Skip to main content
. Author manuscript; available in PMC: 2014 Aug 1.
Published in final edited form as: J Clin Epidemiol. 2013 Aug;66(8 0):S99–S109. doi: 10.1016/j.jclinepi.2013.01.016

Table 3.

Cross-validated risks of the 7 candidate learners that define the 11 Super Learners for estimating the denominators of the IPW weights. Each candidate learner is defined by a type of algorithm (’glm’ or ’polyclass’) and a subset of explanatory variables identified by univariate regressions based on a particular significance level (p-value).

Learner glm glm glm glm glm polyclass polyclass

Subset of explanatory variables p≤1e-30 p≤1e-10 p≤1e-5 p≤0.1 p≤1 p≤1e-30 p≤1
met initiation at t=0 0.13159 0.1305 0.13046 0.1303 0.13027 0.12903 0.12759
sul initiation at t=0 0.02852 0.0285 0.02847 0.02839 0.02834 0.0279 0.02781
met+sul initiation at t=0 0.02663 0.02641 0.02629 0.02627 0.02627 0.02661 0.02617
other therapy initiation at t=0 0.01971 0.01837 0.01839 0.01756 0.01741 0.01962 0.01691
met initiation at t>0 0.04005 0.04001 0.03996 0.03981 0.03982 0.03179 0.0316
sul initiation at t>0 7.86e-03 7.87e-03 7.86e-03 7.86e-03 7.85e-03 7.15e-03 7.2e-03
met+sul initiation at t>0 5.33e-03 5.34e-03 5.27e-03 5.27e-03 5.24e-03 4.65e-03 4.6e-03
other therapy initiation at t>0 2.29e-03 2.29e-03 2.28e-03 2.28e-03 2.29e-03 2.28e-03 2.28e-03
censoring by health plan disenrollment 0.04918 0.04917 0.04916 0.04914 0.04914 0.04909 0.04908
censoring by death 3.86e-03 3.84e-03 3.84e-03 3.85e-03 3.86e-03 3.9e-03 3.88e-03
insufficient GFR monitoring 0.02717 0.02631 0.02623 0.02608 0.02601 0.02589 0.02088