141, 142].

MitoTEMPO, mitoNAC, and MitoQ are part of a series of antioxidants under development
and study containing nitroxide, tocopherol and ubiquinone moieties. They are made
membrane permeable and mitochondrially-targeted by attaching a positively charged
triphenol phosphonium (TPP) moiety. For example, mitoQ is made up of a combination of
ubiquinone or coenzyme Q10 (co Q10) and TPP. Analogous to the other members in this
series, it can move rapidly across the cell and mitochondrial membranes into mitochondria.
Inside the mitochondrion, mito Q can be oxidized by reaction with ROS and then reduced by
complex II and reused as an antioxidant. It cannot pass electrons on to complex III as co Q
does and so it functions to protect against oxidative damage to the mitochondria [138–140].
Hyperglycemia in diabetes [105], excessive ethanol use [134], and some forms of
hypertension [135] are accompanied by an increase in mitochondrial ROS production in
some organs. Mito Q was orally administered to mice showing the Akita J model of Type I
diabetes over a 12-week period. Interstitial fibrosis and glomerular damage were
significantly reduced in the kidneys of treated vs. control animals, showing in this case that
mitochondrially-targeted therapies were beneficial in the treatment of diabetic nephropathy
[133]. In a four week oral treatment of Mito Q to Sprague-Dawley rats consuming ethanol
using the Lieber-Decarli diet vs. controls, it was found that the Mito Q treatment decreased
hepatic steatosis in ethanol-treated animals, prevented ethanol-induced formation of 3-NT
and 4-HNE, and stabilized HIF1alpha [134]. Stroke-prone, spontaneously hypertensive rats
were treated orally with Mito Q for 8 weeks, systolic blood pressure in the treated animals
was reduced by approximately 25 mm Hg over the 8-week treatment period [135].

The Szeto-Schiller or SS peptides are a set of mitochondrially-targeted, antioxidant peptides,
which have been shown to penetrate the blood-brain barrier and protect brain mitochondria
against ROS damage while showing minimal toxicity [141, 142]. The Szeto-Schiller peptide
SS-31 has recently been shown to protect against induction of the MPT following a burst of
ROS during reperfusion of ischemic kidney tissue reducing apoptosis and necrosis of tubular
cells [143].

SkQ1, an antioxidant in the SkQ family, combines plastoquinone, a very effective electron
carrier and antioxidant of chloroplasts with decyltriphenolphosphonium to form a cation that
easily penetrates membranes [137]. In a number of tests SkQ1 was found to save the lives of
young animals after treatments resulting in kidney ischemia, rhabdomyolysis, heart attack,
arrhythmia, and stroke and to suppress the appearance of many traits related to senescence
[136].

Conclusion
Manganese is an essential nutrient, which can be harmful at higher doses or accumulations.
Because of its essentiality, stable tissue levels are maintained making it difficult to
determine if overexposure has occurred. As Mn toxicity can cause a number of functional
problems, such as manganism, it is imperative that we understand the mechanism(s) of
damage to attempt to prevent or counter them. Such mechanisms include the autoxidation of
DA, production of free radicals, ROS and toxic metabolites, depletion of cellular antioxidant
defense mechanisms and alterations of mitochondrial function and ATP production. Decades
of research have also shown that the energy requirements of certain brain regions (i.e.
globus pallidus) make them more vulnerable. Future research endeavors should be aimed at
not only pinpointing the mechanism(s) underlying the damage but also identifying
biomarkers for exposure and treatment strategies.
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Highlights

• Mn is a key component of the diet, but in excess can be toxic

• Mn is a component of enzymes and forms complexes in the body

• Mn toxicity is the result of reactive oxygen species, and altered energy
metabolism

• Therapeutics that target the mitochondria may be useful in combating toxicity
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Figure 1.
Mn Transport

Martinez-Finley et al. Page 25

Free Radic Biol Med. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Martinez-Finley et al. Page 26

Table 1

Similarities and Differences between PD and Manganese Toxicity.

Parkinson’s Disease Manganese Toxicity Reference

Genetic Determination Yes, can be autosomal dominant or
autosomal recessive. Approximately
10–20% of cases linked to genetic
causes

No [199]

Selective DA sensitivity Yes Yes- however several studies have pointed to the
selectivity of glutamate and possibly GABA

[57–59]

Brain regions affected Substancia nigra pars compacta
(SNpc) primarily and striatum

Globus pallidus primarily but striatum, and
substancia nigra may also be involved

[6, 19, 199]

Mitochondrial
dysfunction/ oxidative
stress

Yes Yes [85, 199]

L-DOPA responsive Yes Generally unresponsive to L-DOPA however, some
motor symptoms reversed but with major side effects

[52]

Symptoms Emotional and cognitive decline,
bradykinesia, rigidity, tremors and
postural instability.

Extrapyramidal syndrome [19, 49, 200,
201]

Slowed hand movements, irritability, aggressiveness
and hallucinations.

Later stages: masked-face, forward-
flexed posture, gait freezing,
shuffling steps, GI issues

Later stages: Rigidity, tremor, gait disturbances
(slow and clumsy movements), hypokinesia, facial
muscle spasms, propensity to fall backward when
pushed, less frequent resting tremor, more frequent
dystonia, a “cock-walk” collectively referred to as
‘manganism’
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