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Abstract In this paper we consider the Hopf bifurcation

and synchronization in the two coupled Hindmarsh–Rose

excitable systems with chemical coupling and time-delay.

We surveyed the conditions for Hopf bifurcations by means

of dynamical bifurcation analysis and numerical simula-

tion. The results show that the coupled excitable systems

with no delay have supercritical Hopf bifurcation, while the

delayed system undergoes Hopf bifurcations at critical time

delays when coupling strength lies in a particular region.

We also investigated the effect of the delay on the transi-

tion of bursting synchronization in the coupled system. The

results are helpful for us to better understand the dynamical

properties of excitable systems and the biological mecha-

nism of information encoding and cognitive activity.

Keywords Delay � Chemical coupling � Excitability �
Hopf bifurcation � Synchronization

Introduction

Excitability is a character common to many biological sys-

tems. For example, we have found some isolated or coupled

neurons typically exhibit excitable behavior. From a

dynamical system point of view we might paraphrase this as

follows: A slight perturbation of the single stable stationary

state would lead to a large and long lasting excursion away

from stationary point before the system asymptotically

returning back to equilibrium. Two general types of synaptic

connection between neurons are electrical and chemical, and

the chemical synapses are much more common. The time-

delay is well known in the information transition between

neurons because of the gap junctions. Researchers show that

time-delay can change qualitatively the dynamical features

of the system (Burić and Ranković 2007; Faria 2000).

The studies related to neural systems are mainly focused

on the following two aspects. On the one hand, a lot of

researches have been made on the synchronous transition

and its application in the coupled neural system and net-

work with no delay. For example, Shi and Lu (2004) studied

the complete synchronization of coupled Hindmarsh–Rose

(HR) neural network with the ring structure. Wang et al.

(2007) gave the types of bursting and synchronous transi-

tion in the coupled modified Morris–Lecar (ML) neurons

systems. And Yuan et al. (2005) analyzed synchronization

and asynchronization in two coupled excitable systems, and

so on. On the other hand, time-delay can change qualita-

tively the dynamical features of the system and conse-

quently will influence the neuron’s biological behavior.

Recently, the coupled systems with delay have attracted

much attention of researchers in different research fields.

Burić and Todorović (2003), Ranković (2011) investigated

Hopf bifurcation of coupled excitable FitzHugh–Nagumo

(FHN) neurons with delayed coupling and concluded that

the time delay can induce the Hopf bifurcation. Wang et al.

(2009) elaborated the bifurcation and synchronization of

synaptically coupled FHN models with time delay and they

confirmed that rich bifurcation behavior can be exhibited
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with variation of the coupling strength and time delay, as

well as the synchronization of the coupled neurons can be

achieved in some parameter ranges. Burić et al. (2005)

observed different synchronization states in a coupled FHN

system with delay with the variation of the coupling

strength and delay. Dhamala et al. (2004) studied in detail

the effect of the delay on the complete synchronization of

the coupled HR systems. Zhen and Xu (2010), Neefs et al.

(2010) touched respectively on the stability of the stationary

point in a non-chemical coupled FHN and HR neural system

with delay. All works but not limited to the mentioned

above have promoted better understanding of the dynamics

of coupled systems with delay.

Synchronous firing behavior could be widely found

during the neural activity in the brain. The observation of

synchronous neural activity in the central nervous system

suggest that neural activity is a cooperative process of

neurons and synchronization plays a vital role in infor-

mation processing in the brain. On the other hand,

bifurcations led by the coupling strength and time-delay

can induce different dynamical synchronous behaviors

and hence form different synchronization regions. As is

known, different synchronization areas imply different

neurocognitive function and pathological state. So the

investigation of the bifurcation and synchronization is still

of vital importance for us to understand the mechanism of

how the information is encoded and the cognitive activity

happens.

Particularly, excitable systems with delay are very

important in theoretical study and application. Hence,

bifurcation and synchronization of coupled excitable sys-

tems with delay is interesting and necessary to be investi-

gated. To explore the general rule of the effect of delay for

the excitable neural system and offer a more sufficient

theoretical basis for diagnosing or curing these diseases

connected with neural system, we must deeply and exten-

sively analyze the dynamic nature of different systems,

especially the excitable neural systems with delay. Most of

the papers focus on Hopf bifurcation and synchronization

of the electrical coupled general HR neural systems with

delay. However, the effects of the coupled strength and

delay on the bifurcations and synchronization in chemical

coupled excitable HR systems are still important in

understanding information processing in the brain. In this

paper, motivated by Ranković (2011), Burić et al. (2008),

Vasović et al. (2012), we focus on the excitable HR system

with chemical couple and time delay. Our studies are

mainly about the stability of the stationary point, the

bifurcation with one or two parameters and the effect of

delay on the synchronization transition of the excitable

system.

This paper is organized as follows. In ‘‘Main results’’

section, we discuss the stability of the stationary point, give

the conditions for Hopf bifurcations happening of the

coupled excitable HR system with no or with time-delay

and graphically reveal the effect of the delay on the syn-

chronization transition in the excitable HR system. We

conclude the paper in last section.

Main results

The model of two chemical coupled HR excitable neurons

with delay is given as follows:

_xi ¼ yi � ax3
i þ bx2

i � zi þ cf ðxi; x
s
j Þ;

_yi ¼ �dx2
i � yi;

_zi ¼ c½sxi � zi�;
ð1Þ

where i; j ¼ 1; 2 i 6¼ j; xs
i ðtÞ � xiðt � sÞ, x is the synaptic

membrane potential, y is a recovery variable and z is a slow

adaptation current. The variable parameter s represents the

time delay in signal transmission and the variable parameter

c is the coupling strength between the first neuron at time

t and its neighbor at some previous time t - s, so they are

real and positive. The coupling term that we shall use, is the

form of the FTM (Belykh et al. 2005; Somers and Kopell

1993) coupling:

f ðx1; x
s
2Þ ¼ �ðx1 � VÞ 1

1þ e�kðxs
2
�hÞ �

V

1þ ekh
:

In this paper, the values of the parameters h, V, and k will

be fixed as h = 0.25, V = 2, k = 10.

The dynamics of the coupled system depends on the

properties of each of the units and their interactions. Both

the neurons in the two coupled HR excitable system dis-

play the excitable behaviors. The single HR excitable

neuron model is described as the following equations:

_x ¼ y� ax3 þ bx2 � z;

_y ¼ �dx2 � y;

_z ¼ c½sx� z�;
ð2Þ

where a; b; d; c; s are positive parameters, 0\c� 1 and

usually c\s is satisfied.

It is easy to verify that point ðx; y; zÞ ¼ ð0; 0; 0Þ is the

only one stable stationary solution of system (2) when

4as [ ðb� dÞ2. The eigenvalues of the linearized system

of (2) are k1 ¼ �1; k2;3 ¼
�c�

ffiffiffiffiffiffiffiffiffiffi

c2�4cs
p

2
, of which one is real

and the others are complex. Therefore, system (2) has a

stable focus�node attractor when 4as [ ðb� dÞ2. The phase

trajectory and firing pattern of system (2) for parameters

a ¼ 0:5; b ¼ 1; d ¼ 1:5; c ¼ 0:02; s ¼ 1 are intuitively

shown in Fig. 1. The steady state is stable focus�node.
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Local stability and bifurcations of the stationary

solution

In this section we study the stability and bifurcations of the

stationary solution ðx1; y1; z1; x2; y2; z2Þ ¼ ð0; 0; 0; 0; 0; 0Þ of

the system (1) for varying parameters c [ 0 and s� 0.

Parameters a, b, d, s meet the condition 4as [ ðb� dÞ2 such

that each of the units displays the excitable behavior.

Instantaneous coupling s = 0

Consider the system (1) in the case of instantaneous

coupling

_xi ¼ yi � ax3
i þ bx2

i � zi þ cf ðxi; xjÞ;
_yi ¼ �dx2

i � yi;

_zi ¼ c½sxi � zi�;
ð3Þ

where i; j ¼ 1; 2; i 6¼ j:

Theorem 2.1.1 Stationary solution ðx1; y1; z1; x2; y2; z2Þ
¼ ð0; 0; 0; 0; 0; 0Þ of the system (3):

(i) is stable attractor for every 0\c\c0 ¼ c
q�p

;

(ii) is stable focus�node–focus�node for 0\c\ 2
ffiffiffi

cs
p þc
pþq

and

stable focus�node–node for
2
ffiffiffi

cs
p þc
pþq

\c\ c
q�p

;

(iii) has supercritical Hopf bifurcation when parameter

c ¼ c0 ¼ c
q�p

.

Proof Local stability of the stationary solution is deter-

mined by analyzing the linearized system at ðx1; y1; z1;

x2; y2; z2Þ ¼ ð0; 0; 0; 0; 0; 0Þ:

_xi ¼ �cpxi þ yi � zi þ cqxj;

_yi ¼ �yi;

_zi ¼ c½sxi � zi�;
ð4Þ

where i; j ¼ 1; 2 i 6¼ j; p ¼ � of ð0;0Þ
ox1
¼ 1

1þekh ; q ¼ of ð0;0Þ
ox2
¼

kVekh

ð1þekhÞ2 : Linear part of (4)

T1 ¼

�cp 1 �1 cq 0 0

0 �1 0 0 0 0

cs 0 �c 0 0 0

cq 0 0 �cp 1 �1

0 0 0 0 �1 0

0 0 0 cs 0 �c

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

implies the following characteristic equation:

kE � T1j j ¼ A B

B A

�

�

�

�

�

�

�

�

¼ 0;

where

A ¼
kþ cp �1 1

0 kþ 1 0

�cs 0 kþ c

2

4

3

5; B ¼
�cq 0 0

0 0 0

0 0 0

2

4

3

5:

Then

kE� T1j j ¼
A B

B A

�

�

�

�

�

�

�

�

¼
A B

0 A� BA�1B

�

�

�

�

�

�

�

�

¼ ðkþ 1Þ½k2 þ ðcp� cqþ cÞkþ ðcp� cqÞcþ cs�
ðkþ 1Þ½k2 þ ðcpþ cqþ cÞkþ ðcpþ cqÞcþ cs�
¼ 0;

hence

DðkÞ � D1ðkÞD2ðkÞ ¼ ½ðkþ 1ÞD1ðkÞ�½ðkþ 1ÞD2ðkÞ� ¼ 0;

where

D1ðkÞ ¼ k2 þ ðcp� cqþ cÞkþ ðcp� cqÞcþ cs;

D2ðkÞ ¼ k2 þ ðcpþ cqþ cÞkþ ðcpþ cqÞcþ cs;

Fig. 1 The phase trajectory and firing pattern of single HR excitable system for parameters a ¼ 0:5; b ¼ 1; d ¼ 1:5; c ¼ 0:02; s ¼ 1. a Stable

focus�node in 3-D space, b the time series of membrane potential
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with solutions

k1 ¼ �1; k2;3 ¼
1

2
½�ðcp� cqþ cÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcp� cq� cÞ2 � 4cs

q

�; k4

¼ �1; k5;6

¼ 1

2
½�ðcpþ cqþ cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcpþ cq� cÞ2 � 4cs

q

�:

(i) The sign of the real parts of the six eigenvalues

determines the stability type of the trivial stationary

point. Obviously, the real part of k1; k4; k5 and k6 is

negative for any value of the parameter c, but k2 and k3

becomes pure imaginary for c ¼ c0 ¼ c
q�p

. Further-

more, d ¼ sgn
dRek2;3

dc

� �

c¼c0

¼ sgn q�p
2

� �

[ 0, so the real

parts of k2 and k3 are also negative for 0\c\c0 ¼ c
q�p

.

As a result, the real parts of six eigenvalues are all

negative for 0\c\c0 ¼ c
q�p

, namely the stationary

solution is a stable attractor.

(ii) We can know from (i) that k2 and k3 is a pair of

complex conjugated eigenvalues for 0\c\c0,

i.e., k2;3 ¼ aðcÞ � ibðcÞ; aðcÞ ¼ � 1
2
ðcp� cqþ cÞ

\0; bðcÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4cs� ðcp� cq� cÞ2
q

[ 0; while k5

and k6 is a pair of complex-conjugate eigenvalues with

negative real part for 0\c\ 2
ffiffiffi

cs
p þc
pþq

, and they become

real when
2
ffiffiffi

cs
p þc
pþq

\c\ c
q�p

. Accordingly, the stationary

solution is stable focus�node–focus�node and stable

focus�node–node, respectively.

(iii) When c ¼ c0, k2 and k3 are pure imaginary �x,

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cs� c2
p

[ 0. The real parts of the other

four eigenvalues are negative. The type of bifurca-

tion at c ¼ c0 can be obtained by reducing the system

(3) on the corresponding center manifold. Applying

the center manifold theorem (Lu 2010) to system (3)

and by logical deduction, step after step, we come to

the dynamical system on the center manifold with

parameter l ¼ c� c0:

_x ¼ �xyþ f ðx; y; lÞ;
_y ¼ xxþ gðx; y; lÞ:

ð5Þ

After using the normal form method (Lu 2010) and the

conversion of coordinates x ¼ r cos h; y ¼ r sin h, we can

get the normal form with the small l ¼ c� c0 of Hopf

bifurcation

_r ¼ dlr þ qr3 þ Oðl2r; lr3; r5Þ;
_h ¼ xþ elþ rr2 þ Oðl2; lr2; r4Þ;

ð6Þ

where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cs� c2
p

; d ¼ a0ðc0Þ ¼
q� p

2
; e ¼ b0ðc0Þ

¼ � 1

2

cðq� pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cs� c2
p ;

q ¼ 1

16
½fxxx þ fxyy þ gxxy þ gyyy�jð0;0;0Þ þ

1

16x
½fxyðfxx þ fyyÞ

� gxyðgxx þ gyyÞ � fxxgxx þ fyygyy�jð0;0;0Þ

¼ 1

16

c0k2ekhð1þ kV � 4kVekh þ e2khðkV � 1ÞÞ
ð1þ ekhÞ4

� 6

" #

þ 1

16ðs� cÞ 2ðb� dÞ � c0k2Vekhð1� ekh þ e2khÞ
ð1þ ekhÞ3

" #2

:

Since d[ 0; q\0, stationary point for c ¼ c0 has

supercritical Hopf bifurcation and that completes the

proof of the theorem.

Now we consider an example to illustrate our conclu-

sion. Let a ¼ 0:5; b ¼ 1; d ¼ 1:5; c ¼ 0:02; s ¼ 1; V ¼
2; k ¼ 10; h ¼ �0:25 in system (3), then we have

c0 ¼ 0:0418. Then, the Theorem 2.1.1 has supercritical

Hopf bifurcation at c0 ¼ 0:0418. The stability of the sta-

tionary point for the system (3) in Theorem 2.1.1 with

parameters c ¼ 0:04; 0:0418 and 0:04185 is shown in

Fig. 2, in which we can clearly observe the change of the

six eigenvalues’ real parts with the variation of the cou-

pling strength in the complex plane.

Delayed coupling s[ 0

Consider the system (1) in the case of delayed coupling. As

in the previous case, local stability of stationary solution is

determined by analyzing the system linearized at ðx1; y1; z1;

x2; y2; z2Þ ¼ ð0; 0; 0; 0; 0; 0Þ.

Theorem 2.1.2 The system (1) undergoes a codim-1 Hopf

bifurcation at equilibrium ðx1; y1; z1; x2; y2; z2Þ ¼ ð0; 0; 0;
0; 0; 0Þ for critical time delays given by:

sk
�ðcÞ ¼

1

-�
kpþ arctan

-3
� � ðcs� c2Þ-�

�cp-2
� � cðcsþ cpcÞ

� 	

k ¼ 0; 1; 2. . .;

where

-� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 4N
p

2

s

;

M ¼ c2p2 þ c2 � 2cs� c2q2;

N ¼ ðcsþ cpcÞ2 � c2q2c2:
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Proof Linearization of the system (1) at ðx1; y1; z1; x2;

y2; z2Þ ¼ ð0; 0; 0; 0; 0; 0Þ

_xi ¼ �cpxi þ yi � zi þ cqxs
j ;

_yi ¼ �yi;

_zi ¼ c½sxi � zi�;
ð7Þ

where

i; j ¼ 1; 2 i 6¼ j; p ¼ � of ð0; 0Þ
ox1

¼ 1

1þ ekh
;

q ¼ of ð0; 0Þ
ox2

¼ kVekh

ð1þ ekhÞ2
:

Because of the existence of delay, system (9) can be

written as the form

_XðtÞ ¼ T2XðtÞ þ T3Xðt � sÞ;

where

T2 ¼

�cp 1 �1 0 0 0

0 �1 0 0 0 0

cs 0 �c 0 0 0

0 0 0 �cp 1 �1

0 0 0 0 �1 0

0 0 0 cs 0 �c

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

T3 ¼

0 0 0 cq 0 0

0 0 0 0 0 0

0 0 0 0 0 0

cq 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

The equation detðkE � T2 � T3e�ksÞ ¼ 0 implies

DðkÞ � D1ðkÞD2ðkÞ ¼ ½ðkþ 1ÞD1ðkÞ�½ðkþ 1ÞD2ðkÞ� ¼ 0;

where

D1ðkÞ ¼ k2 þ ðcpþ cÞkþ cpcþ cs� cqke�ks � cqce�ks;

D2ðkÞ ¼ k2 þ ðcpþ cÞkþ cpcþ csþ cqke�ks þ cqce�ks:

Bifurcations due to a nonzero time lag occur when some of

the roots of equation above across the imaginary axes. Let us

first discuss the nonzero pure imaginary roots. Substitution

k ¼ i- into D1ðkÞ gives

½ðcpþ cÞ-� cq- cos -s� cqr sin -s�iþ ½�-2 þ cpc
þ cs� cq- sin -s� cqc cos -s�
¼ 0;

Fig. 2 Computing and plotting

stability of the stationary point

of the system (3) for parameter

a c = 0.04, b c = 0.0418,

c c = 0.4185. The five-pointed

stars denote the positions of the

six eigenvalues of (3) in the

complex plane, of which the

green/red stars are those

eigenvalues with negative/

positive real part
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hence

sin -s ¼ �-3 þ ðcs� c2Þ-
cqðc2 þ -2Þ ;

cos -s ¼ cp-2 þ cðcsþ cpcÞ
cqðc2 þ -2Þ

or into D2ðkÞ gives

sin -s ¼ -3 � ðcs� c2Þ-
cqðc2 þ -2Þ ;

cos -s ¼ �cp-2 � cðcsþ cpcÞ
cqðc2 þ -2Þ :

From the identities tan -s ¼ sin -s
cos -s and sin2 -sþ cos2 -s

¼ 1, we can obtain

tan -s ¼ -3 � ðcs� c2Þ-
�cp-2 � cðcsþ cpcÞ ð8Þ

and

-6 þ ðM þ c2Þ-4 þ ðMc2 þ NÞ-2 þ Nc2 ¼ 0; ð9Þ

where

M ¼ c2p2 þ r2 � 2rs� c2q2\0;

N ¼ ðrsþ cprÞ2 � c2q2r2 [ 0:

Since -2 þ c2 6¼ 0, the term -2 þ c2 can be factored out

from (9) to obtain

-4 þM-2 þ N ¼ 0: ð10Þ

Hence

-� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 4N
p

2

s

:

Substitution of -� into (10) gives

sk
�ðcÞ ¼

1

-�
kpþ arctan

-3
� � ðcs� c2Þ-�

�cp-2
� � cðcsþ cpcÞ

� 	

k ¼ 0; 1; 2. . .:

Differentiation of the characteristic equation

D1ðkðsÞ; sÞ � D2ðkðsÞ; sÞ ¼ 0

gives

oD1

ok
D2 þ D1

oD2

ok


 �

dk
ds
¼ � oD1

os
D2 � D1

oD2

os

and

sgn
dRek

ds


 �

s¼sk
�ðcÞ
¼ sgn Re

dk
ds


 ��1
( )

s¼sk
�ðcÞ

¼ sgn
2-2
� þM

c2q2ð-2
� þ c2Þ


 �

:

Substitution of -� finally gives

dRek
ds


 �

s¼sk
þðcÞ

[ 0 and
dRek

ds


 �

s¼sk
�ðcÞ

\0:

h

The expressions for -� in Theorem 2.1.2 are valid if

coupling constant c satisfies M2 � 4N� 0, i.e. c [ cs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2rsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsð2r2þr2s2Þ
p
ðq�pÞ2

r

. For this reason, Theorem 2.1.2 is

valid for c [ cs and for 0\c\cs, the stationary point is

stable for any s.

Below we use the DDE-BIFTOOL (Engelborghs et al.

2007), a Matlab package for bifurcation analysis of delay

differential equations, to simulate the results of Theorem

2.1.2. Parameters in system (1) are the same as in Fig. 2 and

then we have cs ¼ 0:0406, i.e., the Theorem 2.1.2 is valid for

c [ cs ¼ 0:0406. The first few branches of the Hopf bifur-

cation curves sðcÞ given by Theorem 2.1.2 is shown in Fig. 3,

from which we can see that the system (1) has a good

robustness for any delay when 0\c\cs ¼ 0:0406; while for

c [ cs ¼ 0:0406, it is very sensitive for delay, namely for

any fixed value of c [ cs ¼ 0:0406, the system will undergo

a series of supercritical or subcritical Hopf bifurcations as the

delay increasing.

Synchronization transition of the firing patterns

In this section, corresponding to the different regions of

Fig. 3 we mainly numerically investigate when the excit-

ability of coupled system switches on or off and how the

synchronous states transit with the changing of coupling

strength and time-delays. So in what follows, we still focus

on synchronization transitions of two excitable HR neurons

coupled by delayed chemical coupling (1), and study the

Fig. 3 First few branches of the Hopf bifurcation curves sðcÞ given

by Theorem 2.1.2. Parameters as in Fig. 2. Cyan/blue curves

correspond to supercritical/subcritical Hopf bifurcations. (Color figure

online)
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influence of coupling strength and delay on synchroniza-

tion and neural firing.

As is shown in Fig. 4a, b, when the coupling strength is

less than the critical value for Hopf bifurcation (0\c

\cs ¼ 0:0406), the system (1) will go to stable state for

any delay. When coupling strength c = 0.03, the system

(1) slows down to a stable state after going through an

attenuated-oscillation for s ¼ 2 and s ¼ 50. The coupled

neurons can’t fire in this case.

When the coupling strength is more than the critical value

for Hopf bifurcation (c [ cs ¼ 0:0406), the coupled neurons

begin to fire. To study the synchronous firing of the two

neurons with delayed coupling, we introduce a statistic—

similarity function: Sðs1Þ ¼ hðV1ðtÞ�V2ðt�s1ÞÞ2i
ðhV2

1
ðtÞ[ \V2

2
ðtÞiÞ

1
2

� 	1
2

, where h�i

represents the mean with respect to time. Similarity function

measures the time relatedness of the two signals V1ðtÞ and

V2ðtÞ. The smaller the Sðs1Þ is, the lager the relatedness

between V1ðtÞ and V2ðtÞ is, i.e., in-phase synchronization of

the two coupled system becoming stronger from the syn-

chronization point of view. Especially, when the coupled

systems are complete synchronization, Sðs1Þ ¼ 0 at s1 ¼ 0.

We give the change of Sð0Þ in the plane ðC; sÞ, as shown

in Fig. 5a. Obviously, there are some areas in the plane

ðC; sÞ where Sð0Þ ¼ 0. So by numerical calculation, the

coupled systems arrive at complete synchronization in

some delay areas when C ¼ 0:2 (see Fig. 5b). Meanwhile,

in other delay areas the coupled systems reach to the

inverse synchronization, see Figs. 6 and 7.

Figure 6a, d show that the membrane potentials of the

two coupled neurons are completely linear correlated,

indicating complete synchronization happens. Whereas,

Fig. 6b, c, e show the two coupled neurons reach to inverse

synchronization.

Figure 7 shows the synchronous firing patterns for cou-

pling strength c ¼ 0:2. The system (1) becomes oscillating

when the coupling strength above the critical value for Hopf

bifurcation (c [ cs ¼ 0:0406). Taking some values of delay,

the transition of synchronization can be shown in Fig. 5. It is

observed that when the delay s ¼ 5, the coupled neurons

reach to complete bursting synchronization, as shown in

Fig. 7a. When the delay increases to s ¼ 10, the complete

bursting synchronization transits to inverse spiking syn-

chronization, as shown in Fig. 7b. As the delay increased to

Fig. 4 The firing patterns of the

chemically coupled HR neurons

for parameters c = 0.03 and

a s ¼ 2, b s ¼ 50; where the red

and blue lines represent neuron

1 and neuron 2, respectively.

(Color figure online)
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Fig. 5 The change graph of the similarity functions for the chemically coupled HR neurons. a The variation of Sð0Þ in the plane ðC; sÞ, b the

variation of Sð0Þ with s increasing when C ¼ 0:2
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s ¼ 30, the inverse spiking synchronization transits to

inverse bursting synchronization as shown in Fig. 7c. When

the delay further increased to s ¼ 45, the coupled neurons

reach to complete bursting synchronization again, as shown

in Fig. 7d. And in the Fig. 7e, i.e., when the delay is as large

as s ¼ 90, the coupled system returns to inverse bursting

synchronization once more. Therefore, the increasing of

delay alternatively and regularly switches the synchronous

patterns of system (1) between the complete bursting syn-

chronization and the inverse synchronization.

As above, firstly, we can know when the coupling strength

is lower than the critical value the coupled systems always

retain to be stable no matter how large the delay is, but the

opposite hold false when the coupling strength is larger than

the critical value, i.e., at this time, the coupled systems are

always excitable. Secondly, when the neurons are coupling,

the synaptic strength between actual neurons will increase to

tend a stable value, which will keep its stability under certain

conditions without drastic changes of the environment.

Otherwise, great numbers of synchronous phenomena such as

the spread of the virus in epidemiological network and con-

gestions in the transmission of the signals are all influenced by

time-delay. Therefore we mainly discuss the effect of time-

delay in the synchronization.

Fig. 6 The phase graph in the plane ðx1; x2Þ of the chemically coupled HR neurons with parameters C = 0.2 and s = 5, 10, 30, 45, 90 from a to e

Fig. 7 The transition of the synchronous firing patterns of system (1)

with different delay s from top to bottom being a s ¼ 5, complete

bursting synchronization, b s ¼ 10, inverse spiking synchronization,

c s ¼ 30, inverse bursting synchronization, d s ¼ 45, complete

bursting synchronization; e s ¼ 90, inverse bursting synchronization
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Conclusion

In this paper, based on the excitable HR systems with

chemical delayed coupling,we analytically investigated the

conditions for the Hopf bifurcations by means of bifurcation

theory. We numerically gave the supercritical and subcritical

Hopf bifurcations which agree with the analytical ones. We

also numerically investigated the synchronization transition

of the firing patterns and found the complete synchronization

and the inverse synchronization changed alternatively with

the delay increasing. The reason for the synchronization

transition of the firing pattern maybe relate to the supercrit-

ical and subcritical Hopf bifurcations which also occur

alternatively as the delay increasing. We will give detailed

research in the future work.

A certain delay can destroy the complete synchroniza-

tion of coupled excitable neurons, and as the delay

increasing, it can prohibit the inverse synchronization from

arising in some particular time region. Moreover, we can

control the c varying in a small region to inhibit the sys-

tem’s excitability. As we know that phase synchronization

and synchronization transitions have become more and

more important because of their physiological and patho-

logical significance, so the results may be helpful for us to

forecast the dynamical behavior of coupled excitable

neurons and provide a theoretical direction for developing

medical treatment of restraining the synchronization of

neurons, and further understand the essence of encoding

and decoding of information.
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Burić N, Todorović K, Vasović N (2008) Synchronization of bursting

neurons with delayed chemical synapses. Phys Rev E 78(3):

036211

Dhamala M, Jirsa VK, Ding MZ (2004) Enhancement of neural

synchrony by time delay. Phys Rev Lett 92(7):74104

Engelborghs K, Luzyanina T, Samaey G (2007) DDE-BIFTOOL: a Matlab

package for bifurcation analysis of delay differential equations. http://

twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml

Faria T (2000) On a planer system modelling a neuron network with

memory. J Differ Equ 168(1):129–149

Lu QS (2010) Ordinary differential equation and dynamical system.

Beijing Aerospace University Press, Beijing

Neefs PJ, Steur E, Nijmeijer H (2010) Network complexity and

synchronous behavior—an experimental approach. Int J Neural

Syst 20(3):233–247
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