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Abstract
Objective—To compare the assumptions and estimands across three approaches to estimating the
effect of erythropoietin-stimulating agents (ESAs) on mortality.

Study Design and Setting—Using data from the Renal Management Information System, we
conducted two analyses utilizing a change to bundled payment that we hypothesized mimicked
random assignment to ESA (pre-post, difference-in-difference, and instrumental variable
analyses). A third analysis was based on multiply imputing potential outcomes using propensity
scores.

Results—There were 311,087 recipients of ESAs and 13,095 non-recipients. In the pre-post
comparison, we identified no clear relationship between bundled payment (measured by calendar
time) and the incidence of death within six months (risk difference -1.5%; 95% CI - 7.0% to
4.0%). In the instrumental variable analysis, the risk of mortality was similar among ESA
recipients (risk difference -0.9%; 95% CI -2.1 to 0.3). In the multiple imputation analysis, we
observed a 4.2% (95% CI 3.4% to 4.9%) absolute reduction in mortality risk with use of ESAs,
but closer to the null for patients with baseline hematocrit >36%.

Conclusion—Methods emanating from different disciplines often rely on different assumptions,
but can be informative about a similar causal contrast. The implications of these distinct
approaches are discussed.
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INTRODUCTION
The estimation of causal effects from non-experimental studies is a venture common to
many empirical disciplines. As a result, multiple procedures for estimation of causal effects
have been developed [1-3], emanating from different intellectual traditions and relying on
different assumptions. The recent emphasis on comparative effectiveness research has
promoted interdisciplinary sharing of methods and perspectives [4], including those from
econometrics, statistics, health services research, and epidemiology [5]. However,
researchers may be unfamiliar with the appropriate assumptions and estimands produced by
a particular analytic technique.

For example, in cohort studies where the treatment groups are matched on propensity score,
differences in outcomes are typically interpretable as the effect of the treatment on the
treated [6]. However, an instrumental variable analysis employed in the same dataset and
with the same exposure specification will, under certain assumptions, produce an estimate of
the local-average treatment effect (LATE), local to just those patients whose treatment
choice was affected by the instrument (the “compliers”) [7]. The different analyses also
carry distinct assumptions that make them suitable for different applications. In certain
circumstances, evaluation of policies may provide some information about the effect of a
treatment whose use is influenced by the policy [8], resulting in comparability between the
policy effect and the effect of a treatment affected by the policy.

The purpose of this paper is to present a case study in which the authors compared three
methods for estimating the effect of a class of anemia treatments, erythropoietin-stimulating
agents (ESAs), on mortality among patients with end-stage renal disease (ESRD). ESAs are
recombinant glycoprotein hormones that mimic endogenous erythropoietin and treat anemia
associated with chronic kidney disease [9]. The first two methods have an econometric
legacy and leverage a Medicare payment policy change that reduced use of ESAs for
patients with high hematocrit. The third technique multiply imputes counterfactual outcomes
(mortality) within levels of the propensity score, allowing a more specific person-level
analysis [10].

METHODS
Policy Context for Econometric Analyses

Until December 31, 2010, Medicare reimbursed hemodialysis providers separately for each
dose of ESAs administered, so that each dose resulted in additional revenue and profit for
the provider. Effective January 1, 2011, Medicare introduced an “expanded bundled”
payment of a fixed sum for hemodialysis treatments, including the administration of ESAs,
so that providers can no longer earn more revenue by increasing their use of ESAs [11]. The
Medicare program simultaneously introduced financial penalties that reduced payments to
hemodialysis providers with low performance on a composite measure of three quality
indicators. Three-quarters of this composite score was based on the proportion of ESRD
patients with hematocrit between 30% and 36%. Over 95% of providers adopted the new
payment model immediately [11].
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These changes in payment occurred within the context of findings that treating patients with
ESAs to higher hemoglobin targets is associated with an increased risk of adverse effects,
including death [12-15]. The Food and Drug Administration (FDA) issued a black-box
warning cautioning providers to not to exceed hemogloblin levels of 12 g/dL with ESA
treatment [16], and recently the FDA issued a new guideline suggesting that ESAs be used
only to reduce the frequency of transfusions [17]. As a result, after Medicare implemented
bundled payment for ESRD services, use of ESAs at the encounter level among patients
with hematocrit > 36% immediately declined by 7 to 14 percentage points [18].

We viewed Medicare's payment policy change and the resulting reduction in use of ESAs as
an opportunity to identify the effect of ESA use on the rate of mortality at the patient level.
We hypothesized that a comparison of patients initially exposed to ESAs before bundled
payment to those initially exposed after the change in payment policy would mimic random
assignment to ESA treatment for patients with an initial hematocrit of >36% and form the
basis for an instrumental variable analysis [7].

Data Source and Study Population
We obtained data from the Renal Management Information System (REMIS) on all ESRD
patients undergoing hemodialysis between January 1, 2007 and December 31, 2011 through
the Centers for Medicare and Medicaid Services (http://www.cms.gov/Research-Statistics-
Data-and-Systems/Files-for-Order/IdentifiableDataFiles/
RenalManagementInformationSystem.html). REMIS data include information on specific
hemodialysis encounters, including each patient's baseline hematocrit (for patients beginning
dialysis), a binary variable indicating whether patients received ESA (recorded one to three
times quarterly), and demographic and clinical data. We restricted the study population to
patients beginning hemodialysis.

The three analyses presented in this paper used different timeframes. Because Analyses 1
and 2 relied on the policy change, it was necessary to narrow the window of study to around
the time of the policy change (the year before and after). Analysis 3 had no such requirement
and was able to accommodate all of the data (from 2007−2011).

Outcome and Covariates
Date of death was collected from provider report on the CMS 2746 Death Notification Form
and linkage to the Medicare enrollment file, as listed in the REMIS data.

Additional covariates included age, sex, race, albumin level at time of entry into ESRD,
hematocrit level at time of entry into ESRD, body mass index (BMI), time since entering the
ESRD program, and the presence or absence of a range of comorbid conditions assessed at
the time of entry into the ESRD program. Because we performed these analyses for
expository purposes, patients with missing values of body mass index, age, sex, albumin,
and initial hematocrit were excluded from the analyses, and the results are subject to the
assumption that these data were missing completely at random [19].

Analysis 1: Comparison of Mortality Pre-post Bundling of Payment for ESRD using a
Difference-in-Differences Analysis

Because the introduction of bundled payments reduced prescribing of ESA therapy mainly
among patients with a hematocrit level >36%, we estimated the risk of 180-day mortality in
this population in the post-bundling period relative to the pre-bundling period. We also
estimated the differential temporal change in the use of ESAs across hematocrit levels
(≤36% and >36%) and risk of mortality. If bundled payment policy affected only the use of
ESAs (i.e., there were no changes in the population covariates between the two periods) and
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the effect of the policy on patients with hematocrit ≤36% is negligible, then this method
provides an estimate of the average effect of bundled payment on mortality, mediated by use
of ESAs for those patients whose hematocrit is >36% and who do not receive ESA because
of the new policy. That is, any increase or reduction in mortality would be attributable to the
effect of bundled payment on use of ESAs.

The analysis took the form:

Where T=1 for patients who began hemodialysis in the first quarter of 2011 (post-bundling)
and T=0 for patients who began hemodialysis during the first quarter of 2010 (pre-
bundling), Morti=1 if patient who began hemodialysis in period T died within 180 days of
beginning hemodialysis, Di is a dummy variable=1 if the patient's initial hematocrit was
>36%, x is a vector of patient characteristics, and ui is an identically, independently, and
normally distributed error term. The coefficient of interest, β3, plotted in Figure 2, Panel B,
is the difference in the differences in the risk of 180-day mortality before and after bundling
(first differences) between patients with hematocrit >36% versus ≤36% (second difference).

Ideally, this analysis would have been restricted to treatment facilities that opted into the
bundled payment system (as 95% of facilities did), because only those facilities were
affected by the policy change. However, the data did not include an indicator of which
facilities opted for bundled payment.

Analysis 2: Instrumental Variable Analysis
In the second analysis, we identified recipients of ESAs whose baseline hematocrit was
>36% and whose first hemodialysis treatment occurred in the first half of the year preceding
or the six months following the change in payment policy, creating a variable, Z, assumed to
be an instrument corresponding with the date of first ESA exposure. We classified ESA
exposure, T, as a binary, time-fixed measure of exposure status upon entry into REMIS.
Specifically, each recipient was classified as exposed if he or she received ESA during the
first recorded hemodialysis visit.

We then conducted a two-stage least-squares analysis in which we regressed the ESA-
treatment variable on the time block of first hemodialysis (the proposed instrument) and
patient covariates:

where Ti is ESA exposure status for patient i, Zi is the instrumental variable for patient i
(time block of first hemodialysis treatment), X represents measured patient covariates, and
ei

1 is a randomly distributed error term. In stage two, we fit a model of the form

where Yi was mortality, T ̂i was the predicted value of ESA exposure given the proposed
instrumental variable from the first model, α1 provides an estimate of the risk difference of
mortality corresponding with ESA use at baseline, and ei

2 is a randomly distributed error
term.
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Analysis 3: Multiple Imputation of Potential Outcomes
In this analysis, we estimated the causal effect of treatment with ESAs on 180-day mortality
relative to non-treatment using a broader set of data (2007–2011). This analysis
operationalized the Rubin Causal Modeling framework,[1] in which a causal effect of a
binary treatment with ESAs (W) on mortality (Y) for person i (i = 1,...,N) is defined by a
comparison of two “potential” outcomes, Yi(1) and Yi(0), only one of which is observed for
each patient (the unobserved outcome is counterfactual and represents the experience of the
same patient had he or she received the alternative treatment). These potential outcomes are
the outcomes for each person under the two possible levels of exposure W: Wi = 1 indicates
baseline exposure to ESA, and Wi = 0 indicates the control level (non-exposure), where
Yi(1) and Yi(0) would be realized under the active and control treatment conditions,
respectively.

We compared the effect of receiving ESA during any hemodialysis encounter (Wi=1) vs.
never receiving ESA (Wi=0) at any hemodialysis encounter after hemodialysis initiation.
Follow-up began at the initiation of hemodialysis. Approximately 92% of ESA recipients
received ESA at the time of the first recorded hemodialysis treatment, making this measure
of exposure comparable to the baseline measure used in Analysis 2 and also making it
unlikely that bias resulted from the misclassification of unexposed, immortal time prior to
treatment or selection bias [20-22].

Because only one potential outcome is observed for each patient, we cannot directly
estimate the causal effect for person i. Instead we must observe multiple people, some
exposed to ESAs (Wi = 1) and others unexposed (Wi = 0), and consider their covariates, Xi,
which we assumed were unaffected by Wi. We accounted for the covariates (Xi) using
estimated propensity scores for each person [23].

We implemented a novel methodology for imputing the missing counterfactual outcomes
and estimating the treatment effect. First, we estimated the propensity scores using an
algorithm described in Imbens and Rubin [24]. Patients for whom no person in the opposing
exposure group had a similar estimated propensity score were excluded [25]. Second, we
partitioned the patients into 10 equal size strata based on their estimated propensity score.
We then compared the distributions of the covariates and all second order interactions of the
covariates in the treatment and control groups in each stratum. If the stratum-specific
distributions of covariates and interactions in the treatment and comparison group differed,
we went back to the first step. We iterated between the first two steps until the distributions
of the covariates in the treatment and control groups in each stratum were similar.

Third, we estimated the response surfaces (distribution of Y(W) | X) using two separate
regression spline models. The knots of the spline were placed at the boundaries of strata
from the Step 2. Fourth, we use the estimated response surfaces from the third step to
multiply impute the missing potential outcome. For the patients in the comparison group we
imputed Yi(1) and for patients in the ESA group we imputed the Yi(0).

Imputing the missing potential outcomes only once cannot adequately account for the
uncertainty of the response surfaces or the uncertainty in the missing potential outcomes [19,
26]. Using multiple imputation with Rubin's combining rule [26] results in intervals that take
into account the additional variability due to the missing potential outcomes and unknown
parameters, and typically provides approximately valid statistical procedures. Lastly we
estimated the average difference in 180-day mortality among strata of the initial hematocrit
level. Note that the initial hematocrit value was included in the propensity score model.
Complete description and theoretical justification for this procedure can be found in recent
publications [10, 26, 27].
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RESULTS
Characteristics of Recipientsand Non-recipients of ESAs

There were 311,087 recipients of ESAs between 2007 and 2011 and 13,095 non-recipients
(Table 1). With respect to Analyses 1 and 2, most, but not all covariates were balanced
across the time periods defined before and after the adoption of the bundling payment policy
(Table 2, first stage) [18]. For example, the mean age and albumin levels were appreciably
higher in the post-bundling period. There was a similar distribution of the estimated
propensity score across exposure categories within deciles of the estimated propensity score
after removal 2 ESA recipients (from 13,093) and 158 non-recipients (from 310,929) for
whom there was no person in the opposing exposure group with a similar propensity score
(Figure 1).

Analysis 1: Pre-post Comparison
Figure 2, Panel A shows a comparison of the 180-day mortality risk among patients whose
first hemodialysis treatment was before or after the adoption of the bundled-payment policy,
by first hematocrit level. Because current treatment guidelines and treatment quality
incentive parameters [28] suggest that the dose of ESAs should be reduced if the patient's
hematocrit exceeds 36%, we would expect that any effect of bundled payment on mortality
would be stronger at higher levels of hematocrit. In these data, we see no clear relationship
between bundled payment (measured by calendar time) and the incidence of death. The
increased variability in the rate of death at higher hematocrit levels is ascribable to a smaller
sample size. The mean hematocrit at first hemodialysis treatment was approximately 29%.
The results also show no differences in the rate of mortality before and after the adoption of
bundled payment among patients with hematocrit >36% (Figure 2, Panel B).

Analysis 2: Instrumental Variable Analysis
Overall, patients who began hemodialysis in the first half of 2011 were approximately 1.5%
less likely to receive ESAs than their counterparts who began hemodialysis in the first half
of 2010 (Table 2), suggesting that time relative to implementation of bundled payment is a
weak potential instrument [29]. Although the summary statistics in Table 2 suggest that the
proposed instrument is not highly correlated with many of the covariates used in the model,
there still exists a correlation with age, initial albumin level, and initial hematocrit. This
information suggests the possibility of some correlation between the instrumental variable
and important unmeasured covariates. Under the assumption that we have a valid
instrumental variable, the risk difference of 180-day mortality associated with receipt of
ESAs was -0.9 (95% CI -2.1–0.3), but the interval estimate is consistent with no difference
in the risk of mortality. The point estimate is interpretable as a non-significant protective
effect of ESAs.

Analysis 3: Multiple Imputation of Potential Outcomes
After multiple imputation of counterfactual outcomes for recipients and non-recipients, we
observed reductions of approximately three to five percent in the risk of mortality among
recipients of ESAs across nearly all baseline levels of hematocrit (Figure 3). The average
decrease in absolute risk comparing ESAs to non-use across levels of hematocrit was 4.2%
(95% CI 3.4%–4.9%). There was no clear effect of ESAs on mortality at hematocrit levels
of 40% and above, but the confidence intervals in these strata were wide.

DISCUSSION
We present three analyses that could be used to estimate different types of causal effects.
The results from each approach are somewhat different, though qualitatively similar in
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showing little or no effect of ESAs on the risk of mortality for patients with higher levels of
hematocrit. The specific estimands differ, as do the required assumptions for causal
inference in each case. Below we discuss each of the assumptions and interpretation of each
analysis in reverse order.

Analysis 3
Analysis 3 is likely most familiar to investigators in comparative effectiveness research. The
values from this analysis are interpretable as estimates of the effect of initial treatment with
ESAs among the full population of patients receiving hemodialysis, and in this case are
comparable to the effect among the treated (96% of patients received treatment).

Analysis 3 requires assumptions that are common to many non-experimental methods in
comparative effectiveness research, most importantly the assumption of no unmeasured
confounding. The other assumptions required for the estimates from Analysis 3 to reflect a
causal effect are Rubin's Stable Unit Treatment Value Assumption (SUTVA) and that each
patient has a positive probability of receiving ESAs [34].

Analysis 2
In Analysis 2, the estimand produced is unclear. With instrumental variable analysis,
estimating average treatment effects for the population under study requires sometimes
untenable assumptions that affect the estimand produced [30, 31]. Indeed, the correlation
between the proposed instrument and observed covariates suggests that our use of “time” as
an instrumental variable is flawed to an unknown degree, and highlights the fundamental
problem of instrumental variable analysis: finding a valid instrument. Moreover, in the
presence of a heterogeneous treatment effect (i.e., where the treatment effect is not equal for
each subject), interpreting the treatment effect as an average effect (e.g., among the treated)
is unwarranted.

A commonly employed assumption for the estimation of causal effects from instrumental
variables in the presence of heterogeneity is monotonicity [7, 31]. In Analysis 2, the
presence of the bundled payment policy was treated as an instrumental variable, taking the
value of 1 if a patient entered hemodialysis in the six months following the introduction of
bundled payments and zero if the patient entered hemodialysis in the same months during
the previous year. In this case, monotonicity states that the probability of use of ESAs
among patients with baseline hematocrit >36% must be uniformly lower after bundled
payment relative to before bundled payment. Under this assumption, the analysis identifies
the causal effect of treatment with ESAs on the risk of mortality among patients whose
exposure to ESAs was influenced by the bundled payment policy—the “compliers” with
bundled payment [7]. Whether this method identifies a causal effect under the formality of
the Rubin Causal Model requires additional assumptions about changes in care over the time
before and after bundled payment.

The comparability of this treatment effect with the average treatment effect estimated in
Analysis 3 (i.e., among the treated) is not immediately clear. Neither is it immediately clear
what subset of the study population makes up the “compliers” (although methods have been
developed that involve identification of the “compliers” to whom the estimated LATE
applies), making it difficult to know how applicable the estimate is to the target population
[32].

With Analysis 2, the instrumental variable approach aims to identify the causal effect
without the assumption of no unmeasured confounding, but relies on other strong
assumptions including SUTVA. In addition to the assumptions regarding treatment effect
heterogeneity, for a causal interpretation of Analysis 2, we must assume that: (1) the
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instrumental variable (bundled payment) has a causal effect on the use of ESAs (or is a
surrogate for such an instrument), (2) bundled payment affects mortality only through its
effect on use of ESAs, and (3) the effect of bundled payment on mortality is not associated
with unmeasured patient characteristics [7, 30, 35]. Violations of these assumptions can
result in bias. For instance, assumption (2) would be violated if the bundled-payment policy
increased use of iron or blood transfusions and these interventions affected mortality [35].
The magnitude of this bias can be large with even small violations of assumption (2) if the
instrumental variable has a weak association with the exposure (as in the case here) [36].

Analysis 2 also assumes that there is no treatment effect heterogeneity by hematocrit level.
If there is heterogeneity, then the interpretability of the estimand is again complicated
because it applies only to the “compliers.” Moreover, because there is only a weak
correlation between bundled payment and person-level use of ESAs, bundled payment is a
weak proxy for exposure to ESAs. Thus, in this analysis actual exposure to ESAs is
misclassified, and produces an estimate of the effect of bundled payment on mortality [18]
instead of the explicit effect of ESA receipt on mortality.

Analysis 1
In Analysis 1, we estimated changes in mortality after transitioning from fee-for-service
payment for ESAs administered during hemodialysis to a fixed-sum, bundled hemodialysis
payment that includes use of ESAs—that is, Analysis 1 involved estimating the policy effect
[18].

For an interpretation that Analysis 1 estimates the causal effect of ESA receipt (rather than
the policy), assumptions (2) and (3) from Analysis 2 are required plus the assumption that
the bundled payment policy strongly affects use of ESAs among patients whose hematocrit
is >36, but not at all among patients whose hematocrit is ≤36%.

Comparing the Approaches
These three analyses require different assumptions, and therefore have different strengths
and weaknesses for certain applications. To be sure, it is best to start with a carefully
designed causal question [37]. However, in the reality of public health, clinical and policy
decision-makers often need information on treatment effectiveness well before the ideal
study can be implemented, arguing for the availability of a range of methods that could be
applied to the available data.

It is important to note that comparability of these methods is hard to evaluate when there is
appreciable effect heterogeneity. In the presence of effect modification, the estimates from
the three analyses could be startlingly different, because they apply to different subsets of
the population, even if they are unbiased [33].

Notably, however, the results of the three analyses for patients with an initial hematocrit of
>36% are not dissimilar, and while all three findings rely on untested assumptions, their
qualitative similarity (despite their different analytic assumptions) provides information
about the robustness of the findings that would be missing if only a single analysis had been
performed.

More general limitations of these analyses deserve mention. First, misclassification of
exposure, outcome, and covariates are possible in the REMIS data. Of particular importance
is exposure misclassification, because our time-fixed, binary measures of ESA use do not
capture the complex time-dependent nature of ESA use in common practice [38]. This point
is particularly salient for readers who are interested in the clinical implications of our work.
We did not intend for our analyses to directly inform clinical practice. Instead, we used this
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topic as an example for comparing different methodological approaches. ESAs are used in a
more nuanced way than this paper captures. They are not prescribed in a binary way—treat
always or never treat—but instead their use involves careful tracking of treatment response
and regular dosage adjustments. This paper does not address these issues.

Second, because the data are left censored, it is difficult to characterize patients as new or
prevalent users of ESAs or to identify the true baseline value of hematocrit. Third, none of
the analyses presented accounted for time-dependent confounding. Indeed, all of the
analyses make the assumption that the steps taken to address confounding—that is, covariate
measurement and propensity scoring in Analysis 3 and the instrumental variable in Analyses
1 and 2—are sufficient. Our exposure measures are time-fixed, and similarly, we do not
explicitly address time-dependent confounding. Fourth, because the rate of mortality is high
in patients beginning dialysis, loss to follow-up remains a concern. Fifth, we did not exclude
patients with polycystic kidney disease (PKD), who typically do not need ESAs, and whose
inclusion may weaken the instrumental variables. Patients with PKD would be expected to
account for ≤ 10% of the study population [39]. Each of these assumptions has been
discussed in the literature on pharmacoepidemiology and comparative effectiveness research
[40, 41].

Additionally, the proposed instrumental variable was weakly correlated with person-level
use of ESAs, whereas it is more strongly associated with encounter-level use of ESAs [18].
Thus, it appears that physicians have reduced the intensity of within-patient ESA use but
have not reduced the number of patients who receive ESA.

In summary, applied researchers from different backgrounds bring different approaches to
inferring the causal effect of a treatment in non-experimental studies. Although not always
feasible, each study should have clear aims based not on the analytical procedure that the
researcher intends to use, but rather on the scientific question at hand. Once the aims of the
research are clearly defined, an appropriate method should be chosen with care, and only
after checking whether the assumptions made by this method can be defended by the
available data. It is true that some of the assumptions made are unverifiable, but researchers
should attempt to examine whether the data available refute the analytic assumptions and
apply substantive expertise and sensitivity analyses to evaluate whether the assumptions for
causal inference in a given application are defensible.
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What is new?

• The recent emphasis on comparative effectiveness research has promoted
interdisciplinary sharing of methods, including those from econometrics,
statistics, health services research, and epidemiology.

• We present three analyses that could be used to estimate different types of
causal effects of erythropoietin-stimulating agents (ESAs) on mortality,
including a pre-post, difference-in-difference comparison of a bundled payment
policy that reduced prescribing of ESAs, an instrumental variable analysis
derived from the bundled payment policy, and an analysis that involved
imputation of counterfactual outcomes within levels of the propensity score.

• The specific estimands that we estimated differ, as do the required assumptions
for causal inference in each analysis.

• The three analyses have different strengths and weaknesses for certain
applications.

• Researchers from different disciplines in comparative effectiveness research
should work together to develop the most appropriate design and analysis for the
causal question of interest.
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Figure 1.
Distribution of propensity score in each decile, Renal Management Information System,
2007–2011
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Figure 2.
Crude and adjusted cumulative incidence of 180-day mortality following first hemodialysis
treatment by date of first dialysis treatment (proxy for exposure to erythropoietin-stimulating
agents), Renal Management Information System, 2008–2011
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Figure 3.
Differences in the cumulative incidence of mortality comparing users of erythropoietin-
stimulating agents to non-users by initial hematocrit, Renal Management Information
System, 2007–2011
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Table 1

Distribution of baseline covariates for users and non-users of erythropoietin-stimulating agents, Renal

Management Information System, 2007–2011
*

Users N=311,087 Non-users N=13,095

% %

Men 44.6 43.0

Age (years), mean 66.4 61.2

Race

    Black 27.7 31.8

    White 67.0 61.2

    Other 5.3 7.0

Initial albumin level, g/dL

    0–1 0.2 0.2

    1–2 5.8 5.3

    2–3 30.7 27.0

    3–4 37.2 40.0

    5–6 5.9 8.5

Initial hematocrit, mean % 29.7 29.1

Year of first hemodialysis treatment

    2007 23.7 7.7

    2008 23.3 20.0

    2009 22.3 23.1

    2010 21.0 29.6

    2011 9.7 19.6

Initial hemodialysis time >4 hours 1.0 1.4

Fistula or graft used at initial hemodialysis 17.1 24.1

Fistula used at initial hemodialysis 13.7 20.6

Catheter used at initial hemodialysis 82.2 75.4

Diagnoses

    Diabetes 46.5 43.4

    Hypertension 30.2 31.0

    Body mass index, mean 28.8 29.3

    Obesity 36.7 39.7

    Congestive heart failure 36.2 28.0

    Ischemic heart disease 23.8 18.5

    Myocardial infarction 19.6 15.6

    Hypertension 13.6 13.7

    Tobacco use 6.1 6.5

*
This table represents the study population and exposure definition used in Analysis 3.
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Table 2

Estimated difference in risk of mortality comparing use of erythropoietin-stimulating agents to non-use using
the bundled payment policy as an instrumental variable, Renal Management Information System, 2010–2011

First stage: Difference in prevalence of covariates and receipt of ESAs

Change (Z=1)–(Z=0)
a

ESA use, overall
-1.5%

***

Men 0.001

Age (years)
0.27

*

Race

    Black 0.005

    White 0.002

    Other -0.006

Initial albumin level, mean g/dL
0.012

*

Initial hematocrit, mean %
-0.32

*

Initial hemodialysis time > 4 hours 0.02

Fistula used at initial hemodialysis 0.004

Catheter used at initial hemodialysis 0.003

Diagnoses

    Diabetes -0.004

    Hypertension 0.003

    Body Mass Index, mean kg/m2 0.007

    Congestive heart failure -0.002

    Ischemic heart disease -0.001

    Myocardial infarction -0.002

    Tobacco use
-0.003

*

First Stage F-Statistic on Instrumental Variable 12.62

Second Stage: Estimate of ESA effect
Adjusted

b
 180-day risk of death (95% CI)

Receipt of ESAs -0.9 (-2.1–0.3)

ESAs, erythropoietin-stimulating agents

**significant at 5% level

***
significant at 1% level

*
significant at 10% level

a
Z=1 if patient began hemodialysis between January 1, 2011 and June 30, 2011 and Z=0 if patient began hemodialysis between January 1, 2010

and June 30, 2010.

b
Estimated coefficient from two-stage least-squares regression model after adjusting for covariates shown the first stage.
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