Skip to main content
. Author manuscript; available in PMC: 2014 Aug 1.
Published in final edited form as: J Clin Epidemiol. 2013 Aug;66(8 0):S99–S109. doi: 10.1016/j.jclinepi.2013.01.016

Table 2.

Weighted combination (%) of the 7 candidate learners that define the 11 Super Learners for estimating the denominators of the IPW weights. Each candidate learner is defined by a type of algorithm (’glm’ or ’polyclass’) and a subset of explanatory variables identified by univariate regressions based on a particular significance level (p-value).

Learner glm glm glm glm glm polyclass polyclass

Subset of explanatory variables p≤1e-30 p≤1e-10 p≤1e-5 p≤0.1 p≤1 p≤1e-30 p≤1
met initiation at t=0 0 0 0 8.3 6 9.8 76
sul initiation at t=0 0 0 0 0 14 35 50
met+sul initiation at t=0 13 0 4.9 0 28 0.37 53
other therapy initiation at t=0 0 0 0 2.3 34 0 64
met initiation at t>0 0 0 0 0 0 16 84
sul initiation at t>0 0 0 0 0 5.2 59 36
met+sul initiation at t>0 0 0 0 0 9.8 19 71
other therapy initiation at t>0 0 0 0 14 24 30 32
censoring by health plan disenrollment 0 0 0 0 32 40 28
censoring by death 0 0 54 3.1 7 0 36
insufficient GFR monitoring 0 0 0 0 0 0 100