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Abstract
The β-isoform of group VIA calcium-independent phospholipase A2 (iPLA2β) does not require
calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone
suicide substrate. Several potential functions have been proposed for iPLA2β. Our studies indicate
that iPLA2β is expressed in β-cells and participates in glucose-stimulated insulin secretion but is
not involved in membrane phospholipid remodeling. If iPLA2β plays a signaling role in glucose-
stimulated insulin secretion, then conditions that impair iPLA2β functions might contribute to the
diminished capacity of β-cells to secrete insulin in response to glucose, which is a prominent
characteristic of type 2 diabetes. Our recent studies suggest that iPLA2β might also participate in
β-cell proliferation and apoptosis and that various phospholipid-derived mediators are involved in
these processes. Detailed characterization of the iPLA2β protein level reveals that β-cells express
multiple isoforms of the enzyme, and our studies involve the hypothesis that different isoforms
have different functions.

CLASSIFICATION OF PHOSPHOLIPASE A2 AND FEATURES OF A GROUP
VIA PHOSPHOLIPASE A2 (iPLA2β)

Phospholipase A2 (PLA2) (1) is a diverse group of enzymes that catalyze hydrolysis of the
sn-2 substituent from glycerophospholipid substrates to yield a free fatty acid and a 2-
lysophospholipid (1). At present, the recognized PLA2s are classified into 14 different
groups, based on their calcium requirement for activation and sequence homology (2). These
include the low–molecular weight secretory PLA2s (groups IB, IIA, IID, IIE, IIF, III, V, X,
and XII) and the higher–molecular weight Ca2+-dependent cytosolic PLA2s (groups IVA,
IVB, and IVC) and the Ca2+-independent PLA2s (groups VIA and VIB).

Among the PLA2s is an 84-kDa (752 amino acid residues) cytosolic PLA2 that does not
require Ca2+ for catalysis. This PLA2 has now been cloned from several sources (3–5),
including rat and human pancreatic islet β-cells (4,6), is classified as group VIA PLA2, and
is designated the β-isoform of group VIA calcium-independent phospholipase A2 (iPLA2β)
(7–9). Salient features (10,11) of the iPLA2β amino acid sequence (Fig. 1) include eight
NH2-terminal ankyrin repeats, a caspase-3 cleavage site, an ATP-binding domain, a serine
lipase consensus sequence (GXSXG), a bipartite nuclear localization sequence, and a

© 2004 by the American Diabetes Association

Address correspondence and reprint requests to Sasanka Ramanadham, Washington University School of Medicine, Department of
Medicine, Box 8127, 660 S. Euclid Ave., St. Louis, MO 63110. sramanad@im.wustl.edu..

NIH Public Access
Author Manuscript
Diabetes. Author manuscript; available in PMC 2013 July 17.

Published in final edited form as:
Diabetes. 2004 February ; 53(0 1): S179–S185.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



COOH-terminal calmodulin-binding domain(s). An 88-kDa iPLA2β isoform is also
expressed in human pancreatic islets and is the product of an mRNA species that arises from
alternate splicing (6). This isoform contains a 54–amino acid sequence that interrupts the
eighth ankyrin repeat.

PROPOSED FUNCTIONS FOR iPLA2β
Phospholipid remodeling

A housekeeping role involving generation of lysophospholipid acceptors for incorporation
of arachidonic acid into phospholipids has been proposed for iPLA2β, based on experiments
involving inhibition of iPLA2β activity in P388D1 cells with the bromoenol lactone (BEL)
suicide substrate or with an antisense oligonucleotide (10,11). Inhibition of iPLA2β activity
in P388D1 cells suppressed (~60%) incorporation of [3H]-arachidonic acid into
phospholipids while reducing (~60%) [3H]-lysophosphatidylcholine levels in [3H]-choline–
labeled P388D1 cells. However, [3H]-palmitic acid incorporation was reduced only slightly.
This is thought to represent the mechanism whereby iPLA2β inhibition reduces
incorporation of [3H]-arachidonic acid into P388D1 cell phospholipids. Such incorporation
reflects a deacylation/reacylation cycle (12) of phospholipid remodeling rather than de novo
synthesis (13), and the level of lysophosphatidylcholine acceptors is thought to limit the rate
of [3H]-arachidonic acid incorporation into P388D1 cell phosphatidylcholine (10,11).

A second housekeeping function for iPLA2β is suggested from studies with
CTP:phosphocholine cytidyltransferase (CT)-overexpressing cells (14). CT catalyzes the
rate-limiting step in phosphatidylcholine biosynthesis via the Kennedy pathway, and cells
overexpressing CT exhibit increased rates of phosphatidylcholine biosynthesis and
degradation and little net change in phosphatidylcholine accumulation (14). The increased
phosphatidylcholine degradation observed in CT-overexpressing cells is prevented by BEL,
and immunoreactive iPLA2β protein and activity increase in such cells, suggesting that
iPLA2β is upregulated in response to CT overexpression (14). If general, this could
represent an important role for iPLA2β in cell biology because phosphatidylcholine
biosynthesis is involved in regulation of the cell cycle and apoptosis (15).

Cell proliferation
Inhibition of iPLA2β with BEL is reported to reduce arachidonic acid release, [3H]-
thymidine incorporation, and rates of lymphocyte (16) and Caco-2 (17) cell proliferation. In
view of findings that arachidonic acid and/or its metabolites can stimulate c-fos, c-jun, or
mitogen-activated protein kinase (18), it is possible that iPLA2β might affect nuclear events
involved in cell division.

Apoptosis
Involvement of iPLA2β in processes leading to apoptotic cell death is suggested by several
lines of evidence. Induction of apoptosis of U927 cells by anti-fas antibody is associated
with hydrolysis of arachidonic acid from membrane phospholipids that is not catalyzed by
group IV cytosolic phospholipase A2, which is inactivated by caspases during apoptosis.
The release of arachidonic acid is not inhibited by inhibitors of group II secretory
phospholipase A2, but the release is suppressed by the iPLA2β inhibitor BEL (19). Both
arachidonate 12-lipoxygenase and inducible nitric oxide synthase (iNOS) knockout mice are
resistant to the diabetogenic effects of low doses of streptozotocin (20,21). Interleukin-1β–
induced generation of nitric oxide in pancreatic islets causes accumulation of arachidonic
acid and augments production of the arachidonic acid metabolite 12-hydroxy-(5,8,10,14)-
eicosatetraenoic acid (12-HETE), and these effects are prevented by BEL (22). Induction of
apoptosis in human promonocytic U937 cells is associated with activation of iPLA2β after
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proteolysis (23). Collectively, these observations suggest that iPLA2β is involved in
releasing arachidonic acid from membrane phospholipids in apoptosis and that arachidonic
acid and/or its metabolites serve mediator functions in apoptosis.

Signal transduction
Studies in various cellular systems suggest that iPLA2β might also participate in various
signaling pathways. Evidence in support of this role include the observations that BEL, at
concentrations that inhibit iPLA2β, suppresses 1) parathyroid-induced generation of
arachidonic acid in rat proximal tubules (24), 2) stimulated superoxide generation in
neutrophils (25,26), 3) interleukin-1β–stimulated increases in iNOS protein and nitric oxide
generation in cardiac myocytes (27), 4) cAMP response element binding protein
phosphorylation during the period of myocardial ischemia (28), and 5) virus-induced or
double-stranded RNA-induced activation of iNOS expression by macrophages (29). Because
pancreatic β-cells also express iPLA2β, we have examined the potential role(s) of this group
VIA Ca2+-independent iPLA2β in β-cells, and our findings are discussed below.

POTENTIAL ROLES OF iPLA2β IN β-CELLS
Evidence for a role in signal transduction

Glucose and other fuel secretagogues induce hydrolysis of phospholipids in β-cell
membranes, and this is reflected by accumulation of phospholipid-derived mediators
including inositol 1,4,5-triphosphate, free arachidonic acid, and arachidonate metabolites
(30). Metabolism of fuel secretagogues to yield ATP is an obligatory event in their induction
of hydrolysis of arachidonate from β-cell membrane phospholipids (30,31) just as it is for
insulin secretion (32). The fact that fuel secretagogue-induced hydrolysis of membrane
phospholipids is, in part, independent of Ca2+ influx (33) suggests that a Ca2+-independent
phospholipase such as a iPLA2β might be involved in this process.

Pancreatic islets, islet β-cells, and glucose-responsive insulinoma cells all express iPLA2β
mRNA and iPLA2β enzymatic activity that is stimulated by ATP and inhibited by BEL
(4,34–37). Inhibition of β-cell iPLA2β activity with BEL suppresses glucose-stimulated
hydrolysis of arachidonic acid from membrane phospholipids, the rise in cytosolic [Ca2+]i,
and insulin secretion (34–37). However, BEL does not inhibit incorporation of labeled fatty
acids into either pancreatic islet or insulinoma cell membrane phospholipids (9,38). Whereas
BEL, at concentrations that inhibit iPLA2β, does not inhibit group IV cytosolic PLA2 (37) or
glucose oxidation (35), which requires both glycolytic metabolism and mitochondrial
oxidation of glucose, in pancreatic islets, it has been recognized to decrease the ATP/ADP
ratio in mouse islets (39) and also inhibit phosphatidate phosphohydrolase (40). In view of
such reports, nonpharmacological approaches involving molecular biological manipulations
were used to explore involvement of the iPLA2β protein in β-cell function. Attempts to
suppress β-cell iPLA2β activity with antisense oligonucleotides were ineffective (38);
therefore, effects of an alternate approach of overexpressing iPLA2β in insulinoma cells
were examined.

INS-1 cells were stably transfected with a retroviral vector containing an iPLA2β cDNA
insert (9). Two stably transfected lines were isolated that overexpressed iPLA2β activity and
protein by 10-fold compared with the parental cell line. These were designated
overexpressing (OE) cells. Insulin secretion and phospholipid remodeling in OE cells were
then examined. Relative to the secretory responses observed with INS-1 cells transfected
with empty retroviral vector that did not contain iPLA2β cDNA, INS-1 cells that
overexpressed iPLA2β exhibited a much greater insulin secretory response to glucose alone
and to glucose in combination with the cAMP-elevating agents forskolin or
isobutylmethylxanthine (9,41). Pretreatment of INS-1 cells with BEL suppressed stimulated
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insulin secretion, but neither overexpression of iPLA2β nor inhibition of iPLA2β enzymatic
activity in the iPLA2β-overexpressing INS-1 cells with BEL affected the rate or extent of
arachidonic acid incorporation into INS-1 cell phosphatidylcholine.

Overexpression of iPLA2β as a fusion protein with enhanced green fluorescence protein in
INS-1 cells permitted examination of changes in its intracellular location after stimulation
(Fig. 2), and glucose plus cAMP-elevating agents were found to induce accumulation of
iPLA2β in the perinuclear region. Such intracellular translocation appears to require cAMP-
dependent protein kinase A–mediated phosphorylation events because inhibition of protein
kinase A with H89 prevented stimulated perinuclear accumulation of iPLA2β (41). Nuclear
association of iPLA2β induced by cAMP-elevating agents in INS-1 cells is of interest
because glucose promotes both β-cell insulin secretion and proliferation, and glucose-
induced INS-1 cell mitogenesis is cAMP-dependent (42). Because membranes of the
nucleus and endoplasmic reticulum (ER) are contiguous (43), perinuclear accumulation of
iPLA2β is consistent with its association with a subcellular compartment that is likely to
include the ER. Using organelle-specific trackers, association of iPLA2β with β-cell ER and
Golgi compartments upon stimulation has been observed (44). The likelihood that iPLA2β
might associate with the nucleus is also supported by the presence of a bipartite nuclear
localization consensus sequence (511KREFGEHTKMTDVKKPK527) in the deduced amino
acid sequence of iPLA2β (45). Taken together, the above findings suggest that iPLA2β has a
signaling role in the β-cell, although iPLA2β does not appear to participate in β-cell
phospholipid remodeling or in phosphatidylcholine homeostasis.

iPLA2β and β-cell proliferation
The iPLA2β-overexpressing INS-1 cell line also proliferates more rapidly than
nontransfected parental or empty-vector transfected INS-1 cells. This is reflected by a
greater rate of increase in cell number in cultures of iPLA2β-overexpressing INS-1 cells
(46). The bases for these phenomena have not been determined, but the presence of a
bipartite nuclear localization consensus sequence in iPLA2β raises the possibility that
iPLA2β might affect nuclear events involved in cell division (18). Further, iPLA2β
activation converts phosphatidic acid to lysophosphatidic acid (LPA) (5), and LPA is a
potent mitogen (16,47). Enhanced proliferation might result from a rise in cellular LPA
levels that occurs as a consequence of iPLA2β overexpression, and OE cells have been
demonstrated to contain higher levels of lysophospholipid species than control cells.

iPLA2β and ER stress–mediated β-cell apoptosis
Apoptosis is involved in β-cell death in type 1 diabetes (48) and might also contribute to β-
cell death in type 2 diabetes (49). At present, three apoptotic signaling pathways are
recognized (50). These are the extrinsic death receptor pathway involving adaptor
molecules, the intrinsic mitochondrial pathway, and the ER stress pathway.

Agents that deplete ER Ca2+ stores, such as thapsigargin (51), induce apoptosis of MIN-6
insulinoma cells by a pathway that does not require increases in [Ca2]i but that does require
generation of the arachidonic acid metabolite 12-HETE (52). Thapsigargin has been
demonstrated to induce hydrolysis of arachidonic acid from islet membrane phospholipids,
and this is suppressed by the iPLA2β inhibitor BEL (53). These findings suggest that ER
stress induced by Ca2+ store depletion activates iPLA2β, which then hydrolyzes membrane
phospholipids to yield products that promote β-cell death.

In support of this hypothesis are the findings that thapsigargin induces a threefold increase
in apoptosis of parental INS-1 cells (control, 4.2 ± 0.2% vs. plus thapsigargin, 12.3 ± 0.7%,
P < 0.05), and apoptosis is suppressed by BEL. Whereas the spontaneous incidence of
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apoptosis in control OE cells (3.7 ± 0.5%) is similar to that in parental cells, the apoptotic
effect of thapsigargin is greatly amplified in the OE cells (Fig. 3A), and apoptosis is
significantly suppressed by BEL. Thapsigargin also induces higher iPLA2β activity and the
generation of a 62-kDa iPLA2β-immunoreactive protein (Fig. 3B). Inhibition of caspase-3
prevents both thapsigargin-induced apoptosis and perinu-clear accumulation of iPLA2β (Fig.
3C). Immunoblotting and immunofluorescence analyses reveal that a 62-kDa iPLA2β-
immunoreactive protein accumulates in the perinuclear region of thapsigargin-treated INS-1
cells. These findings suggest that caspase-3 that is activated during apoptosis cleaves the 84-
kDa iPLA2β at its consensus sequence site to generate a 62-kDa product in INS-1 cells.

Caspase-3–catalyzed cleavage of iPLA2β has been reported to occur in U937 promonocytes
induced to undergo apoptosis, and the COOH-terminal product appears to be constitutively
activated (23). Overexpression of the full-length iPLA2β or the COOH-terminal caspase-3
proteolysis product of iPLA2β (184aa → COOH-terminal) in human embryonic kidney cells
resulted in a higher incidence of apoptotic cell death and greater induction of arachidonic
acid release from cells overexpressing the truncated iPLA2β compared with those
overexpressing full-length iPLA2β. These findings suggest that the iPLA2β product of a
caspase-3–mediated cleavage was more active than the full-length iPLA2β. It was proposed
that the more active shorter iPLA2β isoform could stimulate excessive turnover of nuclear
membrane phospholipids, disrupt membrane fluidity, and promote apoptotic cell death.

Our findings suggest that induction of ER stress in INS-1 cells by depleting Ca2+ stores with
thapsigargin stimulates iPLA2β activity and promotes caspase-3–mediated cleavage of the
INS-1 cell iPLA2β. The resultant accumulation of a 62-kDa iPLA2β-immunoreactive
product in the perinuclear region of INS-1 cells raises the possibility that this might be one
mechanism by which iPLA2β participates in ER stress–induced apoptosis in β-cells.

Our studies also reveal that thapsigargin induces increased generation of ceramides in the
OE cells compared with control cells. Ceramides (a family of 2-N-acylsphingosines) are
important lipid second messengers that have been implicated as suppressors of cell growth
and inducers of apoptosis (54). They can be generated by sphingomyelinase-catalyzed
sphingomyelin hydrolysis (55), de novo synthesis (56), or as a consequence of decreased
ceramidase activity (57), raising the possibility that any one of these ceramide-generating
pathways might also be affected by iPLA2β.

β-Cell iPLA2β is a candidate for posttranslational modification
To examine the possibility that iPLA2β undergoes posttranslational modifications that affect
signaling, recombinant 84-kDa iPLA2β was purified from sf9 cells after a sequential anion
exchange and ATP affinity and calmodulin affinity chromatography protocol (58). NH2-
terminal amino acid sequencing analyses of the purified material yields a sequence that
begins with residue 11 of the iPLA2β-deduced amino acid sequence, reflecting loss of the
first 10 amino acid residues. Liquid chromatography/electrospray ionization/mass
spectrometry (Fig. 4A) analyses of a tryptic digest of the purified iPLA2β reveal a peptide
corresponding to residues 12–23 of the deduced amino acid sequence that would not be
expected to arise from trypsin digestion of full-length iPLA2β but that would be expected
from an iPLA2β variant lacking the first 11 amino acid residues. In the full-length iPLA2β
sequence, the first tryptic cleavage site occurs between residues 6 and 7 and the second
between residues 23 and 24. Trypsin digestion thus yields peptides 1–6 and 7–23. In an
iPLA2β variant that lacks residues 1–11, trypsin digestion yields peptide 12–23. Peptide 12–
23 is thus a signature peptide for this NH2-terminally processed iPLA2β variant. The
presence of this peptide in the tryptic digest of purified iPLA2β is reflected by the presence
of [M + H]+1 and [M + 2H]+2 ions at m/z 1368.6 and 685.3, respectively. In addition, the
expected aa7–23 peptide from intact iPLA2β is also present in the tryptic digest (Fig. 4B), as
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is the aa1–6 peptide modified at the NH2-terminal by acetylation. This NH2-blocked peptide
would not yield NH2-terminal sequence upon Edman analyses of the intact iPLA2β protein.
Although the mechanisms responsible for generating an iPLA2β protein lacking the first 11
amino acids have not yet been determined, these findings indicate that the β-cell iPLA2β
undergoes posttranslational modification by NH2-terminal processing, and this might
represent a means to regulate the activity, subcellular location, or protein–protein
interactions of iPLA2β.

Multiple isoforms of iPLA2β
The iPLA2β cDNA first cloned from a rat pancreatic library encodes an 84-kDa protein, and
human islets and lymphocytes were subsequently shown to express two iPLA2β mRNA
species that arise by alternate splicing and encode 84- and 88-kDa proteins (6,59). Recent
studies reveal predominant expression of an iPLA2β-immunoreactive protein with an
apparent molecular mass of 70 kDa in robustly glucose-responsive 832/13 INS-1 cells (60).
These cells continue to express cytosolic iPLA2β activity that is stimulated by ATP and
inhibited by BEL. Additionally, inhibition of 832/13 iPLA2β activity with BEL suppresses
glucose-stimulated insulin secretion but does not affect arachidonate incorporation into
phosphatidylcholine. Therefore, the BEL-sensitive catalytic activity expressed in 832/13
INS-1 cells is most likely attributable to a 70-kDa iPLA2β-immunoreactive protein because
it is essentially the only iPLA2β-immunoreactive protein present in the cytosol of these
cells.

CONCLUSIONS
A diminished capacity of β-cells to secrete insulin in response to glucose is a prominent
characteristic of type 2 diabetes, and this motivates studies to achieve a fuller understanding
of glucose-sensing mechanisms within the β-cell. Our findings suggest that iPLA2β
participates in β-cell signal transduction. The expression level of iPLA2β appears to affect
β-cell proliferation and apoptosis, and the enzyme may thus be an important participant in
the life cycle of the β-cell. iPLA2β does not appear to participate in arachidonate acid
incorporation into phospholipids or phosphatidylcholine homeostasis in β-cells, although
such housekeeping functions of the enzyme have been proposed for other cells. The
phospholipase activity of iPLA2β would result in the production of phospholipid-derived
mediators including arachidonic acid and arachidonate metabolites, and lysophospholipids
and the iPLA2β expression level also affect cellular content of the lipid second messenger
ceramide. The finding that multiple iPLA2β-immunoreactive isoforms are expressed in β-
cells raises the possibility that different isoforms serve different functions that vary with the
stimulation condition, subcellular compartment, phase of cell cycle, levels of interacting
proteins, or other factors.
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Glossary

12-HETE 12-hydroxy-(5,8,10,14)-eicosatetraenoic acid

BEL bromoenol lactone

CT, CTP phosphocholine cytidyltransferase
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ER endoplasmic reticulum

iNOS inducible nitric oxide synthase

iPLA2β β-isoform of group VIA calcium-independent phospholipase A2

LPA lysophosphatidic acid

OE over-expressing

PLA2 phospholipase A2
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FIG. 1.
Rat pancreatic islet iPLA2β-deduced amino acid sequence. The deduced 752–amino acid
sequence of rat pancreatic islet iPLA2β, updated from our earlier illustration (4), is shown to
contain an underlined region of amino acid sequences homologous to a repetitive motif in
ankyrin, in addition to a caspase-3 cleavage site, an ATP-binding domain, a catalytic serine
lipase consensus sequence, a bipartite nuclear localization consensus sequence, and
calmodulin-binding domain(s), which are underlined and numbered 1–5, respectively.
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FIG. 2.
Stimulated translocation of iPLA2β to the perinuclear region of INS-1 cells. INS-1 cells
overexpressing iPLA2β as a fusion protein with enhanced green fluorescence protein
(EGFP) were stimulated with glucose in the absence and presence of forskolin, as described
(41). After a stimulation period of 30 min, the cells were examined by fluorescence
microscopy to monitor green fluorescence associated with EGFP. A: Control cells. B: Cells
treated with glucose (2 mmol/l) alone. C: Cells treated with both glucose (2 mmol/l) and
forskolin (2.5 μmol/l). After stimulation, punctate perinuclear accumulation of fluorescence
that reflects the location of iPLA2β-EGFP is evident.
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FIG. 3.
ER stress–induced apoptosis of INS-1 cells. A: Suppression of thapsigargin-induced
apoptosis of iPLA2β-overexpressing INS-1 cells by BEL. INS-1 cells stably transfected with
a vector containing iPLA2β cDNA (OE) construct were treated with thapsigargin (T) (1
μmol/l) for 24 h in the absence or presence of BEL (10 μmol/l). The cells were then
harvested for TUNEL (Tdt-mediated dUTP nick end labeling) analyses to assess the
magnitude of cell apoptosis (*T + BEL–treated group significantly different from T alone–
treated group, P < 0.05). B: Immunoblotting analyses. Aliquots of INS-1 cell protein (50
μg), prepared from OE cells treated with dimethylsulfoxide (lane 1) or thapsigargin (1
μmol/l) (lane 2), were analyzed by SDS-PAGE (7.5%) and transferred onto an Immobolin-P
polyvinylidene difluoride membrane. The electroblot was probed with piPLA2β antibodies,
and immunoreactive protein bands were visualized by enhanced chemiluminescence, as
described (41). C, control. C: Effects of caspase-3 inhibition on iPLA2β subcellular
distribution. iPLA2β OE INS-1 cells seeded in glass chambered slides were pretreated with
caspase-3 inhibitor (C3-I) (500 nmol/l) or vehicle for 24 h. The cells were then treated with
thapsigargin in the absence and presence of C3-I for 24 h and subsequently processed for
iPLA2β immunofluorescence analyses by confocal microscopy. Con, control.
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FIG. 4.
Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) of tryptic
peptide of recombinant iPLA2β. Recombinant iPLA2β purified by sequential
chromatography was digested with trypsin, and an aliquot was analyzed by LC/ESI/MS. A:
Evidence for acetylated NH2-terminus and NH2-terminally truncated variant of iPLA2β. B:
Evidence for sequence proximal to residue 12.
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