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Abstract

Biomonitoring studies show that humans carry a body burden of multiple classes of contaminants
which are not often studied together. Many of these chemicals may be hepatotoxic. We used the
2003-2004 National Health and Nutrition Examination Survey to evaluate the relationship
between alanine aminotransferase (ALT) and 37 environmental contaminants, comprising heavy
metals, non-dioxin-like polychlorinated biphenyls (PCBs), and dioxin-like compounds, using a
novel method. Linear regression models were constructed for each chemical separately, then as a
class, using quartiles to represent exposure and adjusting for age, sex, race, income, and BMI. We
then used an optimization approach to compile a weighted sum of the quartile scores, both within
and across chemical classes. Using the optimization approach to construct weighted quartile
scores, the dioxin like PCB, the non-dioxin like PCB and metal class-level scores were
significantly associated with elevated ALT. A significant interaction was detected between the
class-level score for metals, and the score for non-dioxin-like PCBs. When including all chemicals
in one model, 3 chemicals accounted for 78 % of the weight (Mercury, PCB 180, 3,3’,4,4’,5-
PNCB) with the remaining 22% associated with 4 chemicals (a dioxin and 3 PCBs). Validation
with a holdout dataset indicated that the weighted quartile sum estimator efficiently identifies
reproducible significant associations.
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Introduction

Biomonitoring of human tissues and fluids has shown that virtually all individuals,
worldwide, carry a “body burden” of synthetic chemicals (Thornton et al. 2002; CDC 2009).
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Although the measurement of an environmental chemical in a person’s tissues or fluids is an
indication of exposure, it does not by itself mean that the chemical or the exposure
concentration is sufficient to cause a disease or an adverse effect. However, since humans
are exposed to multiple chemicals, there may be a combination effect (e.g., additive,
synergistic) on health risks associated with exposure even at low levels (Kortenkamp 2008).
Further, biomonitoring studies show that humans carry a body burden of multiple classes of
contaminants, which are often not studied together.

Some examples of environmental chemical classes include metals, polychlorinated
biphenyls (PCBs) and dioxins. Each is thought to impact human health, and these chemicals
are generally ubiquitous exposures. Among the metals, several including cadmium, mercury
and lead have been the focus of much research. Cadmium is mainly used in batteries and
solar panels, and is also one of the components of cigarette smoke (ATSDR 2008). Exposure
to lead has decreased over time due to removal from gasoline, individuals are still exposed
through its presence through automotive and industrial emissions, older paint formulations,
ammunition (EPA 2006), and moonshine (Chisolm 1971; Needleman 2004). Mercury is
mainly used for industrial chemical production and electronics, but is also present in old
thermometers and dental amalgams; for the general population, the main source of exposure
is dietary (seafood; Figure 1) (ATSDR 1999). Polychlorinated biphenyls (PCBs) and dioxins
are persistent organic pollutants (POPs). PCBs are a group of 209 different compounds
formerly used in electronic equipment manufacture for their insulative and conductive
properties. Although production in the US was banned in 1979 due to health concerns, PCBs
persist in the environment, and the main source of exposure for the general population is diet
(fish; Figure 1) (Johnson et al. 2008; ATSDR 2000). Similarly, dioxins enter the general
population almost exclusively from ingestion of food, specifically through the consumption
of fish, meat, and dairy products since dioxins are fat-soluble and readily bioaccumulate up
the food chain (Schecter et al. 2001).

The liver is the principal organ that detoxifies or excretes a large number of xenobiotics and
other foreign substances that enter the body. It therefore follows that long-term
environmental exposures will lead to chronic intrahepatic exposure to these substances; such
chemical exposures may affect not only the expression of genes involved in their
metabolism but also other genes which may have either adaptive or harmful consequences.
A priori, one may thus hypothesize that chronic environmental exposures may manifest as
altered liver function and future liver disease.

In conducting risk assessments, there is an increasing recognition that multiple
environmental exposures may impact a common adverse outcome (e.g. liver toxicity).
However, classical analytical methods may not be appropriate, due to (1) high dimensional
exposure data (relative to number of observations), (2) correlated exposures, (3) low level
exposures (particularly multiple compounds below an individual observable effect level, but
which in combination produce an observable effect), and (4) differences in potency (i.e.
chemicals with the highest body burdens are not necessarily the most potent/toxic). There is
a need for straightforward, easily interpretable methods to assess the relationship between
relevant environmental exposure profiles and risk of common adverse outcomes.

One study which considered multiple chemical classes in relation to liver function is from
Cave et al. (Cave et al. 2010). The National Health and Nutrition Examination Survey
(NHANES) data were used to evaluate the risk of elevated alanine aminotransferase (ALT, a
measure of liver function) and exposure to chemicals in 17 different subclasses. Participants
were assigned a rank for each chemical, and these ranks were summed within each of the 17
subclasses. The summed ranks were divided into quartiles; if the test for trend across the
quartiles was statistically significant, the chemicals in the subclass were further evaluated in
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what appear to be single-chemical models. The use of summed ranks (and quartiles of this
measure) has the advantage of accommodating relatively low level exposures, as well as
potential differences in potency, across chemicals. Although this approach also effectively
accounts for all chemicals in a subclass, it is possible that the noise induced by considering
only a subclass-level measure (i.e. the summed ranks) in the screening step would mask
associations with individual members of the subclass. We propose a weighted quartile score
method to represent exposure to multiple chemicals, both within and across classes, and
demonstrate the method using epidemiologic data. In the present study, we tested the
hypothesis that inter-class mixtures of environmental chemicals/metabolites are dose-
dependently associated with increased risk for liver toxicity in the US population.

Materials and Methods

We used data from the 2003-2004 cycle of the NHANES for this analysis (CDC 2008). The
NHANES is a cross-sectional, complex sample survey, which is designed to provide a
nationally representative sample of the non-institutionalized, civilian US population.
Included in these analyses are participants aged 12 years and older, who were included in
one of the laboratory assessments of the NHANES. We excluded individuals who were
missing information on serum alanine amino-transferase (ALT, used as a measure of liver
function), on important covariates including body mass index (BMI), poverty income ratio
(PIR) and alcohol intake. Further exclusion criteria were designed to exclude individuals
with NAFLD due to identifiable causes (Cave et al. 2010; Clark et al. 2003). Thus, we
excluded those who had a positive test result for serum hepatitis B surface antigen or for
serum hepatitis C antibody, and women with elevated transferrin saturation (defined as
>50%; transferrin saturation was not measured in adult men in the NHANES). We also
excluded individuals whose self-reported alcohol intake was high enough, that they may
have experienced alcohol-related changes in ALT. This included those with an intake of >20
g/day for men or =10 g/day for women as assessed by a two-day dietary recall (all
participants included), or who reported regularly having >2 drinks/day for men or >1 drink/
day for women (based on the alcohol questionnaire administered to those aged 20 years and
older). Finally, those with self-reported liver disease, or who had ALT levels above the 99t
percentile of the distribution (>81 U/L) were excluded, on the assumption that these
individuals are likely to have frank liver disease and are not representative of the general
population with regards to the associations between environmental chemical exposure and
liver function. The total 2003-2004 NHANES sample was 10,122 individuals; after the
inclusions and exclusions described above, the sample available for these analyses was
1,345 individuals (Table 1).

The environmental chemical exposures were grouped into three classes—metals (cadmium,
lead, total mercury), co-planar PCBs along with dioxins and furans (PCBs 28, 66, 74, 105,
118 and 156; 1,2,3,6,7,8-HXCDD; 1,2,3,4,6,7,8-HPCDD; 1,2,3,4,6,7,8,9-OCDD;
1,2,3,4,6,7,8-HPCDF; 3,3',4,4',5-PNCB), and non-dioxin-like PCBs (PCBs 44, 49, 52, 87,
99, 101, 110, 138, 146, 149, 151, 153, 170, 177, 178, 180, 183, 187, 194, 196, 199, 206,
209). Each of these analytes was measured in serum; for PCBs, dioxins and furans, lipid
adjusted values were used. We included only analytes detectable in 260% of samples. For
samples where values were below the limit of detection, we used the NHANES substituted
value of (limit of detection / v2) (CDC 2008).

Serum ALT was measured in all NHANES participants aged 12 years and older. Important
covariates identified in the literature on liver function, and included in multivariate analyses
were: age in years (continuous), sex, race/ethnicity (non-Hispanic White, non-Hispanic
Black, Mexican American, other Hispanic, Other/mixed/missing), and body mass index
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Results

(BMI, continuous). We also investigated a measure of socio-economic status, the poverty
income ratio (PIR), which is the ratio of family income to poverty threshold.

The NHANES data were divided into two equally sized samples, one used in initial analyses
(‘training’ set), and one for validation of the final model (“validation’ set). The training and
validation sets were created using simple random sampling with a set seed for replicability.
The first set of analyses was linear regression modeling of each chemical class separately.
First, all analytes in the class were included in a multivariate model, and stepwise selection
used to determine which were associated with elevated ALT after adjusting for the
covariates described above. Next, recognizing that the analytes varied in range and level, we
categorized individuals according to quartiles of each analyte. The quartile scores (0, 1, 2, or
3) were then entered into multivariate linear regression models separately, then in
combination. Finally, we used an optimization approach to compile a weighted sum of the
quartile scores, both within a chemical class, and across chemical classes. The NLP
procedure in SAS was used to construct a set of weights applied to the quartile scores, which
maximized the likelihood of the non-linear regression model where regression coefficients
and the weights are estimated (i.e., in a nonlinear model). The set of weights was
constrained to sum to one—using this approach, the weight assigned to a given analyte score
reflects the ‘importance’ of that analyte in terms of association with risk of elevated ALT.
The weighted sum was constrained to have a positive coefficient since our primary interest
is identifying stressors which may increase the risk of elevated ALT. The weights generated
in this set of analyses were then used to construct weighted sums in the validation dataset,
and the weighted score evaluated according to its coefficient estimate.

In each cycle of the NHANES, most environmental pollutants are measured in one of 3
laboratory samples (A, B or C), while some pollutants (including certain heavy metals) are
measured in all participants. The lab samples are comprised of a 1/3 randomly assigned
group of survey participants. Therefore, only 1/3 of participants will have measurements
available for a given chemical. As lab subsamples are non-overlapping, no one individual
will have exposure information for all chemical classes. Since our goal is to assess the joint
contribution of chemicals in different classes, as an exploratory analysis we imputed serum
and urine concentrations of additional pollutants of interest across lab samples—these
included polyfluorinated compounds (PFCs), phthalates, phenols, along with the dioxins,
furans and PCBs included in the main analysis. Imputation was performed using the
geometric mean of each analyte, stratified into 72 groups based on sex, age group (12-19,
20-39, 40-64, =65 years), race (non-Hispanic White, non-Hispanic Black, Other) and BMI
(£24.9, 25-29.9, =30). The weighted score including all the analytes was constructed in the
same fashion described for the main analysis, above, and compared to the results for data
without imputation performed. More detailed methods and results are presented in the
Supplementary Material.

Characteristics of the study participants are shown in Table 2. Comparison of demographic
characteristics shows the training and validation groups are generally comparable. The
proportion of females was slightly higher in the test dataset, and the proportion of non-
Hispanic whites and other Hispanic individuals somewhat lower, in comparison to the
validation dataset. However, the distribution of ALT values was very similar, with mean
(standard deviation) values of 20.35 (9.19) and 21.04 (10.23) U/L in the test and validation
sets, respectively; medians were identical at 18 U/L.

In the preliminary analysis examining single analytes in separate multivariate logistic
regression models (adjusting for potential confounders), several analytes were associated
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with changes in ALT (i.e. p<0.10; Table 3). Among the metals, higher exposure to lead was
associated with lower ALT, while mercury was associated with higher ALT. Two dioxin-
like compounds (1,2,3,4,6,7,8-HPCDD and 3,3’,4,4’,5-PNCB) and three non-dioxin-like
PCBs (PCBs 177, 178 and 180) were associated with higher ALT. PCB 149 (non-dioxin-
like) was associated with decreased ALT, although the association was inconsistent across
quartiles. The disadvantage of this approach is that chemicals are included in the model as
single covariates without accounting for the more relevant exposure to mixtures of
chemicals. Since it is unlikely that exposure to any of these substances is actually protective,
and the interest is in identifying exposures associated with increased risk, the proposed
index approach (as noted in the methods) constrains the effect measure to be positive (i.e.
associated with elevated ALT). This allows the identification of the combined effect of
multiple ‘bad actors,” effectively decreasing the noise from un-associated compounds.

Next, quartile scores were combined within each class of chemicals (Table 4). When simply
adding quartile scores within a class (unweighted quartile score), there was not a significant
association between metals, dioxin-like, or non-dioxin-like PCBs, and ALT. However, when
the optimization approach was used to construct weighted quartile scores, each of the class-
level scores was significantly associated with elevated ALT in separate models using the test
data. To assess the joint effects of chemicals across classes, we used these weighted class-
level scores, adjusting for covariates (gender, race, BMI, PIR, age), in a multiple regression
model of In(ALT) with the validation data. The model was initially parameterized to include
linear terms and pairwise interactions across the class-level scores. Both before and after
eliminating non-significant interaction product terms, there was a significant positive
interaction between the metals quartile score and the non-dioxin-like PCBs quartile score
(p=0.022). Figure 2 depicts this interaction, illustrating that higher values of both the metals
and non-dioxin-like PCBs quartile scores are associated with a greater than additive increase
in ALT.

Finally, the optimization procedure was repeated, but including all analytes as potential
contributors. The chemicals with non-zero weights were: mercury (29%),1,2,3,4,6,7,8-
HPCDD (9%), 3,3’,4,4’,5-PNCB (24%), PCB 52 (4%), PCB 101 (3%), PCB 180 (25%),
PCB 187 (6%). This score was also highly associated with increased odds of elevated ALT
(p=0.003). The weighted scores were also evaluated in the validation dataset (Table 5 and
Figure 3). Both the estimated beta coefficients and standard errors were very similar to those
generated from the test dataset. In general, the “significant” weighted scores in the test
dataset were significant, conditioning on the weights, in the validation dataset — indicating
reproducible results.

In the exploratory analysis using both observed and imputed exposure data, the coefficient
for the weighted score variable was significantly associated with elevated ALT, both in the
test and validation datasets. Further, the largest weight was, as in the main analysis, placed
on mercury concentration in serum. However, there are additional chemicals which received
substantial weight that we did not consider in the main analysis—namely PFOA
(weight=0.28) and the three environmental phenols (weights ranging from 0.09 to 0.12).

Discussion

The NHANES data demonstrate the ubiquitous exposure of multiple environmental
chemicals and chemical classes in the US population. Although exposure is clearly indicated
from biomonitoring data, the impact of exposure to complex chemical mixtures on human
health is not as clear. Due to the high-dimensionality of the problem with correlated data,
standard statistical methods are limited. Some authors have proposed to sum components in
a mixture to accommodate the mixture effect. However, the least potent chemicals in the
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mixture may dominate the sum and mask the potential effect of more potent chemicals.
Thus, we have used a weighted sum approach (analogous to (Gennings et al. 2010)) to
estimate empirical weights in a weighted quartile sum index. In this population, 78% of the
effect on ALT was due to three environmental chemicals (total mercury, PCB 180, and 3,3’,
4,4’5-PNCB). We also found evidence of possible interaction among heavy metals and non-
dioxin-like PCBs, underscoring the importance of considering multiple chemicals when
evaluating common health outcomes such as liver function. In this case, the interaction was
greater than additive—the effect on ALT levels was stronger for individuals with higher
body burdens of heavy metals and non-dioxin-like PCBs than would be predicted in a no-
interaction model. Further research is needed to identify and confirm this and other potential
interactions among chemicals, and the underlying mechanisms.

There is evidence from previous studies on the liver toxicity of the chemicals evaluated in
this study. Among the heavy metals, studies in rats demonstrated an increase in both AST
and ALT of more than 200% after short duration (24 and 48 hour) exposure to a non-lethal
dose of mercury (Patnaik et al. 2010). Male mice exposed to a mixture of lead, mercury,
cadmium and copper in their drinking water for seven weeks had significant increases in
blood markers of liver function including ALT, AST, alkaline phosphatase (ALP), and y-
glutamyltranspeptidase (GGT) (Al-Attar 2011). The hepatotoxic potential of PCB mixtures
is well documented in animals by oral and other routes of exposure. The spectrum of
observed hepatic effects in animals is broad and includes microsomal enzyme induction,
liver enlargement, increased serum levels of liver enzymes and lipids, and histopathologic
alterations that progress to fatty and necrotic lesions and tumors (ATSDR 2000). The
findings of human studies, however, are not as obvious. Many of the human studies
involving worker and other populations with high body burdens of PCBs report associations
between PCBs and hepatic indices such as liver enzymes, lipids, and cholesterol (ATSDR
2000). Studies of people exposed to PCBs by ingestion of contaminated fish or PCBs
contaminated rice oil in the Yushoor Yu-Cheng incidents have reported increases in serum
levels of some liver enzymes (e.g., GGT, AST, ALT) that are suggestive of microsomal
enzyme induction or possible liver damage (ATSDR 2000).

Although the epidemiologic evidence for interactions between environmental contaminants
and effect on liver function is limited, there are several potential mechanisms that may
explain the synergy between mercury and PCBs observed in this study. Mercury inhibits
thioredoxin reductase, which is a key anti-oxidant in cells, while PCBs activate Cypla and
damage mitochondria, thereby directly contributing to reactive oxygen species formation
(Branco et al. 2012a; Branco et al. 2012b; Shen et al. 2011; Yamazaki et al. 2011). By
affecting both reactive oxygen species formation and inhibiting anti-oxidant defenses,
mercury and PCBs may have synergistic effects in terms of observed hepatotoxicity. Also,
mercury has been found to be a contaminant in high fructose corn syrup, a common food
additive which is implicated in the current epidemic of obesity (Dufault et al. 2009; Collison
et al. 2009). The liver is the principal organ that metabolizes fructose, which promotes
steatosis and oxidative stress (Cortez-Pinto et al. 1999; Kawasaki et al. 2009). We speculate
that exposure to mercury and PCBs in the background of high levels of fructose
consumption will further worsen oxidative stress and deplete glutathione thus further
promoting hepatotoxicity. These possibilities now await experimental verification.

Definitive conclusions regarding human hepatotoxiciy are hampered by limitations in study
design of available studies, such as exposure misclassification, lack of controls, lack of
correction for common confounding variables (e.g., age and alcohol consumption), and
natural partitioning of PCBs to serum lipids (ATSDR 2000). The lack of unequivocal
evidence in humans that is seen in laboratory animals may result from many factors,
including species differences in susceptibility or sensitivity to PCBs, and dissimilarities in
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exposure levels, durations, and mixture compositions. For example, PCB congeners have
been classified in various groupings based on structure and functionality (e.g.,(Wolff et al.
1997; Goncharov et al. 2011). The four congeners identified with non-zero weights in the
weighted sum analysis (PCB 52, 101, 180, and 187; Table 5) were classified as potentially
estrogenic and weak phenobarbital inducers (PCB 52, 101, and 187) or as phenobarbital,
CYP1A and CYP2B inducers (PCB 180) using the Wolff et al. classification scheme.
Goncharov et al described all four as di- (PCB 52, 101, and 180) or tri-/tetra- ortho (PCB
187) substituted PCBs, which are non-coplanar and do not show dioxin-like properties.

Identifying environmental exposures which adversely impact liver function is an important
public health issue. Nonalcoholic fatty liver disease (NAFLD), the most common liver
condition, is estimated to affect fully one third of the US population (Browning et al. 2004).
It is closely linked to the presence and severity of obesity and is generally considered to be
the hepatic manifestation of the metabolic syndrome (Marchesini et al. 2001; Sanyal et al.
2001). The implications are severe, as nonalcoholic steatohepatitis (NASH) can progress to
cirrhosis in 15-20% of subjects (Ekstedt et al. 2006). The pathophysiologic mechanisms
underlying the development of NASH, and which drive disease progression in the 15-20%
of subjects who develop cirrhosis, are not fully known, but it is possible that exposure to
environmental chemicals plays a role.

There are some limitations to this study. Due to the cross-sectional nature of the NHANES,
there is no way to assess temporality of exposure and response. We adjusted for several
important covariates in our analyses, but there are methodologic factors that may affect
measurement of ALT, including the specific assay used, laboratory variability, time from
sample collection to analysis, and sample handling (such as freeze-thaw cycles). In the
NHANES however, a consistent assay technique was used. In this analysis, we used ALT as
a measure of liver function; the ‘gold standard’ for assessment of NAFLD would be a liver
biopsy, but this is clearly not feasible for population-based studies (such as the NHANES).
In this context, ALT is frequently considered to be a surrogate marker for NAFLD once
other common causes of liver injury are excluded. In our study, we excluded those who had
serologic markers for viral hepatitis or a history of clinically significant alcohol
consumption; thus, individuals with elevated ALTs in this population are likely to represent
cases of NAFLD. Strengths of this study include the large sample size, and the ability to
simultaneously consider potential confounders and many chemical exposures. Results from
an exploratory analysis using imputed data demonstrate that imputation of exposures may be
an option when data are scarce, and consideration of many different chemical compounds is
desired.

Conclusions

An important feature of our research is a method for evaluating inter-class chemical/
metabolite mixtures with a common adverse effect on liver toxicity. The optimization
indicated that 78% of the effect was due to total mercury, PCB 180, and 3,3’,4,4’5-PNCB.
Research is ongoing to fully characterize this optimization approach; preliminary results
indicate that the weighted sum estimator efficiently identifies true associations rather than
spurious effects of confounders, with good coverage and power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Warning sign for contaminated fish
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ALT

ND PCBs Score | 00

Figure 2.

Predicted response surface, adjusted for covariates and the dioxin-like PCBs score with
centered prediction at covariate averages, depicting the interaction (p=0.022) between the
weighted metals quartile score and the weighted non-dioxin-like (ND) PCBs quartile score
using the validation data.
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Figure 3.

Observed and model predicted association between the inter-class score (with weights
determined in the test dataset) and ALT (p=0.031) in the validation data, after adjusting for

covariates (PIR, race, age, gender, and BMI).
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Table 1
NHANES 2003-2004 sample selection.

2003-2004
(N=10122)

Included in Lab C (aged 12 years or older)
(N=2285)

ALT measured
(N=2121)

Exclusions (possibly overlapping)
Missing BMI: 45
Missing PIR: 100
Missing Alcohol Information: 285
Positive Hepatitis B Surface Antigen: 9
Positive Hepatitis C Antibody +: 35
Elevated Transferrin Saturation: 16
High Alcohol Intake: 562
Self-reported Liver Disease: 56

ALT >99' percentile (81 U/L): 21

Final Sample: N= 1345
Test sample: N=672, Validation Sample: N=673
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Characteristics of NHANES participants, 2003-2004 (all values are unweighted).

Table 2

Test Dataset Validation Dataset

Characteristic N (%)
Total 672 (100) 673 (100)
Sex

Male 310 (46.1) 337 (50.1)

Female 362 (53.9) 336 (49.9)
Race/ethnicity

Non-Hispanic White 267 (39.7) 291 (43.2)

Non-Hispanic Black 181 (26.9) 176 (26.2)

Mexican-American 172 (25.6) 158 (23.5)

Other Hispanic 18 (2.68) 22 (3.27)

Other/Mixed/Missing 34 (5.06) 26 (3.86)
Age (years)

12-19 316 (47.0) 296 (44.0)

20-39 93 (13.8) 101 (15.0)

40-64 123 (18.3) 146 (21.7)

>65 140 (20.8) 130 (19.3)
BMI (kg/m?)

<185 47 (6.99) 49 (7.28)

18.5-24.9 271 (40.3) 265 (39.4)

25.0-29.9 190 (28.3) 173 (25.7)

>30.0 164 (24.4) 189 (27.6)
Family PIR

<2 339 (50.5) 365 (54.2)

>2 333 (49.6) 308 (45.8)

Mean (SD)Median (25", 75t per centiles)
ALT (IU/L) 20.35 (9.19) 21.04 (10.23)
18 (15, 23) 18 (15, 24)
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Beta coefficients (p-value) and weights assigned to quartile scores, for association with ALT when all analyte
classes are included in the same model, NHANES 2003-2004.

Analyte

Unweighted quartile score

Weighted quartile score

VALIDATION DATASET: Weighted quartile
score

All analytesincluded in weighted sum (Model 2)

All analytes together

0.0004 (0.68)

0.08 (0.003)

0.06 (0.04)

Weights

Cadmium

0

Lead

0

Mercury

0.29

PCB 28

PCB 66

PCB 74

PCB 105

PCB 118

PCB 156

1,2,3,6,7,8-HXCDD

1,2,3,4,6,7,8-HPCDD

1,2,3,4,6,7,8,9-OCDD

1,2,3,4,6,7,8-HPCDF

3,3'4,4'5-PNCB

PCB 44

PCB 49

PCB 52

PCB 87

PCB 99

PCB 101

PCB 110

PCB 138

PCB 146

PCB 149

PCB 151

PCB 153

PCB 170

PCB 177

PCB 178

PCB 180

PCB 183

PCB 187

0.06

Weights from test data set (see column at left)
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Analyte

Unweighted quartile score

Weighted quartile score

VALIDATION DATASET: Weighted quartile
score

All analytesincluded in weighted sum (Model 2)

PCB 194

PCB 196

PCB 199

PCB 206

PCB 209

o|lo|lo|lo| o

*
Adjusted for sex, race/ethnicity, poverty-income ratio (continuous), age (continuous), and BMI (continuous)
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