
Super learning to hedge against incorrect inference from
arbitrary parametric assumptions in marginal structural
modeling

Romain Neugebauera, Bruce Firemana, Jason A. Royb, Marsha A. Raebelc, Gregory A.
Nicholsd, and Patrick J. O’Connore

aDivision of Research, Kaiser Permanente Northern California, CA
bSchool of Medicine, University of Pennsylvania, PA
cInstitute for Health Research, Kaiser Permanente Colorado, CO
dCenter for Health Research, Kaiser Permanente Northwest, OR
eHealthPartners Research Foundation, MN

Abstract
Objective—Clinical trials are unlikely to ever be launched for many Comparative Effectiveness
Research (CER) questions. Inferences from hypothetical randomized trials may however be
emulated with marginal structural modeling (MSM) using observational data but success in
adjusting for time-dependent confounding and selection bias typically relies on parametric
modeling assumptions. If these assumptions are violated, inferences from MSM may be
inaccurate. In this article, we motivate the application of a data-adaptive estimation approach
called Super Learning to avoid reliance on arbitrary parametric assumptions in CER.

Study Design and Setting—Using the electronic health records data from adults with new
onset type 2 diabetes, we implemented MSM with inverse probability weighting estimation to
evaluate the effect of three oral anti-diabetic therapies on the worsening of glomerular filtration
rate.

Results—Inferences from IPW estimation were noticeably sensitive to the parametric
assumptions about the associations between both the exposure and censoring processes and the
main suspected source of confounding, i.e., time-dependent measurements of hemoglobin A1c.
Super Learning was successfully implemented to harness flexible confounding and selection bias
adjustment from existing machine learning algorithms.

Conclusion—Erroneous IPW inference about clinical effectiveness due to arbitrary and
incorrect modeling decisions may be avoided with Super Learning.
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1. Introduction
In 2006, the American Diabetes Association changed its recommendations for the treatment
of patients with type 2 diabetes mellitus (T2DM). The longstanding recommendation to
begin pharmacotherapy only after a trial of lifestyle modification that failed to lower A1c to
<7% was replaced with the new guideline for immediate prescription of metformin at
detection of diabetes, regardless of A1c level. Authors of the new recommendation indicated
that it reflects consensus rather than solid evidence.

In addition, adverse events linked to the use of thiazolidinediones [1] and inhaled insulin
raised concerns over the long-term safety and effectiveness of agents used to control
glycemia in T2DM patients. While most experts interpret existing data as strongly
supporting the safety and effectiveness of metformin, there is less confidence in the long-
term safety and effectiveness of sulfonylurea and the use of metformin and sulfonylurea in
combination.

Using the electronic health records (EHRs) from patients of four sites of the HMO Research
Network (HMORN) Consortium [2], we assembled a large retrospective cohort study of
adults with new onset T2DM to evaluate the effect of immediate versus delayed initial
monotherapy or bitherapy with metformin and sulfonylurea on the risk of several clinical
outcomes. We investigated these effects using marginal structural modeling (MSM) based
on inverse probability weighting (IPW) estimation for the purpose of properly accounting
for the time-dependent confounding and informative selection bias that often arise in
observational cohort analyses.

Here, our principal goal is twofold: 1) to illustrate the potential for incorrect inference
resulting from inadequate parametric adjustment for confounding and informative censoring
using MSM in Comparative Effectiveness Research (CER) and 2) to illustrate the practical
impact of and motivation for data-adaptive estimation with Super Learning (SL) in MSM.
SL is a prediction algorithm, grounded in theroretical results, that builds an optimal
weighted combination of predictors from a user-specified library of existing prediction
methods using cross-validation. In addition, we illustrate the application of IPW estimation
with a time-varying polychotomous (non-binary) exposure. All illustrations are based on
results for one survival outcome, the worsening of glomerular filtration rate (GFR).

2. An observational, multi-center retrospective cohort study
We searched the entire adult membership of four participating HMORN health plans for
enrollees meeting the eligibility criteria described in Appendix A. We enrolled each patient
at the earliest date between 1 January 2006 and 30 June 2009 on which all criteria were met.
As in a clinical trial, these eligibility criteria were devised to identify adults for whom the
CER question is relevant, i.e., adults with new onset T2DM defined based on one elevated
A1c measurement (>6.5%) or two elevated measurements from fasting (>126 mg/dl) or
random (>200 mg/dl) plasma glucose tests within a two-year period. We excluded members
whose life expectancy was limited by selected co-morbid conditions. These criteria
identified a cohort of 51,430 patients from which members with an observed or imputed
baseline A1c≥8% were excluded. All n = 36, 020 patients from the resulting cohort were
followed up from study entry until the earliest of 30 June 2010, plan disenrollment, or death.

3. Analytic Approach
3.1. Motivation for MSM

To address the CER question, we aim to emulate inferences from an ideal randomized
experiment with observational data [3]. In the hypothetical trial of interest, patients from the
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study cohort described above would be randomized to one of several treatment arms
corresponding with: i) no T2DM pharmacotherapy, ii) initiation of metformin monotherapy
(met) at study entry, iii) initiation of sulfonylurea monotherapy (sul) at study entry, iv)
initiation of bitherapy with metformin and sulfonylurea (met+sul) at study entry, v) met
initiation at 6 months post study entry, vi) sul initiation at 6 months post study entry, vii)
met+sul initiation at 6 months post study entry, viii) met initiation at 12 months post study
entry, etc. This trial is ideal in the sense that 1) patients would remain uncensored for the
duration of the trial (2 years), and 2) patients in arm i) would comply with the assigned lack
of therapy while patients in all other arms would comply with the assigned treatment
regimen until at least the assigned time of treatment initiation. In each arm, patients’ GFR
would be monitored to detect evidence of first GFR worsening after study entry. The
corresponding survival curve in each arm would be contrasted at 2 years. More specifically,
the cumulative risk differences between any two treatment interventions in this trial are the
comparative effectiveness measures that we wish to evaluate with observational data.

Standard modeling approaches are known [4, 5] to be inadequate to handle time-dependent
confounding and selection bias [6] as they rely on conditioning of time-varying covariates
which are also often expected to lie on a causal pathway of interest between one of variables
defining the exposure groups of interest and the outcome. Figure 1 illustrates such a scenario
with a causal diagram [7, 8] of a subset of measurements collected over one year for each
patient in this study. MSM with IPW estimation can permit adequate adjustment for such
time-varying covariates also on a causal pathway between early therapy exposure and the
outcome and can directly emulate inference for the intention-to-treat (ITT) effects of interest
[9, 10, 11] in this study1.

3.2. Data structure
The observed data on each patient in this study consist of exposure, outcome, and
confounding variable measurements made at 180-day intervals until each patient’s end of
follow-up. Patient follow-up ended at the earliest of the time to GFR worsening or the time
to a censoring event. The longest follow-up time was approximately 4 years and the median
follow-up time was about 1.5 years. Censoring events included administrative end of study,
health plan disenrollment, death, or insufficient GFR monitoring. GFR worsening was
defined as moving from a lower number renal function stage at baseline to a higher number
stage based on any single follow-up GFR measurement. Renal function was classified as
stage 1 (estimated GFR [eGFR] ≥ 90 ml/min/1.73 m2), stage 2 (eGFR 60–89), stage 3a
(eGFR 45–59), stage 3b (eGFR 30–44), stage 4 (eGFR 15–29), and stage 5 (eGFR<15).
Insufficient GFR monitoring was defined as a gap between consecutive GFR measurement
that exceeded 360 days (two 180-day intervals); the censoring date was set as the beginning
date of the third 180-day interval. Each patient’s exposure to an intensified DM treatment
during each 180-day follow-up interval was categorized in 6 levels: 1) No T2DM
pharmacotherapy, 2) met, 3) sul, 4) met+sul, 5) other T2DM pharmacotherapies, and 6)
undetermined. The exposures were characterized with the first five levels until and at the
180-day interval at which the patient initiated a first line pharmacotherapy. The exposures
were not determined (level 6) thereafter because such information is irrelevant for the
investigation of the ITT effect of interest in this analysis. Each patient’s covariate (e.g., A1c
measurements) and outcome (indicator of GFR worsening) at each 180-day follow-up
interval were defined from measurements assumed not to be affected by the exposure at that
time interval of thereafter. Details about the approach implemented for mapping EHR data

1These effects are referred to as ITT effects because their interpretation is similar to the interpretation of conventional ITT effects in
the sense that, in the hypothetical trial of interest, patients adhere to the assigned treatment regimen up to and at the assigned time of
treatment initiation and may be non-adherent (by discontinuing or changing pharmacotherapy) thereafter.
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into this coarsened exposure, covariate and outcome data for each patient was described
elsewhere [12, Appendix E]. A formal presentation of the observed data structure on which
is based the MSM analysis reported here is given in Appendix B for the purpose of allowing
a detailed description of our application of IPW estimation with a polychotomous (non-
binary) exposure.

3.3. Assumptions
Success in emulating causal inferences from the hypothetical randomized trial of interest
using observational data with the MSM approach described below relies on assumptions [5,
13, 14, 15, 16, 17] including:

No unmeasured confounders assumption—This assumption is not testable with data
alone but may be motivated based on a causal directed acyclic graph (DAG) such as the one
in Figure 1. For example in this analysis, this assumption would hold if all risk factors for
the outcome that also affect censoring and the decision to initiate a particular therapy were
included in the observed covariate process. Appendix C describes the time-independent and
time-varying covariates selected for confounding and selection bias adjustment in this
analysis.

Positivity assumption (a.k.a. Experimental Treatment Assignment
assumption)—Patient’s censoring status and exposure to the therapies of interest at any
given 180-day interval should not be determined deterministically based on past observed
covariates.

3.4. Road map of the MSM approach
The road map of the analytic approach starts with the specification of a MSM for
representing the hazards in each arm of the hypothetical trial of interest. The assumed
logistic MSM in this analysis is described in Appendix D.

The second step consists in estimating the unknown components of the numerators and
denominators of stabilized weights (Appendix D and [18, 19, 20]). The numerators of the
weights were estimated non-parametrically. We describe the estimation approaches
considered for the denominators in the next section.

The third step consists in fitting the logistic marginal structural model by standard weighted
logistic regression with follow-up data from each patient pooled over time and where only
the person-time observations under the treatment regimens of interest (i.e., corresponding
with the treatment interventions in the hypothetical arms of interest) contribute to the
regression. Each person-time observation is weighted using the estimated stabilized weights.

The fourth step consists in analytically mapping the estimates of the hazards into the
estimates of the survival curves of interest [21] using the formula linking discrete-time
hazards to survival probabilities (Appendix D).

For the fifth and final step, the estimates of the survival curves are contrasted. In this study,
differences of survival at two years are of interest. Using the delta method [22] and the
influence curve [23, 24] of the IPW estimator of the MSM coefficients, we analytically
derived asymptotically conservative inference (confidence intervals and p-values) for these
cumulative risk differences.
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4. Motivation for Super Learning
The success of the MSM approach described above relies on not only the assumptions of
positivity and no unmeasured confounders but also on the consistent estimation of the
denominators of the stabilized weights. Their estimation has typically relied on parametric
models (maximum likelihood estimation). The latter assumption then corresponds to correct
model specification.

We implemented two such estimation strategies which are respectively based on: i) 11
logistic models with main terms for each explanatory variable considered and no interaction
terms, and ii) the same 11 logistic models except that the two terms for the latest A1c and
change in A1c levels were replaced by main terms for 10 dummy variables2 indicating
whether the continuous values for A1c and change in A1c levels were elements of given
intervals. We refer to these strategies as estimation approaches with linear and nonlinear
adjustment for A1c. In both approaches, each of the 11 models is used to estimate a distinct
component of the denominators of the stabilized weights. Appendix E describes these
components and explains why the following 11 models are sufficient for estimating the
denominators of the stabilized weights: 8 models for predicting each of the 4 types of
therapy initiation during the first 180 days (E.6) and after the first 180 days (E.7), 3 models
for predicting censoring due to disenrollment from the health plan (E.3), death (E.4), and
artificial censoring for insufficient GFR monitoring (E.5) (we assumed that censoring due to
administrative end of study was uninformative). The explanatory variables considered in this
analysis were all time-independent covariates, the last measurement of time-varying
covariates (Appendix C), and the variable indexing the 180-day follow-up intervals. In
addition, past pharmacotherapy initiation was included as an explanatory variable for the 3
models predicting censoring and the latest change in A1c was included as an explanatory
variable for the 8 models predicting pharmacotherapy initiation.

As is the case above, the parametric models adopted for estimating the denominators of the
stabilized weights in practice do not typically reflect true subject-matter knowledge. To
avoid erroneous inference [25, 26] due to arbitrary model specifications, data-adaptive
estimation of the stabilized weights has been proposed but is still implemented rarely in
practice [27, 28, 29, 30, 31]. Consistent IPW estimation then relies on judicious selection of
a machine learning algorithm also known as ’learner’. Several learners are potential
candidates for estimating the different components of the denominators of the stabilized
weights (e.g., [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]). Akin to the selection of a parametric
model, the selection of a learner does not typically reflect real subject-matter knowledge
about the relative suitability of the different learners available, since “in practice it is
generally impossible to know a priori which learner will perform best for a given prediction
problem and data set” [42].

To hedge against erroneous inference due to arbitrary selection of a learner, SL [42] may be
implemented [43] to combine predicted values from a library of various candidate learners
(that includes the arbitrary learner that would have been guessed otherwise) through a
weighted average. The selection of the optimal combination of the candidate learners is
based on cross-validation [44, 45, 46, 47] to protect against over-fitting such that the
resulting learner (called ’super learner’) performs asymptotically as well (in terms of mean
error) or better than any of the candidate learners considered. If the arbitrary learners that
would have been guessed is based on a parametric model and happens to be correct then

2I(A1c<6%), I(6%≤A1c<6.5%), I(7%≤A1c<7.5%), I(7.5%≤A1c<8%), I(A1c≥8%), I(A1c change<−1%), I(−1%≤A1c change<
−0.5%), I(−0.5%≤A1c change<0%), I(0.5%≤A1c change<1%), I(A1c change≥1%) where I(·) denotes indicator variables.
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using SL instead of the correctly guessed learner only comes at a price of increase in
prediction variability.

For this analysis, we implemented [48] 11 super learners as alternatives to the 11 logistic
models described earlier for estimating the denominators of the stabilized weights. Each
super learner is defined based on 7 candidate learners: i) 5 learners defined by logistic
models with only main terms for the most predictive explanatory variables identified by a
significant p value in univariate regressions with 5 significance levels, and ii) two
polychotomous regression learners based on the most predictive explanatory variables
identified by a significant p value in univariate regressions with two significance levels.
Only the continuous A1c and change in A1c measurements were considered as explanatory
variables for SL, i.e., the dummy variables defined earlier for non-linear adjustment for A1c
were not considered. Appendix F describes the details of the implementation of the super
learners considered in this analysis.

5. Results
Of the n = 34, 468 patients in the study cohort, 15.7% experienced worsening of GFR during
follow-up. Among the patients who did not experience worsening of GFR during follow-up,
73.6% were followed until the end of the study period, and 16.7%, 1.2%, and 8.5% were lost
to follow-up due to health plan disenrollment, death, and insufficient GFR monitoring,
respectively. Of all patients in the cohort, 28.2% initiated pharmacotherapy for T2DM
during follow-up. Of the patients initiating therapy, 7,021 (72.3%) did so within the first 180
days. Across the entire study period, a total of 9,714 patients initiated therapy, with 7192
(74%), 981 (10.1%), and 950 (9.8%) initiating treatment with met, sul, and met+sul,
respectively.

We only report results obtained by contrasting estimates of the counter-factual survival
curves under no therapy or three ITT therapy regimens (met, sul, met+sul) initiated in the
first 180 days of follow-up. Figure 2 represents four estimates of these survival curves: 1)
crude estimates corresponding with IPW estimates based on weights equal to 1, 2) IPW
estimates based on weights estimated using 11 logistic models with linear adjustment for
A1c, 3) IPW estimates based on weights estimated using 11 logistic models with nonlinear
adjustment for A1c, and 4) IPW estimates based on weights estimated with 11 super learners
whose compositions are described in Table 2. The relative predictive power of each learner
that composes the 11 super learners are described in Table 3. For each of these estimates,
Table 1 provides inferences about the cumulative risk differences at two years. Depending
on the weight estimation approach employed, the 98th and 99th percentiles of the stabilized
weights ranged approximately 18–24 and 37–46, respectively. Stabilized weights were
truncated at 50 to improve the performance of the three IPW estimators considered [49, 50,
51].

6. Discussion
The results of this analysis illustrate the sensitivity of IPW inferences to the strategy adopted
for estimating the denominator of the stabilized weights. In particular, the three IPW
inferences about the risk difference between the ’no therapy’ and ’met+sul’ exposure groups
(bold text in Table 1) is striking.

While results from randomized trials are not available in this study to serve as surrogate gold
standards to formally evaluate the accuracy of inferences derived from the three estimation
strategies for the stabilized weights, it is worth noting that almost all 11 arbitrary specified
logistic models with linear A1c adjustment for estimating the denominators of the stabilized
weights had higher cross-validated residual sum of squares (not reported) than their 11
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counterparts based on non-linear A1c adjustment. This observation provides support for
favoring inferences based on IPW estimation with nonlinear A1c adjustment which are
overall concordant with inferences based on IPW estimation with SL.

Even though the 11 super learners could not make use of the dummy variables that
permitted ’manual’ non-linear adjustment for A1c, the SL algorithm appears3 to be
successful in automating flexible (i.e., non-linear) adjustment for A1c in this analysis using
a polyclass learner.

This report illustrates that differences between results from trials and advanced analytic
methods such as MSM with IPW estimation in observational studies may not necessarily
reflect real differences between efficacy and effectiveness but biased estimates of
effectiveness due to arbitrary and incorrect parametric modeling decisions. This report also
demonstrates the feasibility of SL estimation in a study based on large healthcare databases
for the purpose of automating flexible confounding/selection bias adjustment from existing
machine learning algorithms and hedging against incorrect inferences that may otherwise
arise from arbitrary parametric assumptions.
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Appendix A. Inclusion/Exclusion criteria

Inclusion
1. Age > 18 years, < 80 years, and currently enrolled in health plan from one of the

following four sites: Kaiser Permanente of Northern California, Northwest, Hawaii,
or Colorado,

2. Cohort Entry: At initial detection of diabetes by one or more of following noted
between 1/1/2006 and 6/30/2009:

• two elevated FPGs (>126 mg/dl) within 2 year period; or

• two elevated RPGs (>200 mg/dl) within 2 year period: or

• one elevated FPG and one elevated RPG within 2 year period; or

• one elevated A1c (>6.5%)

3. >2 years continuous (no gap > 2 months) health plan enrollment before cohort entry

4. At least one BMI recording prior to or within 1 month after cohort entry.

5. Pharmacy benefit at time of initial detection and throughout follow-up, and no gap
in benefit coverage > 2 months in 2 years before cohort entry
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Exclusions
• Any anti-diabetic medication (including metformin) at any time prior to cohort

entry

• Any prior diagnosis of diabetes mellitus† at any point prior to cohort entry

• Most recent serum creatinine (prior to or within 3 months following cohort entry) >
1.5 mg/dL in men, or > 1.4 mg/dL in women

• Diagnosis in prior 2 years of any of the following: active cancer other than non-
melanoma skin cancer; endstage renal disease or chronic kidney disease; hepatic
failure or dementia (from inpatient or outpatient records), or a hospitalization
within past year for congestive heart failure.

• Any evidence (diagnoses, laboratory test, procedure) of pregnancy in the 15 months
before cohort entry‡

• 630–639 Ectopic or molar pregnancy; other pregnancy with abortive outcome

• 640–649 Complications mainly related to pregnancy

• 650–659 Normal delivery, other indications for care in pregnancy, labor, delivery

• 660–669 Complications occurring mainly in the course of labor and delivery

• 670–677 Complications of the puerperium

• 678–679 Other Maternal and Fetal Complications

• V22 Normal Pregnancy

• V23 Supervision of high-risk pregnancy

• 81025 Urine pregnancy test: Positive

• 84702 Serum pregnancy test quantitative

• 94703 Serum pregnancy test - qualitative

Appendix B. Data structure
The observed data on any given patient in this study consist of the collected measurements
on exposure, outcome, and confounding variables over time (every 180 days) until the
patient’s end of follow-up. The time when the patient’s follow-up ends is denoted by T̃ and
is defined as the earliest of the time to failure (i.e., GFR worsening) denoted by T or the time
to a right-censoring event denoted by C. Renal function was classified as stage 1 when
estimated GFR (eGFR) was ≥ 90 ml/min/1.73 m2, stage 2 for eGFR 60–89, stage 3a for
eGFR 45–59, stage 3b for eGFR 30–44, stage 4 for eGFR 15–29, and stage 5 for eGFR<15.
GFR worsening was defined as movement from any lower numbered stage at baseline to any
higher numbered stage based on a single follow-up GFR measurement. Patients were
artificially right-censored the first time there was a gap longer than two 180-day intervals
between two consecutive GFR measurements. The artificial censoring event was set at the
third 180-day period of such a gap. When T̃ = C, the type of right-censoring event
experienced by the patient is denoted by Γ with possible values 1, 2, 3, or 4 to represent end
of follow-up by administrative end of study, disenrollment from the health plan, death, or

†ICD-9-CM codes 249, 250.x, 357.2, 366.41, 362.0x, 443.81, 648.0x
‡Note: A patient with prior evidence of pregnancy may enter the cohort only if the date of initial detection is at least 15 months
following first evidence of most recent pregnancy (i.e., allow 9 months following first evidence of pregnancy plus 6 months post-
partum). To identify pregnancy, the following ICD-9 codes or CPT-4 codes were used:
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insufficient GFR monitoring, respectively. The indicator that the follow-up time T̃ is equal
to the failure time T is denoted by Δ = I(T ̃ = T). At each time point t = 0, …, T̃, the patient’s
exposure to an intensified DM treatment is represented by the variable A1(t), and the
patient’s right-censoring status is denoted by the indicator variable A2(t) = I(C ≥ t). The
combination A(t) = (A1(t), A2(t)) is referred to as the action at time t. The treatment variable
A1(t) is polychotomous with 6 possible levels 0 through 5 to represent 1) no T2DM
pharmacotherapy, 2) met, 3) sul, 4) met+sul, 5) other T2DM pharmacotherapies, and 6)
undetermined, respectively. The exposures were characterized with values 0 and 4 until and
at the 180-day interval at which the patient initiated a first line pharmacotherapy. The
exposures were not determined therafter, i.e. characterized with value 5, because such
information is irrelevant for the investigation of the ITT effect of interest. At each time point
t = 0, …, T̃, covariates (e.g., A1c measurements) are denoted by the multi-dimensional
variable L(t) and defined as measurements that occur before A(t) or are otherwise assumed
not to be affected by the actions at time t or thereafter, (A(t), A(t + 1), …). For each time
point t = 0, …, T̃ + 1, the outcome (i.e., the indicator of past failure) is denoted by Y(t) = I(T
≤ t−1) and is an element of the covariates at time t, L(t). By definition, the outcome is thus 0
for t = 0, …, T̃, missing at t = T̃ + 1 if Δ = 0 and 1 at t = T ̃ + 1 if Δ = 1. To simplify
notation, we use overbars to denote covariate and exposure histories, e.g., a patient’s
exposure history through time t is denoted by Ā(t) = (A(0), …, A(t)). Following the MSM
framework [18], we approached the observed data in this study as realizations of n
independent and identically distributed copies of O = (T̃, Δ, (1 − Δ)Γ, L̄(T̃), Ā(T̃), ΔY(T̃ +
1)) denoted by Oi for i = 1, …, n where n = 34, 4684 represents the sample size. The
approach implemented for mapping EHR data into the coarsened observed data Oi for each
patient i was described elsewhere [12, Appendix E]. The longest observed follow-up time
was maxi=1,…,n T̃i = 7 (≈ 4 years) and the median follow-up time was about 1.5 years.

Appendix C. Covariates considered in the analysis
The following time-independent covariates were considered for confounding and selection
bias adjustment: age at study (years), sex (male/female), median neighborhood household
income in the patients census block, prospective DxCG risk scores based on baseline
diagnoses and prescriptions [52], race (white, black, asian, pacific islander, native american,
hispanic, unknown), baseline eGFR (≥90,60–89,45–59,30–44,15–29, <15), study site
(Kaiser Permanente of Northern California, Northwest, Hawaii, or Colorado), and reason for
study entry (FPG only, RPG only, A1c only, FPG and RPG, multiple reasons).

In addition, the following time-varying covariates were considered for confounding and
selection bias adjustment: history of arrhythmia, history of coronary heart disease, history of
congestive heart failure, history of cerebrovascular disease, history of peripheral arterial
disease, body mass index, hemoglobin A1c, lipoprotein values (LDL and HDL,
triglyceride), blood pressure values (SBP and DBP), and albuminuria level (Microalbumin/
Creatinine Ratio <30, 30–300, >300).

Appendix D. Details of the MSM approach
We assumed the following logistic MSM m(t, ā1(t−1)|β) for the discrete-time counterfactual
hazards P(Yā(t−1)(t) = 1|Yā(t−1)(t − 1) = 0) where β = (βj)j=0,…,8 is a 9-dimensional
coefficient and the subscript notation Yā(t−1) is used to represent the counterfactual
outcomes of interest (where ā2(t−1) = 0) [12, Appendix B]:

41, 552 patients were excluded from the study cohort in the GFR analysis due to missing GFR measurements at baseline.
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This MSM was fitted by standard weighted logistic regression with weights defined by:

The resulting estimates of the coefficients β of the logistic MSM are denoted by βn and were
used to derive estimates of the counterfactual survival curves of interest, Pn(Tā1(t) > t), based
on the formula linking discrete-time hazards to survival probabilities:

Appendix E. Decomposition of the denominator of the stabilized weights
The three strategies considered for estimating the denominators of the stabilized weights in
this report are based on the following probability factorization using the chain rule:

since A(t) = (A1(t), A2(t)). Given that only the person-time observations collected before
censoring can contribute to the fitting of the MSM, only the following two conditional
probabilities need to be estimated:

(E.1)

and

(E.2)

For clarity, (Y(t) = 0, Ā2(t−1) = 0, L̄(t), Ā1(t−1)) and (Y(t) = 0, L ̄(t), Ā1(t−1) = 0, Ā2(t) = 0)
are denoted below by (t) and (t), respectively.

The conditional probability E.1 can be factorized using the chain rule and information about
the different types of possible censoring events: P(A2(t) = 0| (t)) = [1 − P(I(A2(t) = 1, Γ =
1) = 1| (t))] × [1 − P(I(A2(t) = 1, Γ = 2) = 1| (t), I(A2(t) = 1, Γ = 1) = 0)] × [1 − P(I(A2(t)
= 1, Γ = 3) = 1| (t), I(A2(t) = 1, Γ = 1) = 0, I(A2(t) = 1, Γ = 2) = 0)] × [1 − P(I(A2(t) = 1, Γ
= 4) = 1| (t), I(A2(t) = 1, Γ = 1) = 0, I(A2(t) = 1, Γ = 2) = 0, I(A2(t) = 1, Γ = 3) = 0)]

since A2(t) = 0 is equivalent to (I(A2(t) = 1, Γ = 1) = 0, …, I(A2(t) = 1, Γ = 4) = 0) where
I(A2(t) = 1, Γ = j) is the indicator of censoring by an event of type Γ = j. The first probability
on the right-hand side of the previous equality may be ignored from the definition of the
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denominator of the weights (and thus does not need to be estimated) if one assumes that
censoring due to administrative end of study is not informative, i.e., P(I(A2(t) = 1, Γ = 1) =
1| (t)) is only a function of time t.

Thus, the only three conditional probabilities of censoring that need to be estimated to
estimate the stabilized weights are:

(E.3)

(E.4)

(E.

5)

Given that the effects of interest in this analysis are ITT effects, the conditional probability
E.2 is 1 at all time points t following the time point when a treatment was initiated since
P(A1(t) = 5|Y(t) = 0, L̄(t), Ā1(t−1) ≠ 0, Ā2(t) = 0) = 1. Thus, only the following conditional
probability needs to be estimated: P(A1(t)| (t)). Using the chain rule, this probability can be
factorized as: P(A1(t)| (t)) = P(I(A1(t) = 1)| (t)) × P(I(A1(t) = 2)| (t), I(A1(t) = 1)) ×
P(I(A1(t) = 3)| (t), I(A1(t) = 1), I(A1(t) = 2)) × P(I(A1(t) = 4)| (t), I(A1(t) = 1), I(A1(t) = 2),
I(A1(t) = 3)) since A1(t) can be equivalently coded with the following four dummy variables
which each indicates treatment with one of the four therapies of interest (met, sul, met+sul,
other): (I(A1(t) = 1), I(A1(t) = 2), I(A1(t) = 3), I(A1(t) = 4)). Note that the last three
conditional probabilities on the right-hand side of the previous equality are equal to 1 when,
respectively, I(A1(t) = 1) = 1, I(A1(t) = 1) = 1 or I(A1(t) = 2) = 1, and I(A1(t) = 1) = 1 or
I(A1(t) = 2) = 1 or I(A1(t) = 3) = 1. Thus, the only four conditional probabilities that need to
be estimated to estimate component E.2 are: P(I(A1(t) = 1) = 1| (t)); P(I(A1(t) = 2) = 1| (t),
I(A1(t) = 1) = 0); P(I(A1(t) = 3) = 1| (t), I(A1(t) = 1) = 0, I(A1(t) = 2) = 0); and P(I(A1(t) =
4) = 1| (t), I(A1(t) = 1) = 0, I(A1(t) = 2) = 0, I(A1(t) = 3) = 0). These probabilities may be
equivalently written as:

(E.6)

(E.7)

Appendix F. Super Learner implementation
The Super Learner considered in this analysis was implemented with the SuperLearner R
package [48] as described here. All routines referenced below are included in the R package
with the exception of the R routine SL.polyclass given below.

The 5 candidate learners based on logistic regression were implemented by the SL.glm
routine using the template screening routine screen.glmP to define 5 nested subsets of
explanatory variables based on the following 5 significance levels: α = 1e-30, 1e-10, 1e-5,
0.1.

The two candidate learners based on polychotomous regression were implemented by the
SL.polyclass routine using the template screening routine screen.glmP to define 2 nested
subsets of explanatory variables based on the following 2 significance levels: α =1e-30 and
1.
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SL.polyclass <- function(Y.temp, X.temp, newX.temp, family, obsWeights, …){
cat(“\nUsing SL.polyclass”)
tryCatch(require(polspline), warning = function(…) {
stop(“you have selected polyclass as a library algorithm but do not have
the polspline package installed”)
})
if (family$family == “gaussian”) {
stop(“the outcome must be categorical”)
}
if (family$family == “binomial”) {
fit.polyclass <- polyclass(Y.temp, X.temp, penalty = log(length(Y.temp)),
weight = obsWeights)
out <- ppolyclass(cov = newX.temp, fit = fit.polyclass)[, 2]
fit <- list(fit = fit.polyclass)
}
foo <- list(out = out, fit = fit)
class(foo$fit) <- c(“SL.polymars”)
return(foo)
}

The R routine above implements the polyclass learner [38] based on the Bayesian
Information Criterion (BIC) as the model selection criterion. To improve computing speed,
this learner was favored over the SL.polymars routine that is available by default in the
SuperLearner R package but that relies on cross-validation for model selection.
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What is new?

• Inferences from marginal structural modeling based on inverse probability
weighting estimation and electronic health records data are sensitive to
parametric decisions for modeling the treatment and right-censoring
mechanisms.

• Super Learning can successfully harness flexible confounding and selection bias
adjustment from existing machine learning algorithms.

• Erroneous inference about clinical effectiveness due to arbitrary and incorrect
parametric assumptions may be avoided with Super Learning.
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Figure 1.
Directed acyclic graph that represents plausible causal relationships between a subset of the
variables collected on any given patient in the first year of this study. Standard modeling
approaches are not adequate to account for time-varying covariates such as L(1) (e.g. A1c is
both a mediator of the effect of early treatment decisions A(0) on the outcome Y(2) and a
confounder of the effect of subsequent treatment decision A(1) on the outcome Y(2)).
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Figure 2.
Four estimates of the counterfactual survival curves under four therapy regimens
corresponding with continuous absence of T2DM pharmacotherapy exposure and therapy
initiation with monotherapy or bitherapy with metformin and sulfonylurea during the first
180 days of follow-up. The top left graph represents crude estimates corresponding with
IPW estimation based on stabilized weights equal to 1. The top right graph represents IPW
estimates based on linear adjustment for A1c. The bottom left graph represents IPW
estimates based on non-linear adjustment for A1c. The bottom right graph represents IPW
estimates based on SL. The dotted vertical line indicates the 2-year mark post study entry
when the four survival probabilitities of interest are compared.
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