
Imaging of Genetically Engineered T Cells by PET using Gold
Nanoparticle Complexed to Copper-64

Parijat Bhatnagara, Zheng Lib, Yoonsu Choic, Jianfeng Guob, Feng Lib, Daniel Y Leeb,
Matthew Figliolac, Helen Hulsc, Dean A. Leec,d, Tomasz Zale, King C Lib, and Laurence JN
Cooperc,d

aBaylor College of Medicine & Texas Children’s Hospital, Department of Obstetrics &
Gynecology, Division of Maternal Fetal Medicine, Houston, TX 77030
bDepartment of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030
cDivision of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
dThe University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
eDepartment of Immunology, MD Anderson Cancer Center, Houston, TX 77030

Abstract
Adoptive transfer of primary T cells genetically modified to have desired specificity can exert an
anti-tumor response in some patients. To improve our understanding of their therapeutic potential
we have developed a clinically-appealing approach to reveal their in vivo biodistribution using
nanoparticles that serve as a radiotracer for imaging by positron emission tomography (PET). T
cells electroporated with DNA plasmids from the Sleeping Beauty transposon/transposase system
to co-express chimeric antigen receptor (CAR) specific for CD19 and Firefly luciferase (ffLuc)
were propagated on CD19+ K562-derived artificial antigen presenting cells. The approach to
generating our clinical-grade CAR+ T cells was adapted to electro-transfer of gold nanoparticles
(GNP) functionalized with 64Cu2+ using the macrocyclic chelator (1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA) and polyethyleneglycol (GNP-64Cu/
PEG2000). MicroPET/CT was used to visualize CAR+EGFPffLucHyTK+GNP-64Cu/PEG2000+ T
cells and correlated with bioluminescence imaging and assessment of radioactivity. These data
demonstrate that GNPs conjugated with 64Cu2+ can be prepared as radiotracer for PET and used to
image T cells using an approach that has translational implications.

INTRODUCTION
Adoptive cell therapy infusing primary T cells genetically modified to express a chimeric
antigen receptor (CAR) specific for a tumor-associated antigen has been shown to be
effective against hematologic malignancies and solid tumors.1 The genetic manipulation of
primary T cells can improve potency through the engineering of CAR2 to impart a fully-
competent activation signal as measured in part by the persistence and homing after
infusion. To assess biodistribution of systemically-administered CAR+ T cells, investigators
typically undertake quantitative PCR and flow cytometry using CAR-specific probes from
serially sampled tissues and peripheral blood.3 However, this is invasive and does not
provide real-time whole-body spatio-temporal distribution of infused T cells. Longitudinal
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non-invasive imaging can be undertaken on T cells genetically modified to enforce
expression of reporter genes, such as Firefly luciferase (ffLuc) for bioluminescent imaging
(BLI)4 in animal models and thymidine kinase (TK) and associated muteins from herpes
simplex virus-1 for positron emission tomography (PET).5 Locally administered human TK+

T cells and intravenously-infused macaque T cells have been imaged by PET.6 Additional
studies are needed regarding improving sensitivity and reducing immunogenicity before
systemically administered TK+ T cells can be reproducibly imaged by PET in clinical trials.
Compounding the difficulties associated with human application of this approach to PET is
that 18F-based probes requires enzymatic trapping of the radiotracer in the cytoplasm by
recombinant TK and the infused non-metabolized 18F creates a background signal from
pools within tissues and undermines sensitivity.3, 6b, 7 The short radioactive half-life (t1/2=
109.8 min) of 18F also imposes practical limitations and requires an on-site cyclotron or
expedited delivery of up to 500 mCi 18F-based probes as starting material for single infusion
of 10 mCi per patient. 64Cu conjugated to lipophilic chelator pyruvaldehyde-bis(N4-
methylthiosemicarbazone) for PET tracking has been proposed as an alternative and used to
track C6 rat glioma cells in mice for up to 20 hours, although leakage of 64Cu from cells was
observed.8 Gold nanoparticles, however, have been investigated for their uptake and have
been found appropriate for intracellular retention.9 Therefore, as an alternative to in vivo
labeling we developed an ex vivo approach to radiolabel primary T cells with gold
nanoparticle (GNPs) conjugated to 64Cu (GNP-64Cu/PEG2000) using electroporation that
renders T cells capable of being imaged by PET.

Engineering of immunotherapies is a burgeoning field with active contribution from
physical technologies10 and can be used to address and important challenge and an unmet
clinical need for the in vivo tracking of tumor-targeting T cells.11 Assessments of T-cell
trafficking kinetics to tumor locations have been made.12 A recent study by Koya et al.12b

using signal correlation from PET and BLI reporter genes showed that T cells home within 2
to 5 days leading to reduction in tumor sizes. We demonstrated that cultured CAR+ T cells
pre-labeled with 64Cu before infusion could be tracked in vivo using μPET/CT. Although
room for improvement still remain, (e.g. towards the impact of electroporation process on T-
cell death and contribution of free GNP-64Cu/PEG2000 released from necrotic cells) our
work has translational implications as we use an approach that can be undertaken in
compliance with current good manufacturing practice for Phase I/II trials.

RESULTS & DISCUSSION
We have developed a strategy to genetically modify primary peripheral blood mononuclear
cells (PBMC) and propagate CD19-specific CAR+ T cells that have application in clinical
trials for patients with B-cell malignancies (INDs# 14193, 14577, and 14739). Our approach
uses the Sleeping Beauty (SB) transposon/transposase system,13 a non-viral gene delivery
method based on electro-transfer of DNA plasmids, to introduce the CAR and designer
artificial antigen presenting cells (aAPC) to retrieve and numerically expand genetically
modified primary T cells.14 We adapted the electroporation process to co-express a 2nd

generation CAR (that signals through CD28 and CD3-ζ) and ffLuc. This was achieved using
a process we dubbed “double transposition” (Figure 1A).13–14 Thawed PBMC isolated from
the peripheral blood of healthy volunteer donors were electroporated with three SB DNA
supercoiled plasmids expressing three codon optimized15 (CoOp) genes: (i) CAR transposon
(Figure 1B), (ii) fusion of enhanced Green Fluorescent Protein (EGFP), ffLuc, hygromycin
phosphotransferase (Hy), thymidine kinase (TK) to create the EGFPffLucHyTK transposon
(Figure 1C), and (iii) SB11 transposase (Figure 1D). The genetically modified T cells
(designated CAR+EGFPffLucHyTK+) were selectively propagated on γirradiated designer
aAPC in the presence of recombinant human cytokines IL-2 and IL-21 in the presence of
cytocidal concentration of hygromycin B. The aAPC (clone #4)16 are derived from K562
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and genetically modified to express truncated CD19 along with desired co-stimulatory
molecules (CD64, CD86, CD137L, and membrane bound IL-15 (mIL-15) co-expressed with
EGFP). The electroporated and propagated T cells homogeneously expressed CD3 with 12%
co-expressing CD4 and 84% co-expressing CD8. Flow cytometry also revealed 68%
expression of CAR and 78% expression of EGFP (Figure S1). To track the T cells in vivo
we modified the electroporation procedure to load the genetically modified T cells with
GNPs modified to function as a reporter for PET. 64Cu2+ was chosen as a radioisotope for
PET based on longer half-life of 64Cu (t1/2= 12.7 hr) compared to 18F, and absence of high-
energy γ-emission that could otherwise lead to DNA damage in the cells.17 64Cu2+ was
conjugated to 7 nm GNPs using the macrocyclic chelator, 1,4,7,10-
tetraazacyclododecane-1,4,7,10- tetraacetic acid (DOTA)18 and coated with long chain
polyethylene glycol to make it biocompatible (GNP-64Cu/PEG2000) for the final size of 35
nm (Figure 1E).19 Although, endocytosis has been investigated as a usual mode for
internalization of GNP, it requires extended periods of time,20 and is a practical limitation
with radioactive material which have short half life. Therefore, we developed electro-
transfer as a method to label T cells with GNP-64Cu/PEG2000 due to its ability to instantly
label the cells.

In vitro testing of electroporated and propagated CAR+EGFPffLucHyTK+ primary T cells
revealed ffLuc activity at 2.17 ± 0.08 CPM/cell upon administration of D-Luciferin,
compared with 0.011 ± 0.001 CPM/cell when no D-Luciferin was administered (data not
shown). The ffLuc activity is a measure of T-cell viability as this enzyme requires ATP as a
co-factor which is present only in live cells. Electroporation parameters were adjusted to
improve uptake of GNPs. Initially, acute T-cell leukemia cell line (Jurkat cells) were used to
assess the efficiency of electro-transfer by EGFP expression using control DNA plasmid
(designated as pmaxGFP). The highest transfection efficiency, as measured by transient GFP
expression 24 hours after electroporation was observed at the field strength of 1 kV/cm (200
V across 2 mm electrode spacing) applied for 5 msec using square-wave pulse generator
(Figure 2A). (This finding was supported by repeating the experiment (Figure S2).
Although, conditions for electroporation may differ for cell types, 1 kV/cm has been
previously reported in literature as an appropriate value for transfection in mammalian cells
and was therefore adopted for future experiments.21 GNP/PEG2000 (synthesized in a similar
fashion as GNP-64Cu/PEG2000 but without 64Cu2+ addition) was used to determine the
concentration of GNP-64Cu/PEG2000 to be used in the electroporation reaction. Using the
conditions determined for electro-transfer of DNA plasmid into T-cell line (Jurkat cells), we
first investigated the effect of GNP/PEG2000 concentration and its electro-transfer into
5x106 GFP+ffLuc+ T-cell lines (Jurkat cells) (Figure 2B). Since primary cell response differ
from donor to donor, we repeated this investigation on 20x106 CAR+EGFPffLucHyTK+ T
cells using the cells from the donor that was used in vivo (Figure 2C). GNP/PEG2000
concentration of 1.5×1012 particles in 100 μL of electroporation reaction was considered as
appropriate for electro-transfer into 20x106 CAR+EGFPffLucHyTK+ primary T cells in
context of cell recovery, ffLuc expression and cell viability determined by trypan blue
exclusion method. To assess the impact of electro-transferred GNPs on BLI, we
electroporated CAR+EGFPffLucHyTK+ T cells with 1.5×1012 GNP/PEG2000 using 1 kV/
cm for 5 msec and intravenously injected 20x106 T cells in a mouse. There was no
significant difference in average radiance from mouse infused with T cells that did (1.33e4
p/s/cm2/sr) and did not (1.12e4 p/s/cm2/sr) carry the GNPs (Figure 2D) which supports the
premise that although the process of electroporation may have the potential to affect cell
viability, the presence of GNP/PEG2000 in the cells did not detract from their ability to
affect ffLuc activity.

To assess the impact of size of GNPs to cross pores in the T-cell membrane introduced by
electroporation, we electro-transferred 15 nm and 7 nm GNPs conjugated with 64Cu2+ and

Bhatnagar et al. Page 3

Integr Biol (Camb). Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



PEG2000 into 20x106 CAR+EGFPffLucHyTK+ primary T cells which resulted in 1 μCi and
5.8 μCi of radioactivity for the two sets of cells. T cells were injected into two mice and
μPET imaging of transverse, coronal, and sagittal planes was undertaken beginning at 10
minutes post infusion (Figure 2E). Although initial PET signal was observed from both
mice, longer term in vivo PET signal was observed only from mice that received T cells
bearing 7 nm GNP-64Cu/PEG2000. We hypothesize that 15 nm GNP-64Cu/PEG2000 were
less efficiently electro-transferred into T cells due to the increased size of the GNP.

The 7 nm GNP-64Cu/PEG2000 was then used to label genetically modified
CAR+EGFPffLucHyTK+ T cells using the established electroporation conditions (20x106 T
cells, 1.5×1012 GNP-64Cu/PEG2000, 100 μL, 1 kV/cm, 5 msec) to deliver 3 μCi. 20x106

radiolabeled primary T cells were intravenously injected and imaged using μPET/CT and
BLI. The PET signals from transverse, coronal, and sagittal planes of the mouse co-localized
with the BLI signal (Figure 3A). As the BLI signal indicates the presence of live cells, the
co-localized PET/CT and BLI data supports the hypothesis that viable (metabolically active)
genetically modified T cells can be tracked in vivo using positron emitter, 64Cu, and imaged
by μPET/CT scanner.

GNPs loaded within primary T cells are expected to bypass clearance by the liver and spleen
which are part of the reticuloendothelial system (RES). This was assessed by comparing the
biodistribution of 20x106 T cells radiolabeled with GNP-64Cu/PEG2000 compared with free
GNP-64Cu/PEG2000 (90 μCi) also administered via tail vein. The post-mortem
biodistribution of the radioactivity, 14 hours after infusion, revealed that the T cells
preferentially carried the GNP-64Cu/PEG2000 to the lungs. Whereas, when free GNP-64Cu/
PEG2000 were administered, comparatively larger fraction was found outside the
pulmonary system (Figure 3B) and into major RES organs (liver and spleen)22. Kennedy et
al.23 also reported four-fold more efficient delivery of GNP to the tumor site when
transported within T cells to the tumor locations, compared to accumulation via enhanced
permeability and retention effect. The loading of GNP-64Cu/PEG2000 in T cells resulted in
less uptake by RES and desired delivery to the lungs. Cell-free GNP-64Cu/PEG2000 was
taken up 17.5-fold more in liver and 25-fold more in spleen compared to when packaged in
T cells (Figure 3C). This supports the premise that T cells can act as delivery vehicles for
nanostructures without being sequestered by the RES.23–24

In this report, as another example of contribution of engineering approaches to
immunotherapy,10 we show that 64Cu conjugated to GNP and coated with PEG could be
used to image primary T cells in vivo. A barrier to successful implementation of cell-based
therapies is determination of optimal dosage and schedule for administering the biologic and
ascertaining that these cells reach their desired target locations.25 As a result, non-invasive
real-time monitoring of infused cells has been an area of active research as it can inform on
the dosage needed to achieve therapeutically effective numbers of infused cells within
desired tissues. Various methods under consideration for tracking include ex vivo and in
vivo labeling of cells for imaging and each has pros and cons.11 An advantage of our
approach using GNPs is that the conjugation to 64Cu as well as the electro-transfer into T
cells can be undertaken using methods in compliance with current good manufacturing
practice for Phase I/II trials.

MATERIALS AND METHODS
DNA plasmids

Three DNA plasmids expressing kanamycin resistance gene were constructed coding for
three codon optimized (CoOp) transgenes flanked by IR/DR sequences and used to generate
CAR+EGFPffLucHyTK+ T cells. (1) CD19-specific CAR expressed under human
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elongation factor 1-α (hEF-1α) promoter (CD19RCD28mZ(CoOp)/pSBSO) (Figure 1B),26

(2) multi-function protein fusing ffLuc downstream of EGFP and upstream of hygromycin
phosphotransferase (Hy) and thymidine kinase (TK, HyTK) expressed under hEF-1α
promoter (EGFPffLucHyTK) (Figure 1C), (3) SB11 transposase expressed under
cytomegalovirus (CMV) promoter (pKan-CMV-SB11) (Figure 1D).26 Supercoiled DNA
plasmid pmaxGFP, coding for EGFP, was used to assess the efficiency of electro-transfer by
measuring fluorescence.

GNP-64Cu/PEG2000
GNPs with average diameter of 7 nm were purchased from Nanopartz, Inc, CO. 64CuCl2
was produced on a CS-15 biomedical cyclotron at Washington University School of
Medicine. DOTA-TA was synthesized by linking p-NH2- Bn-1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (Macrocyclics Inc., TX, USA) and thioctic
acid (TA) (Acros, NJ, USA) with a di-amine linker.27 GNPs were functionalized by forming
gold-thiol bond with DOTA-TA (GNP-DOTA).27 GNP-DOTA were incubated with 64Cu2+

at pH 6.5 at 50°C followed by PEGylation using thiolated PEG (Item# MPEG-SH-2000;
Laysan Bio, Inc, AL, USA) (GNP-64Cu/PEG2000)28 (Figure 1E). Radiolabeled GNP-64Cu/
PEG2000 was measured 35 nm in diameter by dynamic light scattering and the labeling
efficiency was > 95% determined by radio thin layer chromatography.

Artificial antigen presenting cells (aAPC)
K562-derived aAPCs (referred to as clone #4) weretransduced with lentivirus to co-express
CD19, CD64, CD86, CD137L (CD137L), and membrane-bound (m) interleukin (IL)-15
(mIL-15, co-expressed with EGFP, Figure 1A) and used to support the ex vivo numeric
expansion of CD19-specific CAR+EGFPffLucHyTK+ T cells.16

Peripheral Blood Mononuclear Cells (PBMC)
PBMC were isolated from blood by Ficoll- Paque density gradient centrifugation (Cat #
17-1440-02, GE Healthcare Bio-sciences AB, Sweden), re-suspended in freezing medium
(40% RPMI-1640, 50% fetal bovine serum (FBS), 10% DMSO) at the density of 20x106

cells/mL/vial, and stored in liquid nitrogen.14a

Generation of EGFP+ acute T-cell leukemia cell line (Jurkat cells)
On the day of electroporation (Day 0), 106 Jurkat cells were re-suspended in 100 μL of
phosphate buffered saline (PBS) (Cat# D8537, Sigma-Aldrich, Inc., MO, USA) along with
pmaxGFP (2 μg supercoiled DNA, Lonza Cologne GmbH, Germany), transferred to a single
cuvette, and electroporated with specific pulse duration and amplitude using ECM 830 BTX
electroporation apparatus (BTX Instrument Division, Harvard Apparatus, Inc., MA, USA).
The cells were cultured for 24 hours at 37°C in phenol-free RPMI-1640 containing 10%
FBS and 2 mM L-alanyl-L-glutamine (GlutaMAX™, Cat # 35050, Invitrogen Corp., CA,
USA) before analyzing for EGFP expression.

Generation of GFP+ffLuc+ acute T-cell leukemia cell line (Jurkat cells)
Jurkat cells were cultured in RPMI-1640 containing 10% FBS and 2 mM L-alanyl-L-
glutamine (GlutaMAX™, Cat # 35050, Invitrogen Corp., CA, USA) and transduced with
lentiviral particles carrying ffLuc-F2A-GFP reporter gene expressed under blasticidin
resistance gene (Cat# LVP323, GenTarget Inc., San Diego, CA, USA) using manufacturer’s
protocol. Briefly, lentiviral particles were thawed at room temperature and 50 μL of virus
was added to 0.5 mL cells (diluted to 106 cells/mL). Blasticidin S (Cat # ant-bl-5,
InvivoGen, CA, USA) was added to the culture beginning 4 days after transduction and
maintained at a concentration of 0.1 mg/mL until cryopreservation or use.
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Generation and analysis of CAR+EGFPffLucHyTK+ T cells
CD19-specific CAR+EGFPffLucHyTK+ T cells were propagated from PBMC after SB
transposition as previously described14a and depicted in Figure 1A. On the day of
electroporation (Day 0), 20x106 PBMC were thawed at 37°C in a water bath and re-
suspended in 100 μL of Amaxa Nucleofector solution (Human T cell Kit, Cat # VPA-1002)
along with CAR transposon (CD19RCD28mZ(CoOp)/pSBSO, 7.5 μg supercoiled DNA,
Figure 1B), ffLuc transposon (EGFPffLucHyTK, 7.5 μg supercoiled DNA, Figure 1C), and
SB transposase (pKan-CMV-SB11, 5 μg supercoiled DNA, Figure 1D) and transferred to a
single cuvette and electroporated (Program U-14) using a Nucleofector II (Lonza Cologne
GmbH, Germany). The cells were rested for 2 to 3 hours at 37°C in incomplete phenol-free
RPMI-1640 and subsequently cultured overnight in phenol-free RPMI-1640 containing 10%
FBS and 2 mM L-alanyl-L-glutamine (GlutaMAX™, Cat # 35050, Invitrogen Corp., CA,
USA). The following day γ-irradiated (100 Gy) K562-aAPC (clone #4) were added at a 1:2
T cell/aAPC ratio. Hygromycin B (HygroGold™, Cat # ant-hg-1, InvivoGen, CA, USA) was
added to the co-culture beginning 5 days after electroporation and maintained at a
concentration of 0.2 mg/mL, as suggested by the manufacturer, until cryopreservation of T
cells. Additional γ-irradiated aAPC were added at 1:2 T cell/aAPC on days 7, 14, 21, 28,
and 35 after electroporation. Soluble recombinant human IL-21 (Cat # 34-8219-85,
eBioscience, Inc., CA, USA) was added at a concentration of 30 ng/mL beginning the day
after electroporation, and soluble recombinant human IL-2 (Chiron Corp (Novartis V&D),
CA, USA) was added to the cultures at 50 U/mL beginning 7 days after electroporation.
These exogenous cytokines (IL-2, IL-21) continued to be supplemented on a Monday-
Wednesday-Friday schedule. The cultures were monitored by flow cytometry for the
unwanted presence of a CD3neg CD56+ cell population and if the percentage exceeded 10%
of the total population (which usually occurred between day 10 and 14) a depletion for
CD3negCD56+ NK cells was accomplished using CD56 beads (Cat # 130-050-401, Miltenyi
Biotech Inc., CA, USA) on a LS column (Cat # 130-042-401, Miltenyi Biotech Inc., CA,
USA) according to the manufacturer’s instructions. T cells were enumerated every 7 days
and viable cells counted based on trypan blue exclusion using Cellometer automated cell
counter (Auto T4 Cell Counter, Nexcelom Bioscience, MA, USA). 35 days after electro-
transfer of SB plasmids the CAR+EGFPffLucHyTK+ cells were re-suspended in freezing
medium at 20x106 cells/mL/ vial and stored in liquid nitrogen.

Generation of CAR+EGFPffLucHyTK+ T cells loaded with GNP-64Cu/PEG2000
20x106 CD19-specific CAR+EGFPffLucHyTK+ T cells were thawed and stimulated with γ-
irradiated aAPC (clone #4) in presence of IL-2/21 and hygromycin B as described above.14a

37 days later the cells were centrifuged and 20x106 T cells were re-suspended in 100 μL in
presence of 1X1012 GNP-64Cu/PEG2000 (Figure 1E) in PBS (Cat# D8537, Sigma-Aldrich,
Inc., MO, USA) and transferred to a single cuvette and electroporated at 200 V with a 5
msec pulse using ECM 830 BTX electroporation apparatus (BTX Instrument Division,
Harvard Apparatus, Inc., MA, USA).

In vivo measurement of PET signal from CAR+EGFPffLucHyTK+GNP-64Cu/PEG2000+ T
cells

Micro-PET/CT imaging was acquired by Inveon Preclinical Multimodel SPECT/PET/CT
System (Siemens AG, USA). Immunocompromised (nu/nu) mice were ordered from Charles
River Laboratories International Inc., MA. CAR+EGFPffLucHyTK+GNP-64Cu/PEG2000+

T cells were intravenously injected (20x106 cells/mouse). All mice imaging was performed
at The Methodist Hospital in accordance with guidelines from Animal Care and Use
Committee. Mice were anesthetized, placed on an imaging bed attached with heating pad,
laser-aligned to the center of the scanner field-of-view and serially imaged by μPET/CT
scan. Images were acquired at 10 min after injection of T cells. CT image reconstruction was
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achieved using a Common Cone-Beam Reconstruction (COBRA) method (Siemens) and
PET images were reconstructed by 2D Ordered Subset Expectation Maximization
(OSEM2D) algorithm. The PET and CT images were co-registered and viewed using Inveon
Research Workplace software (Siemens).

In vivo measurement of BLI signal from CAR+EGFPffLucHyTK+GNP-64Cu/PEG2000+ T cells
After PET imaging, mice were injected with 150 mg/kg D-Luciferin (XenoLight™, Cat #
122796, Caliper Life Sciences, MA, USA) and BLI was obtained using an IVIS-200 optical
imaging system (Caliper Life Sciences, MA, USA). BLI were acquired using 1 minute
exposure time and displayed in the same scale of intensity.

Biodistribution studies
Two mice were injected intravenously with CAR+EGFPffLucHyTK+GNP-64Cu/PEG2000+

T cells and GNP-64Cu/PEG2000. Mice were euthanized at 14 hours post injection. Blood,
heart, liver, spleen, kidney, lung, stomach, intestine, muscle were harvested and weighed.
Radioactivity of different organs was measured with the gamma counter (Perkin Elmer,
MA). Uptake of radiolabeled T cells in tissues was calculated as the percentage of the
injected dose per gram of tissue (%ID/g).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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INSIGHT, INNOVATION, INTEGRATION

Clinical-grade primary T cells can be used to prevent and treat malignancies. Ex vivo
manipulation of T cells improves in vivo effector functions. The link between what can
be achieved in the manufacturing suites and what is achieved after infusion is
compromised by an inability to assess T-cell spatio-temporal distribution. A clinically-
appealing approach is needed to assess the biodistribution of T cells. Therefore, we
developed gold nanoparticles (GNPs) for positron emission tomography (PET) by
coupling to 64Cu. Since we have adapted electroporation to genetically modify T cells for
human application, we electro-transferred GNPs into T cells. These T cells could report
their distribution in vivo by PET and represents a step towards developing GNPs as
radiolabels for cell-based therapies.
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Figure 1.
(A) Schematic of the processes for the generation of CAR+EGFPffLucHyTK+GNP-64Cu/
PEG2000+ T cells. Components used include (B) CAR transposon
(CD19RCD28mZ(CoOp)/pSBSO). (C) SB11 transposon (pKan-CMV-SB11) (D) ffLuc
transposon (EGFPffLucHyTK) (E) GNP-64Cu/PEG2000; Synthesis of DOTA-TA). 7 nm
GNP (shown) was compared with 15 nm GNP. All other parameters stayed the same during
this comparison. TEA, triethylamine; DCM, dichloromethane.
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Figure 2.
(A) Effect of electric field intensity and pulse duration on efficiency of electro-transfer of
DNA plasmid (pmaxGFP) into T-cell lines (Jurkat cells). (B,C) Cell recovery, cell viability
and ffLuc expression after electroporation of (B) GFP+ffLuc+ T-cell lines (Jurkat cells) and
(C) CAR+EGFPffLucHyTK+ T cells with GNP/PEG2000 (normalized against non-
electroporated sample) as a function of GNP/PEG2000 concentration. (D) Effect of
intracellular GNP/PEG2000 on in vivo BLI signal from ffLuc. (E) Transverse, coronal, and
sagittal planes of mice infused with T cells labeled with 15 nm and 7 nm GNP-64Cu/
PEG2000, respectively, imaged after 10 min and 18 hours by μPET/CT.
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Figure 3.
(A) PET images (transverse, coronals and sagittal planes) from
CAR+EGFPffLucHyTK+GNP-64Cu/PEG2000+ T cells infused in a mouse correlated with
BLI signal. (B) Comparison of post-mortem biodistribution of the GNP-64Cu/PEG2000
when enveloped inside the T cells compared to when infused directly, 14 hours after
intravenous infusion. (C) Lung-to-liver and lung-to-spleen ratios of GNP-64Cu/PEG2000
when enveloped inside the T cells compared to direct injection, 14 hours after intravenous
injection.
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