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Abstract
The emergence of novel viral diseases is driven by socioeconomic, demographic and
environmental changes. These include land use changes such as deforestation, agricultural
expansion and habitat degradation. However, the links between land use change and disease
emergence are poorly understood and likely complex. In this review, we propose two hypotheses
for the mechanisms by which land use change can lead to viral emergence: 1) by perturbing
disease dynamics in multi-host disease systems via impacts on cross-species transmission rates
(the ‘perturbation’ hypothesis); and 2) by allowing exposure of novel hosts to a rich pool of
pathogen diversity (the ‘pathogen pool’ hypothesis). We discuss ways that these two hypotheses
might be tested using a combination of ecological and virological approaches, and how this may
provide novel control and prevention strategies.

Introduction
Emerging infectious diseases (EIDs), and in particular emerging viruses, are a key threat to
global public health, to livestock, wildlife and to ecosystem functioning [1,2]. Some EIDs
threaten public health through pandemics with large-scale mortality (e.g., HIV/AIDS).
Others cause smaller outbreaks with high fatality rates or lack effective therapies and
vaccines (e.g., Ebola virus, rabies, multi-drug resistant TB) [3,4]. As a group, EIDs and re-
emerging diseases cause millions of deaths each year, and some single outbreak events (e.g.,
SARS) have cost the global economy tens of billions of dollars [5]. The World Economic
Forum considers EIDs as “major” risks, comprising significant likelihood of occurrence and
significant economic threat over the next 10 years, comparable in scale to unsustainable
population growth [6,7]. Predicting and preventing the emergence of novel diseases with
pandemic potential is therefore a global public health priority [8].

Yet, despite these impacts and perceived importance, our understanding of what causes
diseases to emerge is rudimentary. The underlying causes tend to be changes in
socioeconomic factors (e.g., increased travel and trade), demography (e.g., population
expansion), agriculture (e.g., intensification of livestock production), medical science (e.g.,
increased antibiotic use) and to the environment (e.g. land use change, deforestation)
[2,9,10]. It is thought that these ‘drivers’ of emergence foster conditions for pathogens to
expand host range, and adapt to new niches, and that understanding how they affect the
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process of disease emergence could have use in predicting and combating EID threats
[8,11].

The ecology of disease emergence
Human cases of new diseases stimulate intense research. Once reservoir-to-human
transmission has occurred for a new EID, and led to human illness or mortality, significant
efforts are often made to identify the reservoirs of the causative agent, or its capacity to
spread once in the human population. These may have significant broad value for preventing
future outbreaks or reducing pandemic threats. Studies that analyze how networks of
contact, travel and trade, for example, have been used to predict pandemic spread of new
EIDs, and to propose quarantine measures or therapeutic stockpiles to interrupt it [12-14].
These studies, however, are all focused on the later stages of the disease emergence process.
There has been much less attention given to the preconditions requisite for epidemics to
commence [15].

One key limitation to a fundamental understanding of the process of disease emergence is
that new EIDs are caused by previously unknown pathogens, of unknown ecology, in
unknown hosts. Another barrier to progress is that this is a fundamentally ecological
problem that requires large-scale field studies and interdisciplinary collaboration among the
ecological and medical sciences. The process of emergence also likely involves complexity
that is often not brought into epidemiological analyses (e.g. the dynamics of seasonally
fluctuating wildlife reservoir populations), and they require long-term field and lab
commitment [16]. For example, long term studies of Lyme disease ecology have revealed
the importance of synchronous tree masting [17], reservoir population changes with habitat
fragmentation [18], and loss of predators [19] in the emergence and impact of that disease.
Similarly, understanding the relative role of fruit bat population biology and livestock
intensification in the emergence of Nipah virus required multi-year collaboration among
ecologists, mathematical modelers, virologists, wildlife biologists and veterinary
pathologists [16,20]. That said, there are some broad patterns that suggest fruitful avenues of
research.

Disease emergence and land use change
Human activity has altered ecosystems on a global scale [21,22]. Changes include
deforestation, expansion of agriculture, pollution, eutrophication, depletion of marine
fisheries and increased nitrogen fixation [21,22]. Anthropogenic influence on landscapes has
increased most rapidly in the last century with global population growth [23]. These changes
have led to perturbation of biotic systems (e.g., biodiversity loss and biological invasions)
the environment (e.g., water supply, climate), with subsequent direct and indirect impacts on
human and wildlife populations [22]. Some impacts are positive (e.g. increased wealth in
many regions), but many are negative (e.g. increased risk of drought, famine, emerging
diseases).

These changes seem to be particularly important for zoonotic diseases, which account for
∼60% of all EIDs [24,25]. Around 1/5 of EID events since 1940 [unpubl. data, updated from
11] and an even higher proportion of zoonotic diseases, have been associated with land use
changes, such as agricultural conversion, deforestation and activities associated with the
extractive industries (e.g., mining, logging). These statistics support suggestions that
increasing interaction among humans, domestic animals and wildlife following land use
change is a significant contributor to disease emergence [26,27].

However, despite the relative frequency with which land use change has been associated
with disease emergence events [11,18,26,28], land use change/disease emergence
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hypotheses tend to be vague or case-specific and currently lack a general theoretical
foundation. This limits our ability to derive testable hypotheses and implement tailored
management strategies to reduce the risks.

Two hypotheses for disease emergence due to land use change
Current conceptual models tend to focus on two main mechanisms for disease emergence
under land use change (Figure 1): 1) Land use change perturbs disease dynamics in multi-
host disease systems by disrupting the cross-species transmission rate (hereafter the
‘perturbation’ hypothesis); and 2) Land use change allows exposure of novel hosts to a rich
pool of pathogen diversity, influencing the cross-species transmission rate (hereafter the
‘pathogen pool’ hypothesis). These are not exclusive processes, and may be confounded
when considering the mechanisms of disease emergence in dynamic landscapes. This is
because human ecology – the presence, distribution and behavior of people - is the common
denominator for both. Untangling the two hypotheses to better understand disease
emergence and develop control and prevention strategies requires careful consideration of
this dynamic coupled natural-human system.

Analyzing land use change and disease emergence
A key limitation to studies of how disease emergence is driven by land use change is, of
course, our significant lack of knowledge of the diversity of pathogens present in wildlife in
a region, of the ecology of these pathogens, and their impact on different hosts (including
should they emerge into people) [8,29]. Unusual or infrequent pathogen transmission
between species (“spillover”) is the defining characteristic of a zoonosis. Conceptual models
place the factors influencing the force of infection from animals to humans into three
categories: 1) the prevalence of infection in the animal reservoir, 2) the rate at which
humans come into contact with these animals, and 3) the probability that humans become
infected when contact occurs [15]. These components interact and are each influenced by
diverse properties of natural and human systems, with additional factors associated with
pathogen modes of transmission and evolutionary constraints (e.g., phylogeny) [15,30,31].

Under land use change, human ecology directly drives the contact rate among humans and
reservoir hosts (e.g., how and when contact with wildlife occurs) and can influence the
likelihood of infection given contact (e.g., the type of contact, such as butchering vs
cohabitation). Additionally, the human impact on the landscape may simultaneously
influence the prevalence of infection in animal reservoirs by perturbing the abundance and
distribution of different animal reservoirs [32]. Thus, the interaction of human ecology with
biodiversity is fundamentally important to zoonotic disease emergence due to land use
change.

Links between biodiversity, disease risk and land use change
Most of the early theoretical models of disease dynamics have concerned single-host single-
pathogen systems [33,34]. More recent studies have begun to use a community ecology
perspective to understand multi-host disease systems [15,35-40]. Some of these have
demonstrated correlations between host diversity and disease risk, both positive and
negative [18]. But what are the mechanisms?

Under the ‘perturbation’ hypothesis, biodiversity has been related to both an increase (via
the “amplification effect”) and a decrease (via the “dilution effect” or other functionally
similar means [35]) of the intrinsic risk of cross-species transmission. There is currently
mixed support for which of these outcomes is generally more common or likely from
ecosystem perturbation [32,39,41-43]. The underlying mechanisms involve the change in
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host species richness, abundance, quality or contact rate, which governs cross-species
transmission rates via their effects on pathogen prevalence and the number of infectious
individuals [35,39,42]. In order to better understand the way land use change affects risk of
disease emergence, understanding the relationships between multiple hosts and multiple
pathogens is critical.

Under the ‘pathogen pool’ hypothesis, land use change may foster exposure of hosts
(humans and associated species, e.g. livestock, pests) to a pool of microbes harbored by
wildlife for which they have no prior exposure. This increases the risk of novel cross-species
transmission events. This can be distinguished from the ‘perturbation’ hypothesis because
the mechanism focuses on novel contact between novel host-pathogen groups, and not
necessarily on perturbing the community ecology of pathogens in reservoirs. Under the
‘pathogen pool’ hypothesis, risk of disease emergence should correlate with the factors that
drive contact between novel host-pathogen pairs. This should include aspects of human
ecology (our abundance, distribution, behavior) that dictate contact with reservoirs in
landscape [44,45], as well as the baseline microbial diversity in reservoirs, referred to in
earlier studies as the ‘zoonotic pool’ [46].

Several studies have thus proposed that areas of higher biodiversity (e.g., the tropics) should
confer greater risk of zoonotic disease emergence under land use change [11,47]. The
assumption is that pathogen diversity is a function of host diversity, such that human
activities in highly biodiverse regions result in novel exposure to a more diverse pool of
pathogens and an elevated risk of ‘spillover’. However, relationships between host and
pathogen biodiversity are often unclear or lack consistent empirical support across taxa
[42,48-54]. Thus, testing this hypothesis requires better characterization of viral diversity in
wildlife to determine predictable relationships between host and pathogen biodiversity,
should they exist. It also requires a better understanding of the factors that drive the
microbial diversity within landscapes.

Future perspectives – human ecology and pathogenic landscape?
Despite significant global resources spent on pandemic prevention, new zoonoses, and in
particular viral zoonoses, continue to emerge in the human population [55]. Their impact is
high, even in the absence of significant mortality (e.g. SARS) and analyses of global and
historical trends suggest their emergence is accelerating, even after accounting for reporting
bias [11]. The increasing number of zoonotic diseases spilling over from a range of wild
animal species is of particular concern. Clearly the global changes promoting novel disease
emergence are currently outstripping our potential to leverage fundamental knowledge to
predict and prevent pandemics. At the same time, the underlying environmental and
socioeconomic drivers continue to accelerate in impact, compounding this problem.

On average, studies suggest that protecting biodiversity or limiting human influence in
landscapes should reduce the risk of zoonotic disease emergence [18]. Yet, given our poor
understanding of the specific mechanisms involved, there is currently little uptake of this as
a disease management option. Elucidating the dominant mechanisms of disease emergence
in dynamic landscapes thus remains a critical priority in infectious disease research, and
ultimately pandemic prevention.

In this review, we have identified two key hypotheses that could be a priority for future
research and that will begin to integrate an understanding of human ecology with host-
pathogen community ecology. The long-term result may be a strategy to identify high-risk
regions, populations and perhaps even occupations that play the largest role in disease
emergence due to land use change. Designing ways to alter land management plans in these
regions, or limit exposure for populations at risk may limit exposure to and/or minimize the
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consequences of EIDs. Given the high economic and health costs of EIDs, even small gains
in risk reduction via novel, tailored strategies could be a highly cost effective way to manage
EID risk [56].
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Emerging viral zoonoses are a critical threat to public health and are driven by
socioeconomic and environmental changes

Our understanding of how environmental changes, in particular land use change causes
viruses to emerge is rudimentary

We propose two hypotheses on how land use change causes disease emergence

These are: the ‘perturbation’ hypothesis, and the ‘pathogen pool’ hypothesis

We discuss how these could be tested, using a combination of virological and community
ecology studies
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Figure 1.
Conceptual model of how land use change drives the emergence of infectious diseases in
people. Land use change is a complex, dynamic process that underpins many of the novel
zoonoses identified in humans during the last few decades. While the ultimate goal of public
health is to identify and prevent transmission of these pathogens to people (‘spillover’), our
mechanistic understanding of what drives them to emerge is poor. We propose two
hypotheses which are probably not mutually exclusive. In the ‘pathogen pool’ hypothesis,
anthropogenic activities in previously pristine environments bring people into contact with a
large reservoir of microbial diversity in wildlife for which humans are naïve. In the
‘perturbation’ hypothesis, land use changes alter the dynamics of pathogen transmission
among wildlife, and promote cross-species transmission.
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