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Norepinephrine Enhances a Discrete Form of Long-Term
Depression during Fear Memory Storage
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Amygdala excitatory synaptic strengthening is thought to contribute to both conditioned fear and anxiety. Thus, one basis for behavioral
flexibility could allow these pathways to be weakened and corresponding emotion to be attenuated. However, synaptic depression within
the context of amygdala-dependent behavior remains poorly understood. Previous work identified lateral amygdala (LA) calcium-
permeable AMPA receptors (CP-AMPARs) as a key target for synaptic removal in long-term depression (LTD) and persistent fear
attenuation. Here we demonstrate that LA neurons express two equally potent forms of LTD with contrasting requirements for protein
kinase and phosphatase activity and differential impact on CP-AMPAR trafficking. Selective removal of CP-AMPARs from synapses is
contingent on group 1 metabotropic glutamate receptor (mGluR1) and PKC signaling, in contrast to an alternate LTD pathway that
nonselectively removes AMPARs and requires calcineurin (PP2b). Intriguingly, the balance between these forms of LTD is shifted by
posttraining activation of B-adrenergic receptors in fear conditioned mice, resulting in selective augmentation of mGluR-dependent
depression. These results highlight the complexity of core mechanisms in LTD and suggest that norepinephrine exposure mediates a form
of synaptic metaplasticity that recalibrates fear memory processing.

Introduction

The lateral amygdala (LA) figures prominently in appetitive
(Murray, 2007) and aversive (Johansen et al., 2011) pavlovian
conditioning. In particular, auditory fear conditioning involves
strengthening of thalamic pathways to the LA (McKernan and
Shinnick-Gallagher, 1997; Rogan et al., 1997; Rumpel et al., 2005;
Kwon and Choi, 2009; Clem and Huganir, 2010), a process that
has been modeled by induction of long-term potentiation (LTP)
at thalamic input synapses (Rogan and LeDoux, 1995; Huang et
al., 2000; Humeau et al., 2007; Tully et al., 2007; Asrar et al.,
2009). Conversely, fear responses are extinguished by repeated
exposure to the auditory cue, which sometimes but not always
leads to thalamo-amygdala synaptic weakening and occlusion of
long-term depression (LTD) (Mao et al., 2006; Kim et al., 2007;
Clem and Huganir, 2010). Consequently, the mechanisms gov-
erning LTD may in part determine the behavioral outcome of
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extinction training or its clinical equivalent, exposure-based
therapy.

We demonstrated previously that both LTD and extinction-
dependent fear erasure involve synaptic removal of GluA2-lacking
calcium-permeable AMPA receptors (CP-AMPARs) in the LA
(Clem and Huganir, 2010). Here we report that CP-AMPAR traf-
ficking is stimulus protocol specific. Furthermore, although LA neu-
rons express both CP-AMPAR-dependent and -independent forms
of LTD, these LTD mechanisms rely differentially on phosphatase
and kinase signaling. After auditory fear conditioning, group 1
metabotropic glutamate receptor (mGluR1)- and CP-AMPAR-
dependent LTD is selectively enhanced as a result of 3-adrenergic
receptor (B-AR) signaling during memory consolidation. Our re-
sults indicate that a discrete LTD pathway is augmented in parallel
with fear-related synaptic strengthening and suggest that strategies
for fear attenuation can selectively target CP-AMPARs for removal
without globally saturating LTD processes.

Materials and Methods

Subjects. All subjects in wild-type experiments were adolescent, male
C57BL/6N mice (Charles River) aged 4—6 postnatal weeks. Subjects were
housed in groups of three on a 12 h light/dark cycle and given food and
water ad libitum. Protein interacting with C-kinase 1 (PICK1) knock-
outs were generated as reported previously (Gardner et al., 2005) and
backcrossed at least 11 times to C57BL/6 before heterozygous mating to
generate wild-type and knock-out mice.

Slice electrophysiology. Brains were dissected into 2°C buffer containing the
following (in mm): 210.3 sucrose, 11 glucose, 2.5 KCl, 1 NaH,PO,, 26.2
NaHCO;, 0.5 ascorbate, 0.5 CaCl,, and 4 MgCL,. Acute coronal slices were
obtained at 350 wm and transferred to normal ACSF composed of the fol-
lowing (in mm): 119 NaCl, 2.5 KCl, 1 NaH,PO,, 26.2 NaHCOj, 11 glucose,
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(100 M) to block fast GABAergic transmission.
To prevent spontaneous bursting under these
conditions, extracellular Ca*" and Mg2+ were
increased to 4 mum each to reduce neuronal mem-
brane excitability. Data were filtered at 3 kHz and
acquired at 10 kHz using Multiclamp 700B and
pClamp 10 (Molecular Devices). EPSCs were
monitored by stimulation at 0.1 Hz. Series resis-
tance was continuously monitored, and record-
ings were discarded when this measurement
changed by >20%. Two protocols were used for
LTD induction. The first was adapted from a pairing protocol used in hip-
pocampal CA1 neurons and consisted of 1 Hz stimulation for 10 min while
the neuron was clamped at —40 mV. In the second protocol, stimulation for
3 min at 3 Hz was performed with paired pulses (50 ms interpulse interval)
while the neuron was clamped at —50 mV. Blockade of CP-AMPARSs was
performed with 1-naphthylacetyl spermine (NASPM; 50 uM; Sigma-
Aldrich). 1-Amino-phosphovaleric acid (APV; Ascent), LY367385 [(S)-
(+)-a-amino-4-carboxy-2-methylbenzeneacetic acid] (Tocris Bioscience),
and 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP; Tocris
Bioscience) stocks were made in aqueous solution and applied to the record-
ing bath for the duration of LTD experiments. Okadaic acid (OA) and FK506
[(3S,4R,55,8 R,9E,125,145,15R,16S,18 R,19R,26a5)-5,6,8,11,12,13,14,15,16,
17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(1 E)-2-[(1 R,3R,
4 R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-
4,10,12,18-tetramethyl-8-(2-propen-1-yl)-15,19-epoxy-3H-pyrido[2,1-
c][1,4]oxaazacyclotricosine-1,7,20,21(4 H,23H )tetrone] (Sigma-Aldrich)
were applied in 0.1% DMSO. Protein kinase C (PKC) inhibitor PKI},g_3,
(EMD Millipore) and GluA2-3A and GluA2-3Y peptides (AnaSpec) were
added to the recording internal solution.

Fear conditioning. Unpaired and paired groups received training that
was divided into two sessions, separated by 30 min. Unpaired animals
were presented with six unpaired tones [conditioned stimuli (CS)] in
session 1 and six unsignaled footshocks [unconditioned stimuli (US)] in
session 2. Paired animals were presented with no stimuli in session 1 and
six paired CS and US during session 2, in which CS and US were cotermi-
nating. During each session, a period of acclimation lasting 200 s pre-
ceded the presentation of cues. The CS consisted of an 80 dB, 2 kHz tone
lasting 20 s. The US consisted of scrambled 1.0 mA footshock. Cue pre-
sentations were separated by 100 s. After conditioning, mice were re-
turned to their home cages until preparation of brain slices. For 3-AR
modulation, mice were given intraperitoneal injections of propranolol
(20 mg/kg) or PBS vehicle within 5 min after training.

Statistical analyses. Significance of observations was established by un-
paired Student’s ¢ test in the case of independent groups, paired  test for
within-cell comparison with baseline measures, or one-way ANOVA
followed by Tukey’s post hoc test for more than two independent

Figure1.

Induction protocol-dependent removal of CP-AMPARs during LTD. 4, Position of stimulating and recording electrodes
for brain slice electrophysiology. BA, Basal amygdala. B, Application of NASPM (50 rum) to acute slices from LA in the continuous
presence of APV (100 wum). Example traces are sampled from representative neurons in the shaded regions. Calibration: 100 pA, 20
ms. C, LTD induction by LFS pairing (1 Hz, 10 min, —40 mV) in normal ACSF followed by NASPM application (50 wum). Calibration:
200 pA, 20 ms. D, LTD induction by ppLFS pairing (3 Hz, 50 ms interpulse interval, 3 min, —50 mV) in normal ACSF followed by
NASPM application. Calibration: 200 pA, 20 ms. E, F, Mean LTD, as determined by comparison of the blue and green shaded regions
(E) and NASPM block, as determined by comparison of the green and red shaded regions (F) from experiments in A—C. Example
traces in Cand D are sampled from the shaded regions. All data points represent group means = SE.

groups, with resulting p values given in text. All graphs represent
group means * SE.

Results

To examine the contribution of CP-AMPARs to thalamo-
amygdala transmission, we targeted LA principal excitatory neu-
rons for whole-cell voltage-clamp recordings in acute brain slices
from naive mice. Bath application of the CP-AMPAR antagonist
NASPM during stimulation of thalamic inputs reduced AMPAR—
EPSCs by 17.9 * 2.3% (n = 6; Fig. 1B), consistent with previous
reports that CP-AMPARs contribute to synaptic transmission in
LA principal neurons (Mahanty and Sah, 1998; Clem and
Huganir, 2010). Importantly, NASPM reduces the apparent rec-
tification of AMPAR-EPSCs in LA neurons (Clem and
Huganir, 2010), further demonstrating that functional CP-
AMPARs exist at thalamo-amygdala synapses.

To determine the impact of synaptic activity on CP-AMPARs,
we examined two stimulus conditions for LTD. In the first, neu-
rons were depolarized to —40 mV during delivery of low-
frequency afferent stimulation (LFS pairing). In the second,
milder depolarization was used (—50 mV) together with low-
frequency paired-pulse stimulation (ppLES pairing). Although
both conditions yield reliable depression, the use of paired versus
single pulses can affect the pharmacological requirements of re-
sulting LTD (Huber et al., 2000; Kemp et al., 2000), which may be
attributable the capacity for paired pulses to more effectively ac-
tivate extrasynaptic glutamate receptors. After either form of
stimulation, NASPM was applied to slices to reveal the residual
contribution of CP-AMPARSs.

Surprisingly, although stimulus protocol did not affect the
magnitude of depression (Fig. 1C-E) [EPSC % baseline: LFS =
68.8 £4.6 (n=7),ppLFS = 73.3 £2.6 (n=7),p > 0.1], only
PpLES triggered CP-AMPAR removal. The inhibitory effect of
NASPM was unaltered after LFS pairing (Fig. 1F) [EPSC % inhi-
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Figure 2.  Specific requirement for mGIuR1 and PKC in ppLFS LTD. A, B, Induction of LFS and ppLFS LTD in normal ACSF. ~ aptic protein phosphatases (Malenka and

Calibration: 100 pA, 20 ms. €, D, Induction of LFS (€) and ppLFS LTD (D) in the presence of APV (100 ). Calibration: €, 80 pA, 20
ms; D, 100 pA, 20 ms. E, F, Induction of LFS (E) and ppLFS LTD (F) in the presence of MPEP (10 m) or LY367385 (100 rum).
Calibration: E, LY367385, 100 pA, 20 ms; MPEP, 150 pA, 20 ms; F, LY367385, 80 pA, 20 ms; MPEP, 60 pA, 20 ms. G, H, Induction of
LFS (G) and ppLFSLTD (H) with the PKCinhibitor peptide PKl;;4_s5; (10 um) in the recording pipette internal solution. Calibration:
200 pA, 20 ms. Example traces are sampled from the shaded regions. All data points represent group means == SE.

bition = 20.0 £ 2.6 (n = 7), p > 0.1 vs naive], indicating that this
form of LTD is not AMPAR subtype selective. Conversely, ppLFS
pairing completely and selectively abolished CP-AMPAR transmis-
sion [EPSC % inhibition = 1.07 = 3.6 (n = 7), p < 0.001 vs naive].
Given the longer duration of LFS pairing, it is unlikely that differ-
ences in CP-AMPAR trafficking could be explained by a threshold
effect.

Synaptic plasticity depends on intracellular signaling pathways
linked to glutamate receptor activation. In particular, LTD has been

Bear, 2004). In particular, both PP1/PP2a
and calcineurin (PP2b) inhibitors inter-
fere with LTD in the hippocampal CAl
area (Mulkey et al., 1993, 1994). Because
we previously demonstrated that CP-
AMPAR synaptic accumulation is driven
by phosphorylation of the GluAl subunit residue serine 845
(Clem and Huganir, 2010), we hypothesized that PP2b-mediated
dephosphorylation of this site might drive CP~-AMPAR removal
(Kameyama et al., 1998; Banke etal., 2000; Tavalin et al., 2002; He
et al., 2009). However, neither PP1/2a nor PP2b inhibitors
blocked ppLES LTD (Fig. 3B) [EPSC % baseline: control =
69.1*=7.4(n=26),0A=651=*4.8(n=6),p=0.87vs control;
FK506 = 71.6 £ 4.3 (n = 6), p = 0.95 vs control]. Conversely,
LFS LTD was inhibited by PP2b but not PP1/2a antagonism (Fig.
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B, control, 100 pA, 20 ms; 0A, 150 pA, 20 ms; FK506, 100 pA, 20 ms. Example traces are sampled from the shaded regions. All data
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alanine substitutions occur at each tyrosine
residue (Fig. 4A,B) [EPSC % baseline: LFS
GluA2-3A =723 *59(n=>5),p<0.01vs
baseline by paired ttest; ppLFS GluA2-3A =
75.1 £ 1.2 (n = 5), p < 0.01vs baseline by
paired ¢ test].

Because GluA2-3Y did not effectively discriminate between
PpLES and LFS LTD, we next considered a region in the extreme
C terminus of GluA2 that acts as a PDZ ligand for PICK1 as well
as glutamate receptor interacting protein 1/2 (GRIP1/2) (Xia et
al., 1999; Chung et al., 2000; Osten et al., 2000). Disruption of
GRIP1/2 and facilitation of PICK1 binding to this region are
triggered by GluA2 serine 880 phosphorylation (Chung et al.,
2000), a mechanism that has been implicated in GluA2 synaptic
removal (Kim et al., 2001; Seidenman et al., 2003; Steinberg et al.,
2006; Lin and Huganir, 2007; Citri et al., 2010; Clem et al., 2010).
Therefore, we examined the effect of disrupting PICK1-GluA2
interaction with the specific interfering peptide pep2-EVKI, but
unfortunately this reagent induced rundown of baseline re-
sponses and was thus not suitable for application during LTD.
However, to gain more insight into these baseline effects, we
applied pep2-EVKI or a control peptide that lacks PICK1 speci-
ficity, pep2-SGKA. Significant rundown of AMPAR-EPSCs was
observed after pep2-EVKI but not pep2-SGKA application in
wild-type mice (Fig. 5A,B) [EPSC % baseline: pep2-EVKI =
79.0 = 5.4 (n = 7); pep2-SGKA = 112.0 + 6.2 (n = 6), p < 0.01].
After pep2-EVKI-induced rundown, rectification of AMPAR~-
EPSCs was reduced, consistent with CP-AMPAR synaptic re-
moval (Fig. 5C). To examine the role of PICK1 in this process, we
analyzed basal synaptic transmission and ppLFS in PICK1 knock-
out mice. Interestingly, PICK1 mice had reduced rectification
under all conditions and abolished ppLFS LTD (Fig. 5D) [EPSC %
baseline: +/4 mice = 69.2 *+ 4.4 (n = 10); —/— mice = 117.8 *
16.6 (n = 8), p < 0.005], indicating that failure to accumulate

Figure4.

Peptide inhibitor of GluA2 trafficking blocks both LFS and ppLFS LTD. A, B, Induction of LFS (4) and ppLFSLTD (B) with
GluA2-3A or GluA2-3Y in the recording pipette internal solution (100 r.g/ml). Calibration: A, GluA2-3A, 250 pA, 20 ms; GluA2-3Y,
150 pA, 20 ms; B, GluA2-3A, 200 pA, 20 ms; GluA2-3Y, 200 pA, 20 ms. Example traces are sampled from the shaded regions. All data
points represent group means == SE.

CP-AMPARs in PICK1 knock-outs eliminates a principal sub-
strate for ppLFS LTD. Moreover, the pep2-EVKI peptide had no
effect on baseline transmission in slices from PICK1 knock-out
mice [EPSC % baseline: pep2-EVKI = 102.6 = 6.6 (n = 5);
pep2-SGKA = 100.6 = 4.2 (n = 4), p = 0.81].

Because plasticity can be influenced by previous neuronal ac-
tivity, coexistence of discrete forms of LTD in LA neurons raises
the question of which LTD pathways predominate in emotionally
experienced mice. Therefore, we obtained brain slice recordings
from auditory fear conditioned mice or unpaired controls to de-
termine the impact of fear memory storage on LTD expression.
Twenty-four hours after training, no difference in LFS LTD was
observed in mice receiving paired versus unpaired training (Fig.
6B) [EPSC % baseline: unpaired = 65.0 = 4.1 (n = 7); paired =
71.0 £ 10.6 (n = 6), p = 0.59]. However, ppLFS LTD was signif-
icantly enhanced by paired fear conditioning (Fig. 6C) [EPSC %
baseline: unpaired = 84.0 £ 6.1 (n = 8), paired = 58.0 £ 2.9 (n =
9), p < 0.005]. In addition, direct pharmacological stimulation of
mGluR1 induced LTD after paired training but not after un-
paired training (Fig. 6D) [EPSC % baseline: unpaired = 91.7 =
3.2(n=1>5),paired = 73.2 = 4.9 (n =5), p < 0.01], indicating that
LA synapses acquire sensitivity to mGluR-LTD during fear mem-
ory storage.

To gain additional insight into metaplasticity of mGluR-LTD,
we considered the impact of fear conditioning on synaptic
AMPAR composition. Previously, we demonstrated that fear
conditioning leads to the accumulation of CP-AMPARs at
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thalamic synapses, an effect that was not
observed in mice containing alanine muta-
tions of GluAl serine 845. Because 3-AR
agonists can induce serine 845 phosphory-
lation (Hu et al., 2007; Makino et al., 2011;
Huang et al.,, 2012), we examined whether
B-ARs were involved in AMPAR traffick-
ing after fear conditioning. Surprisingly,
posttraining injections of the B-AR an-
tagonist propranolol did not affect synap-
tic strengthening (Fig. 7B,C) [AMPA/
NMDAR: vehicle = 3.70 = 0.20 (n = 7),
propranolol = 4.68 = 0.50 (n = 7), p =
0.15]. However, propranolol inhibited CP-
AMPAR synaptic accumulation, as revealed
by reduced rectification of AMPAR-EPSCs
(Fig. 7D-F) [rectification index: vehicle =
2.17 £ 0.18 (n = 6), propranolol = 1.27 =
0.04 (n = 10), p < 0.00001]. Importantly,
fear conditioning did not affect the decay
time of NMDAR-EPSCs [weighted tau de-
cay: unpaired = 166.1 = 13.9 ms (n = 11),
paired = 168.8 = 125 ms (n = 12), p =
0.89], indicating that experience does not al-
ter the subunit composition of NMDAR:s.
Coincident with this effect, ppLFS LTD was
strongly reduced in propranolol-treated
mice (Fig. 7G) [EPSC % baseline: vehicle =
56.1 = 7.55 (n = 5), propranolol = 79.0 =
4.64 (n = 5), p < 0.01]. Thus, although
B-ARs are not required to consolidate fear-
related synaptic strengthening, posttraining
B-AR stimulation mediates metaplasticity
at thalamic synapses.

Discussion

The trafficking of CP-AMPARSs in behav-
ioral contexts has piqued broad interest in
this unique receptor population. Likely
comprising homomeric assemblies of
GluAl (Wenthold et al., 1996; Gao and
Wolf, 2007; He et al., 2009; Billa et al.,
2010; Clem et al., 2010; Rozov et al.,
2012), these receptors accumulate at syn-
apses after associative fear conditioning in
amanner dependent on GluA1 phosphor-
ylation at serine 845 (Clem and Huganir,
2010), a target of PKA (Roche et al., 1996)
and cyclic GMP-dependent kinase II (Se-
rulle et al., 2007). Because neural activity
abolishes CP-AMPAR currents, we ini-
tially hypothesized that CP-AMPARs may
be unstably associated with the postsyn-
aptic apparatus. However, we demon-
strate here that CP-AMPAR trafficking
specifically characterizes a mechanisti-
cally distinct form of LTD at thalamo-
amygdala synapses. The existence of this
discrete form of synaptic weakening sug-
gests that changes in AMPAR subunit
composition can lead to molecularly de-
fined adjustments to LTD, a prediction
that was confirmed by specific enhance-
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ment of mGluR1-dependent LTD in fear
conditioned mice.
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Dynamic regulation of GluA2 receptor con-
tent may function together with these local
network states to confine synaptic depres-
sion to specific behavioral contexts and
maturational stages of memory.

A major difference from LFS LTD was
the dependence of ppLFS LTD on
mGluR1 and PKC. These results agree
closely with studies in principal neurons
of the nucleus accumbens (McCutcheon et al., 2011) and ventral
tegmentum (Bellone and Liischer, 2005), as well as stellate cells of
the cerebellum (Kelly et al., 2009), in which mGIuR1 has been
associated with CP-AMPAR removal. Interestingly, mGluR1 ac-
tivation did not supersede a role for NMDARs in ppLFS LTD.
This additional requirement for NMDARs might reflect the ac-
tivity of an extrasynaptic NMDAR population, which has been
linked to PKC-dependent AMPAR trafficking (Sun and June Liu,
2007). However, whether mGluR1 and NMDARs play a redun-
dant role in CP-AMPAR dynamics remains to be established. In
contrast to ppLFS, our results indicate that PKC is not required
for LFS LTD, which depends instead on the phosphatase cal-
cineurin. Thus, a balance of kinase and phosphatase activity,
which can arise from the recruitment of perisynaptic versus syn-
aptic glutamate receptor activity, may determine whether CP-
AMPARs are targeted for removal.

A component of fear attenuation by extinction involves rever-
sal of fear-conditioned plasticity (Kim et al., 2007; Clem and
Huganir, 2010; Lai et al., 2012), in which some CS pathways may
undergo LTD after fear memory retrieval. In particular, the tim-
ing of extinction to coincide with memory reconsolidation, a
technique referred to as reconsolidation update, more effectively
attenuates fear and weakens amygdala AMPAR transmission. Al-
though amygdala GluA1-containing CP-AMPARs mediate fear
erasure by reconsolidation update (Clem and Huganir, 2010), a
recent report concluded that this form of extinction requires hip-
pocampal GluA2 internalization for inhibiting contextual fear
because these effects could be blocked by hippocampal GluA2-3Y
application (Rao-Ruiz et al., 2011). However, we would caution
that effects of GluA2-3Y be carefully interpreted, because this
reagent may not discriminate between underlying plasticity

Figure 7.

Norepinephrine-dependent AMPAR redistribution underlies metaplasticity. A, Schematic of 3-AR treatments after
fear conditioning (FC). B, Representative examples of compound AMPAR/NMDAR—EPSCs at the following membrane holding
potentials: —70,0,and +40mV. (, Mean AMPAR/NMDAR ratio. p << 0.001. D, Representative examples of AMPAR—EPS(s at the
following membrane holding potentials: —70, —60, —40, —20, 0, +20, +40, and +50 mV. E, Current-voltage plot of
AMPAR-EPSCs. *p << 0.01. F, Mean AMPAR—EPSC rectification index. *p << 0.01. G, Induction of ppLFS LTD 24 h after paired fear
conditioning, combined with vehicle or propranolol treatment. Calibration: vehicle, 80 pA, 20 ms; propranolol, 100 pA, 20 ms.
Example traces are sampled from the shaded regions. All data points represent group means == SE. prop, Propranolol.

mechanisms. Indeed, we found that GluA2-3Y blocked both
mGluR1-dependent and -independent forms of LTD, despite
their differential engagement of GluA2-lacking AMPAR traffick-
ing. A possible explanation for these effects may be the require-
ment for GluA2 trafficking in both forms of LTD, wherein
GluA2-3Y disrupts the forward trafficking of GluA2 and its sub-
sequent displacement of synaptic CP-AMPARs. Consistent with
this interpretation, inhibition of PICK1-GluA2 binding leads to
EPSC rundown, implying that relief of PICK1-mediated extrasynap-
tic retention of GluA2 (Lin and Huganir, 2007) may facilitate its
displacement of CP-AMPARs. Thus, detailed examination of com-
partmental trafficking may be required to delineate the precise role
of GluA2 in mGluR1-dependent and -independent LTD.
Although both forms of LTD that we observed have the po-
tential to reverse fear-associated synaptic potentiation, engaging
CP-AMPAR LTD may enable more selective targeting of recent
or reactivated fear associations due to the transient increase in
CP-AMPAR content at LA thalamic inputs 24 h after fear learn-
ing (Clem and Huganir, 2010) or after recent reactivation of fear
memories (our unpublished results). The increased level of CP-
AMPARSs during this transient window may provide a substrate
for selective fear attenuation by mGluR1-dependent LTD. The
role of recent experience in forming this window is mediated by
norepinephrine, the release of which governs multiple aspects of
fear-related behavior. In particular, acquisition of auditory fear
conditioning requires amygdalar B-ARs at the time of CS-US
pairing (Bush et al., 2010). Although our synaptic physiology
confirms previous studies suggesting that consolidation of
amygdala synaptic strengthening does not require 3-ARs (Debiec
and Ledoux, 2004; Bush et al., 2010), we demonstrate that post-
training B-AR activity regulates amygdala synaptic plasticity and
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thus may affect the subsequent updating of emotional responses.
Curiously, B-AR activation by the experience of innate fear has
been linked to the delayed recomposition of synaptic AMPARs in
cerebellar stellate cells but instead mediates a switch from GluA2-
lacking to GluA2-containing subtypes in these inhibitory in-
terneurons (Liu et al., 2010). Therefore, fear experience may be
sufficient to trigger cell-type-specific adaptations throughout the
brain via the actions of norepinephrine.

In conclusion, our results indicate that the mechanism by
which thalamo-amygdala LTD is expressed depends on the con-
figuration of synaptic stimuli. An induction protocol that incor-
porates paired pulses, ostensibly similar to the high-frequency
firing of thalamic neurons, selectively displaces CP-AMPARs
from synapses. This distinct form of LTD, which uniquely relies
on mGluR1 and PKC signaling, coexists at LA synapses with a
more conventional LTD pathway defined by NMDAR~—calcineu-
rin signaling. During fear memory storage, B-ARs mediate a
selective enhancement of synaptic CP-AMPARs and mGluR1-
dependent LTD. These data suggest how extinction training
might drive excitatory synaptic weakening and corresponding
fear erasure (Clem and Huganir, 2010) and designate molec-
ular strategies for facilitating these effects based on CP-
AMPAR trafficking.
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