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Behavior is governed by rules that associate stimuli with responses and outcomes. Human and monkey studies have shown that rule-
specific information is widely represented in the frontoparietal cortex. However, it is not known how establishing a rule under different
contexts affects its neural representation. Here, we use event-related functional MRI (fMRI) and multivoxel pattern classification meth-
ods to investigate the human brain’s mechanisms of establishing and maintaining rules for multiple perceptual decision tasks. Rules were
either chosen by participants or specifically instructed to them, and the fMRI activation patterns representing rule-specific information
were compared between these contexts. We show that frontoparietal regions differ in the properties of their rule representations during
active maintenance before execution. First, rule-specific information maintained in the dorsolateral and medial frontal cortex depends
on the context in which it was established (chosen vs specified). Second, rule representations maintained in the ventrolateral frontal and
parietal cortex are independent of the context in which they were established. Furthermore, we found that the rule-specific coding
maintained in anticipation of stimuli may change with execution of the rule: representations in context-independent regions remain
invariant from maintenance to execution stages, whereas rule representations in context-dependent regions do not generalize to execu-
tion stage. The identification of distinct frontoparietal systems with context-independent and context-dependent task rule representa-
tions, and the distinction between anticipatory and executive rule representations, provide new insights into the functional architecture
of goal-directed behavior.

Introduction
A hallmark of cognitive control is the ability to regulate goal-
directed behavior according to task rules, which coordinate cog-
nitive and motor processes with knowledge of the associations
among stimuli, responses, and outcomes (Sakai, 2008). Single-
unit recordings have identified neuronal encoding of specific
rules in a frontoparietal network (Quintana and Fuster, 1999;
Asaad et al., 2000; Wallis et al., 2001). Human imaging studies
have shown consistent rule-specific activity in homologous re-
gions (Bunge et al., 2003; Sakai and Passingham, 2003; Haynes et
al., 2007; Woolgar et al., 2011a). These representations of rules
can be sustained between instruction and execution phases of a
trial, and influence the subsequent behavioral performance
(Sakai and Passingham, 2006) or drive selective attention to task-
relevant information (Duncan, 2001; Miller and Cohen, 2001).

Task rules can be established under different contexts. For
example, a rule may be formally identical, and executed equally

effectively, when it has been specifically instructed and when it
has been chosen from several alternatives. Previous studies have
examined the neural correlates of choosing a task rule, compared
with specific instruction, identifying activation in the same fron-
toparietal network that also represents rule-relevant information
(Forstmann et al., 2006; Rowe et al., 2008; Bengtsson et al., 2009).
The functional overlap between contextual modulation and rule
representation in these cortical regions raises the following three
unresolved issues: (1) how rules are established under different
contexts; (2) whether the context influences the neural represen-
tation of a given rule; and (3) whether the rule representation that
is maintained in working memory matches the representation
used when executing the same rule. There may exist robust and
invariant coding of task rules under different contexts and at
different stages of rule implementation, allowing consistent be-
havior in a changing environment. Alternatively, rule represen-
tations may be flexible and dependent on the context in which
they were established.

To test these hypotheses, we examined the impact of context
on rule representations. Three highly practiced rules that regu-
lated perceptual decisions on distinct visual features (motion,
color, and size) were established under two contexts: either cho-
sen by the participant (chosen context), or instructed to them
(specified context). We first identified regions with differential
functional MRI (fMRI) responses when establishing a rule under
the two contexts. Both in the regions exhibiting contextual dif-
ferences and across the whole brain, we used multivariate pattern
analysis (MVPA) (Norman et al., 2006) to investigate whether the
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neural representation of an actively maintained rule is context
dependent or context independent: a context-independent ac-
count predicts that the rule representation is independent of the
context from which the rule is established, whereas a context-
dependent account predicts distinct rule representations when
the context changes. We further investigated whether the rule
representation sustains at different stages of a trial, from main-
taining to executing.

Our results demonstrate that the context under which rules
are established can influence the representation of the rule in
different frontoparietal regions, even when it is the same rule that
guides subsequent behavior. However, the influence of context
differs between cortical regions, indicating functionally distinct
frontoparietal systems for adaptive cognitive control.

Materials and Methods
Participants. Twenty adults participated in the study (16 females; age
rage, 20 –31 years; mean age, 24.65 years) following written informed
consent. Participants were right handed with normal or corrected-to-
normal vision, and none had a history of significant neurological or
psychiatric illness. None had previous experience with the task. The data
from one participant was excluded before analysis because of severe bias
in selecting task rules. The study was approved by the local research ethics
committee.

Stimuli. For all psychophysical training and fMRI scan sessions, stim-
uli for perceptual decisions were random dot kinematograms (RDKs)
displayed within a central circular aperture (7.5° diameter) on a black
background (100% contrast) with 50 ms frame duration. Eighty dots
with three visual features (dot motion, dot color, and dot size) were
plotted during each stimulus frame. To introduce apparent motion di-
rection (upward or downward), a certain proportion (i.e., motion coher-
ence) of the dots was replotted in the next frame at an appropriate spatial
displacement (5°/s velocity), and the rest of the dots were replotted at
random locations. Dots that moved outside the aperture were reposi-
tioned inside the aperture to avoid attention cues along the aperture
edges. To ensure that the dots were evenly distributed across the entire
aperture, the minimum distance between any two dots in each frame was
0.4°. To introduce apparent color information (blue or red), a certain
proportion (i.e., color coherence) of the dots was rendered in one color
while other dots were randomly rendered in either blue or red. The RGB
values of the dot colors were equiluminant blue (5, 137, 255) and red
(255, 65, 2) (Kayser et al., 2010). To introduce apparent size information
(large or small), a certain proportion (i.e., size coherence) of the does was
presented in one size while other dots were randomly presented in either
large (0.2° diameter) or small size (0.12° diameter). In particular, the
coherence levels were held constant on each trial and the three visual
features were independently applied to each dot in each frame, resulting
in RDK stimuli with three uncorrelated visual features. Visual stimuli
were presented by using Matlab 7.8 (MathWorks) and Psychophysics
Toolbox 3 (www.psychtoolbox.org), and were displayed onto a screen
with a resolution of 1024 � 768 pixels.

Task and procedures. All participants finished five psychophysical
training sessions conducted on different days, followed by an MRI scan
session. On each trial of the training and scan sessions, one of the three
visual features was relevant to a pending task rule and needed to be
attended. For the motion rule, participants were instructed to discrimi-
nate the coherent direction of motion (upward or downward). For the
color rule, participants were instructed to discriminate the predominant
color (blue or red). For the size rule, participants were instructed to
discriminate the predominant size (large or small). Participants were
instructed to respond as quickly and as accurately as possible by pressing
one of two buttons on a button response box. The stimulus–response
mappings for different rules were counterbalanced across participants.

Psychophysical training sessions. Participants were first familiarized
with the three task rules before their first training session during a short
practice session comprising 16 trials for each rule. To ensure that the
participants were well trained on all rules, each training session com-

prised three blocks, and within each block the participants were trained
on one of the three task rules. The order of the three blocks was random-
ized across training sessions and participants. Each block comprised 216
trials, and participants were informed about which rule to implement at
the beginning of each block. The rule-relevant feature (e.g., motion co-
herence in motion trials) was randomly presented with nine coherence
levels at 2%, 3.84%, 5.76%, 8.64%, 12.96%, 19.44%, 29.16%, 43.75%,
and 65.61% (24 trials per level). The two rule-irrelevant features (e.g.,
color and size coherences in motion trials) were randomly presented with
two coherence levels at 2% and 65.61%. On each trial, the RDK stimulus
was presented for 2000 ms, followed by a 2000 ms interstimulus interval
during which a white fixation square (0.1°) was presented on the screen.
Auditory feedback was given on incorrect responses (tone, 600 Hz; du-
ration, 150 ms). To determine individual sensitivity, the discrimination
accuracy of each rule in each training session was fit with a Weibull
function using maximum likelihood methods. For each participant, the
82% correct thresholds of the three rules in the last training session were
then estimated from individual psychometric functions and were used in
the fMRI scan session.

fMRI scan session. Three cues (2.5° � 2.5° visual angle) were associated
with the three task rules (motion discrimination, color discrimination,
and size discrimination). At the beginning of each trial, two rule cues
were presented horizontally (separated by 0.05°) for 1300 ms (Fig. 1A).
On chosen trials, the two cues were associated with different rules, and
the participants chose any one of the two available rules to perform. On
specified trials, the two rule cues were the same and participants were
instructed to implement the corresponding rule (Fig. 1B). Cue instruc-
tion was followed by a variable and unpredictable delay of 3000, 5000,
7000, 9000, or 11000 ms, during which a white fixation square (0.1°) was
presented on the screen. After the delay, the RDK stimulus was presented
for 2000 ms and the participants were required to make a two-alternative
forced-choice response based on the selected or specified rule. To match
the task difficulty across rules and individuals, the coherence levels of
each visual feature were set to individual 82% correct thresholds esti-
mated from the last training session. To register the chosen rule and

Figure 1. Behavoral paradigm for scan session. A, A rule cue was presented for 1300 ms at
the beginning of each trial. In a chosen trial, participants selected one of two possible rules by
themselves. In a specified trial, participants were instructed to a particular rule. Task cues were
followed by a variable delay period (3000 –11,000 ms), during which a fixation point was
presented. After the onset of the RDK stimulus, participants made binary decision using the
established rule. The RDK stimulus appeared for 2000 ms, after which there was a 300 ms gap
and then the participants made a second response reporting which rule they had performed.
B, Possible rule cues for the chosen and specified conditions.
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validate response accuracy, cues of all three possible rules were presented
horizontally 300 ms after the RDK stimulus offset (1200 ms duration)
and the participants were instructed to confirm which rule they per-
formed in the current trial by a button press. The assignment of rules to
buttons for the confirmation stage was fixed between trials, to avoid an
additional visual search process during rule confirmation and to mini-
mize potential errors regarding which task participants had performed.
The intertrial interval was 6000 ms. The scan session comprised eight
experimental runs, each of which lasted 534 s. Each run comprised 30
experimental trials, with each of the three chosen (motion/color, color/
size, motion/size) or the three specified (motion, color, size) cue combi-
nations presented in 5 trials. For each cue combination, each delay length
was presented once. The orders of cue combinations and delay durations
were randomized across runs and participants.

Data acquisition. A Siemens Tim Trio 3 T scanner (Siemens Medical
Systems) was used to acquire BOLD-sensitive T2*-weighted EPI images
[repetition time (TR), 2000 ms; echo time (TE), 30 ms, flip angle (FA),
78°; 32 slices; 3.0 mm thick; in-plane resolution 3 � 3 mm with slice
separation 0.75 mm] in sequential descending order. Two hundred sev-
enty volumes were acquired in each run, and the first three were dis-
carded in further analysis to allow for steady-state magnetization.
Participants also underwent high-resolution structural T1-weighted
magnetization-prepared rapid acquisition gradient echo scans (MP-
RAGE; TR, 2250 ms; TE, 2.99 ms; FA, 9°; inversion time, 900 ms; 256 �
256 � 192 isotropic 1 mm voxels).

fMRI data preprocessing. MRI data were processed using SPM 8 (www.
fil.ion.ucl.ac.uk/spm) in Matlab 7.8 (MathWorks). Functional MRI data
were converted from DICOM to NIFTII format, spatially realigned to the
first image in the first run, and interpolated in time to the middle slice to
correct acquisition delay. The mean fMRI and MP-RAGE volumes were
coregistered using mutual information. For univariate analysis, the
MP-RAGE volumes were segmented and normalized to the Montreal
Neurological Institute T1 template in SPM by linear and nonlinear de-
formations. The normalization parameters were applied to all spatiotem-
porally realigned functional images, the mean image, and structural
images, obtaining normalized volumes with a voxel size of 3 � 3 � 3 mm.
Normalized fMRI data were smoothed with an isotropic Gaussian kernel
with full-width at half-maximum of 8 mm. No normalization or spatial
smoothing was performed on the fMRI data used for the multivariate
analysis. Freesurfer (http://surfer.nmr.mgh.harvard.edu) was used for
individual cortical surface reconstruction. The T1-weighted structural
images from individual participants were used for intensity normaliza-
tion, skull stripping, segmentation, 3D cortex reconstruction, and corti-
cal surface inflation.

Univariate analysis. To evaluate the effects of rule selection and mainte-
nance, normalized and smoothed functional images were analyzed using a
conventional univariate approach in SPM 8. First-level general linear model
(GLM) included six epoch regressors representing the sustained activations
during delay periods associated with the three task rules under chosen and
specified conditions, with onset times locked to the onsets of rule cues and
with durations matched to the length of the delays. The model also included
(1) six event regressors representing the onsets of the rule cues for the three
task rules under the two contexts; (2) three event regressors for activations in
response to the RDK stimuli under the three task rules; and (3) one event
regressor for activations in response to the second button response in all
conditions. Six rigid-body motion correction parameters and run means
were included as nuisance covariates. All epoch and event regressors were
convolved with a canonical hemodynamic response function, and the data
were high-pass filtered with a frequency cutoff at 128 s. Two second-level
ANOVAs were conducted, one on the transient activations at rule cue onsets
and the other on the sustained activations during delay periods. Each analysis
included six first-level contrast images (three task rules in chosen and spec-
ified context conditions) from each participant, adjusted for nonsphericity
with dependence between measures and unequal variance. Statistical para-
metric maps were then generated for effects of interest and corrected for
multiple comparison at p � 0.05 (FWE) across the whole brain.

Regions of interest. We identified regions of interest (ROIs) in the fron-
toparietal cortical surface that showed significant difference between
chosen and specified cues (voxelwise p � 0.001 uncorrected, and a cluster

extent threshold of 35 voxels). We also identified one additional ROI
[Brodmann’s area (BA) 17] in the visual cortex from a Brodmann’s area
map (Fischl et al., 2008). All ROIs were defined on a cortical surface
template and mapped onto an individual’s cortical surface using Free-
surfer. The individual surface ROIs were then transformed into individ-
ual native space and resampled at the raw resolution with a voxel size of
3 � 3 � 3.75 mm.

Multivoxel pattern analysis. We used MVPA (Haynes and Rees, 2005;
Norman et al., 2006) to decode rule-specific information during active
rule maintenance. MVPA takes advantage of aggregating information
across multiple voxels with different response selectivity (Kriegeskorte et
al., 2010) and has been shown to be more sensitive than conventional
univariate approaches (Kamitani and Tong, 2005; Zhang et al., 2010).

To obtain fMRI activation patterns for multivariate analysis, a first-
level GLM was estimated for each participant using the realigned and
slice-timed (but un-normalized and unsmoothed) images. The model
used one epoch for each delay period, with durations matched to the
length of the delay, resulting in 240 parameter estimates of sustained
activations for each participant. Similar to the univariate analysis de-
scribed above, the model also included covariates for transient effects of
rule cue onsets, RDK stimulus onsets, and the second button responses.
Parameter estimates of the voxels in each ROI were extracted to construct
the multivoxel patterns.

We trained linear support vector machine (SVM) classifiers using the
multivoxel patterns per ROI and calculated mean classification accura-
cies following a leave-one-run-out cross-validation procedure. That is,
for each cross-validation seven of eight fMRI scan runs were used as a
training set, and the one independent remaining run was used as a test
set. The classifiers were trained on the training set to identify patterns
corresponding to each rule, and were tested for classification accuracy on
the test set. The procedure was repeated eight times, and the accuracies
were averaged from eightfold cross-validation. We included all trials in
the main analysis, and also conducted an additional analysis only using
the subset of trials with correct decision responses. Analysis was per-
formed using MATLAB routines provided in the Princeton MVPA
Toolbox (www.csbmb.princeton.edu/mvpa) and LIBSVM imple-
mentation (http://www.csie.ntu.edu.tw/�cjlin/libsvm). The tradeoff
between errors of the SVM on training data and margin maximization
was set to 1.

To enable comparisons across ROIs and participants, for each cross-
validation we selected the same number of voxels across ROIs and par-
ticipants with the highest difference between conditions (one-way
ANOVA across conditions). We selected 120 voxels per ROI, comparable
with the dimensionality used in previous studies (Haynes and Rees, 2005;
Kamitani and Tong, 2005; Zhang and Kourtzi, 2010). The feature selec-
tion procedure was used only on the data from the training dataset,
independently during each fold of cross-validation. Pattern classification
and feature selection were, thus, performed on different datasets, and no
risk of circular inference was introduced (Kriegeskorte et al., 2009). Also,
to ensure that the classifier output did not simply result from univariate
differences across conditions, for each ROI we subtracted the mean value
across voxels from the response of each voxel and divided by the SD
across voxels (Misaki et al., 2010).

To determine whether we could predict the patterns from the three
task rules, we used multiple pairwise (one-against-one) binary classifiers
(Kamitani and Tong, 2005; Preston et al., 2008; Serences et al., 2009;
Zhang et al., 2010). In particular, we trained and tested three pairwise
classifiers and collated their results for each test pattern. The predicted
rule corresponded to the condition that received the fewest “votes
against” when collating the results across all pairwise classifications.
In the event of a tie, the prediction was randomly assigned to one of
the conditions. We expressed the accuracy of the three-way classifier
as the proportion of test patterns for which it correctly predicted the
true conditions.

To estimate the significance of the classification accuracies, we used
nonparametric permutation tests, without making assumptions about
the probability distribution of the data (Edgington and Onghena, 2007;
Pereira et al., 2009). In particular, for each ROI in each participant, we
ran the classification analysis in 5000 permutations, with the data labels

11854 • J. Neurosci., July 17, 2013 • 33(29):11852–11862 Zhang et al. • Representations of Chosen and Specified Rules

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://surfer.nmr.mgh.harvard.edu
http://www.csbmb.princeton.edu/mvpa
http://www.csie.ntu.edu.tw/~cjlin/libsvm


shuffled separately in the training and test sets for each cross-validation
in each permutation. This gave us a sampling distribution of the mean
classification accuracy under the null hypothesis that there is no infor-
mation of rule representations in the multivoxel patterns. The level of
significance ( p value) was estimated by the fraction of the permutation
samples that were greater than or equal to the classification accuracy
from the data without label shuffling. To account for the multiple statis-
tical tests that were performed for all ROIs, we evaluated the results using
a Bonferroni-corrected threshold ( p � 0.05) for significance.

Whole-brain searchlight analysis. A secondary whole-brain searchlight
analysis was performed to identify all regions coding task-relevant infor-

mation (Kriegeskorte et al., 2006). For each par-
ticipant, multivoxel patterns (un-normalized
and unsmoothed data) were extracted from a
sphere with a radius of 2 voxels, and the sphere
moved through each voxel in the brain. A linear
SVM was trained and tested as in the ROI analy-
sis, using the data from each sphere. The classifi-
cation accuracy of each sphere was assigned to the
central voxel in the sphere, yielding an image of
whole-brain classification accuracy. The classifi-
cation accuracy images for individual partici-
pants were normalized by applying the
deformation parameters obtained at the prepro-
cessing stage, and smoothed with an isotropic
Gaussian kernel with full-width at half-
maximum of 8 mm. These images were then en-
tered into a second-level one-sample t test to
identify voxels that showed significantly higher
than chance level classification accuracy.

Eye-tracking data analysis. We recorded eye-
movement data during fMRI scan sessions
from 11 participants using a 50 Hz SMI eye-
tracker (SensoMotoric Instruments). Eye-
movement data were preprocessed using the
BeGaze software (SensoMotoric Instruments)
and analyzed using custom codes in Matlab
(MathWorks). For each condition, we com-
puted the horizontal and vertical eye position
and the number of saccades per condition, sep-
arately for rule cue stage (1300 ms intervals
during which rule cues were presented) and
rule execution stage (2000 ms intervals during
which RDK stimuli were presented).

Results
Behavioral results
Participants were trained on three task
rules for making two-alternative percep-
tual decisions: motion, color, and size
discrimination. To quantify individual
participants’ performance, we measured
decision accuracy (percentage of correct
responses) and 82% discrimination
threshold (estimated from Weibull fits on
individual data) for each task rule from
five consecutive 1 h training sessions. A
repeated-measures ANOVA on behavioral
performance showed significant main ef-
fects of task rules (accuracy: F(2,36) � 10.71,
p � 0.001; threshold: F(2,36) � 5.15, p�0.05)
and training sessions (accuracy: F(4,72) �
13.32, p � 0.0000001; threshold: F(4,72) �
8.67, p � 0.00001). Participants’ sensitivity
in executing the task rules improved over
the course of training (Fig. 2A), as shown by
a significant linear trend over training ses-
sions (accuracy: F(1,18) � 39.55, p �

0.00001; threshold: F(1,18) � 19.67, p � 0.001). In particular, for each
task rule we observed significantly increased decision accuracy (mo-
tion rule: t(18) � 4.54, p � 0.001; color rule: t(18) � 2.81, p � 0.05;
size rule: t(18) � 4.09, p � 0.001) and decreased 82% threshold (mo-
tion rule: t(18) � �3.33, p � 0.01; color rule: t(18) � �2.29, p � 0.05;
size rule: t(18) � �2.71, p � 0.05) by the last training session. Behav-
ioral performance across the three rules did not significantly differ in
the last two training sessions (accuracy: F(1,18) � 1.62, p � 0.22;
threshold: F(1,18) � 2.23, p � 0.15), indicating that a steady level of
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Figure 2. Behavioral results. A, Decision accuracy (average data across participants) of the three task rules across coherence
levels in the first and the fifth training sessions. The curves indicate the best fit of the Weibull function. The dashed lines
indicate the 82% correct threshold. B, Average decision accuracy and response time across participants in the scan session.
Error bars denote SEs.

Figure 3. fMRIresponsesofestablishingaruleattheinitialcuestage.A,Brainregionsthatshowedincreasedanddecreasedactivityinvoluntary
rule selection compared with specified rule instruction ( p � 0.05, FWE corrected). B, Brain regions that showed a main effect of task rules when
establishingtherule(voxelwise p�0.001uncorrected,withaclusterextentthresholdof35voxels).
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performance was attained after training. No significant differences
on response times (RTs) were found between the first and the last
training sessions (motion rule: F(1,18) � 1.44, p � 0.26; color rule:
F(1,18) � 1.10, p � 0.30; size rule: F(1,18) � 0.03, p � 0.87).

To test whether participants’ responses could be affected by
task-irrelevant information, we segregated behavior data accord-
ing to coherence levels of the irrelevant features (e.g., color co-
herence for trials with the motion or size rules). No significant
effects on the coherence levels of the irrelevant features were
observed in the last training session (accuracy: F(1,18) � 0.20, p �
0.66; response time: F(1,18) � 0.29, p � 0.60). These results sug-
gest that after training participants’ responses were not likely to
be influenced by irrelevant features in the rule-based perceptual
decision tasks.

To match the difficulty of the three task rules in the fMRI
session, the coherence level for each visual feature was set to the
82% accuracy threshold for each participant, estimated from the
last training session. During scanning, participants performed
the decision tasks with high accuracies (motion rule, 76.30 �
9.63%; color rule, 82.95 � 7.85%; size rule, 79.84 � 8.11%).
Repeated-measures ANOVAs showed a marginal effect in perfor-
mance between task rules (accuracy: F(2,36) � 2.94, p � 0.07;
response time: F(2,36) � 3.03, p � 0.06) (Fig. 2B,C), but no sig-
nificant difference in performance between chosen and specified
conditions (accuracy: F(1,18) � 1.38, p � 0.26; response time:
F(1,18) � 1.367, p � 0.21), between trials in which participants
changed rules and stayed on the same rule as in the last trial
(accuracy: F(1,18) � 0.35, p � 0.56; response time: F(1,18) � 0.04,
p � 0.84), or between trials with different delay durations in the
chosen condition (accuracy: F(4,72) � 0.43, p � 0.79; response
time: F(4,72) � 1.21, p � 0.32) and specified condition (accuracy:
F(4,72) � 0.50, p � 0.74; response time: F(4,72) � 0.30, p � 0.88).
Further, for the chosen condition participants were not biased to
choose any particular rule (Friedman test, � 2 � 0.76, p � 0.69)
and were not biased to select rules presented left or right to the
central fixation (Wilcoxon signed-rank test, Z � �0.18, p �
0.86). These results suggest that task difficulties were similar be-
tween rules and between contexts by our task manipulation, and
that participants made rapid decisions on the rule to perform
after cue onset in both chosen and specified conditions.

Establishing and maintaining the neural representations of
rules under different contexts: univariate analysis
To compare BOLD responses in establishing task rules under
chosen and specified conditions, we performed a random-effects
ANOVA with one context factor (chosen, specified) and one rule
factor (motion, color, size) on transient activations to rule cues
presented at the beginning of each trial. A whole-brain univariate
analysis yielded significantly higher activations (p � 0.05, FWE
corrected) for voluntary rule selection, compared with specified
rule instruction, in medial-frontal, dorsolateral prefrontal, and
parietal cortices. We also observed a significantly greater fMRI
response for establishing specified rules versus chosen rules in the
medial orbitofrontal cortex (OFC) (Fig. 3A; Table 1).

Based on the univariate analysis and our hypothesis that a
frontoparietal network establishes rule representations (Sakai
and Passingham, 2003, 2006; Rushworth et al., 2004; Forstmann
et al., 2006; Rowe et al., 2007, 2008; Woolgar et al., 2011a), we
defined nine bilateral cortical ROIs for further multivariate
analysis of between-rule effects. These ROIs showed different
responses between establishing chosen and specified rules, in-
cluding premotor dorsal (PMd), premotor ventral (PMv), dor-
solateral prefrontal cortex (DLPFC), insula, pre-supplementary

motor area (SMA), caudal anterior cingulate cortex (cACC), me-
dial OFC, dorsal intraparietal sulcus (dIPS), and ventral IPS
(vIPS). Because the visual cortex may respond to the presenta-
tions of rule cues, we also defined one additional ROI in BA 17
from an independent template (Fischl et al., 2008), although no
significant differences between chosen and specified conditions
were observed in this region.

Our task design incorporated a variable delay period (3–11 s)
between rule cue offset and RDK stimulus onset (Fig. 1A), during
which participants maintained an established task rule
(Bengtsson et al., 2009). BOLD response associated with rule
maintenance was modeled as epochs with variable lengths,
matched to delay durations. In this way, we can identify sustained
activations during the delay period, separately from transient ac-
tivations associated with establishing rules at the beginning of the
trial or executing rules at the RDK stimulus onset (Sakai and
Passingham, 2003, 2006). A random-effects ANOVA (context �
rule) on sustained activations during delay periods showed
higher activations (p � 0.05, FWE corrected) for maintaining
specified rules than maintaining chosen rules in the medial or-
bitofrontal and inferior parietal cortex (Table 2). The reverse
contrast revealed no significant activation, indicating that a uni-

Table 1. Regions associated with stronger transient activation for chosen rule cues
or specified rule cues (Fig. 3A)

Region t value

MNI coordinates

x y z

Chosen � specified
PMd 7.65 �27 �4 52

7.82 30 �1 49
PMv 7.30 �45 2 34

5.31 45 2 37
DLPFC 6.79 �45 29 28

6.85 45 32 28
Insula 9.34 �33 17 4

7.97 30 23 4
Pre-SMA 10.81 �3 14 49
cACC 7.23 �6 23 34
dIPS 8.67 �33 �46 46

7.47 36 �49 46
vIPS 8.72 �21 �67 40

6.57 33 �73 31
Precuneus 8.60 9 �64 49

7.94 �9 �64 49
Middle cingulate gyrus 6.67 �3 �25 28
Fusiform gyrus 6.13 �30 17 4
Talamus 5.18 12 �16 10

Chosen � specified
Medial OFC �5.66 �6 38 �17
Angular gyrus �4.71 �51 �70 28

Values are statistics ( p � 0.05, FWE corrected) and peak coordinates (separated by �8 mm) reported in MNI space
(mm).

Table 2. Regions associated with stronger sustained activation for maintaining
specified rules than voluntary rules during delay periods

Region t value

MNI coordinates

x y z

Middle orbitofrontal cortex 5.97 0 47 �11
Middle frontal gyrus 5.36 �24 35 43
Ventral intraparietal sulcus 6.05 �39 �79 34
Precuneus 4.98 �6 �55 28
Middle cingulated gyrus 4.78 �3 �43 43
Calcarine sulcus 4.86 �6 �55 7

Values are statistics ( p � 0.05, FWE corrected) and peak coordinates (separated by �8 mm) reported in MNI space
(mm). The reverse contrast showed no significant activations.
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variate analysis failed to identify sustained activation as greater
for chosen rules than specified rules, in contrast with the transient
activation with selection at the start of each trial.

We then examined whether there was a main effect of task
rules, regardless of whether the rules were voluntarily chosen or
specifically instructed. Transient activation associated with rule
cue presentation was modulated by task rules in the occipital
lobe, including the inferior occipital gyrus, lingual gyrus, and
cuneus (voxelwise p � 0.001 uncorrected and a cluster extent
threshold of 35 voxels) (Fig. 3B). No significant effect of task rules
during delay periods was observed. In other words, there was no
univariate effect within the frontoparietal network that distin-
guished the three task rules.

Representation of chosen and specified
rules: multivariate analysis
Using MVPA (Haynes and Rees, 2005; Nor-
man et al., 2006), we examined whether dis-
tributed fMRI patterns in the frontoparietal
ROIs contain rule-specific information dur-
ing active rule maintenance. In particular,
we constructed multivoxel activation pat-
terns of rule maintenance from response-
amplitude estimates of sustained activations
during delay periods on a trial-by-trial basis
(using unsmoothed and un-normalized
data), and used linear support vector ma-
chines to discriminate between fMRI pat-
terns associated with the three task rules
(Fig. 4A).

We first considered which frontoparietal
ROIs maintained rule-specific information,
regardless how the rule was established. By
pooling data from the chosen and specified
conditions, we observed significant coding
of which rule the participants were intend-
ing to perform during delay periods (Fig.
4B) in PMd, PMv, DLPFC, pre-SMA, dIPS,
vIPS, and BA 17 (p � 0.01), but not in in-
sula, cACC, and OFC (p � 0.99). We also
conducted whole-brain searchlight analysis
to identify any additional regions that en-
code task-relevant information. The search-
light analysis largely confirmed the ROI
results (Fig. 5A), with significant rule coding
in the PMv, DLPFC, dIPS, and the visual
cortex (Table 3).

We then tested rule coding for the two
context conditions separately. A repeated-
measures ANOVA on classification accu-
racies showed a higher classification
accuracy in the chosen condition com-
pared with the specified condition in the
lateral frontal cortex (F(1,18) � 7.60, p �
0.01), but not in the medial frontal
(F(1,18) � 2.16, p � 0.16) or parietal cortex
(F(1,18) � 0.05, p � 0.82). Significant rule
coding was observed in both chosen and
specified conditions in PMv (chosen: p �
0.01; specified: p � 0.01), dIPS (chosen:
p � 0.01; specified: p � 0.01), vIPS (cho-
sen: p � 0.01; specified: p � 0.01), and BA

17 (chosen: p � 0.01; specified: p � 0.01). Rule-specific represen-
tation was significant only in the chosen condition but not the
specified condition in PMd (chosen: p � 0.01; specified: p �
0.99), DLPFC (chosen: p � 0.01; specified: p � 0.99), and pre-
SMA (chosen: p � 0.01; specified: p � 0.20). No significant en-
coding of rule information was observed in insula (chosen: p �
0.99; specified: p � 0.99), cACC (chosen: p � 0.63; specified: p �
0.99), or OFC (chosen: p � 0.99; specified: p � 0.99). When
comparing mean classification accuracies in ROIs with signifi-
cant coding in both chosen and specified conditions (PMv, dIPS,
vIPS, and BA 17) versus those with significant coding only in the
chosen condition (PMd, DLPFC, and pre-SMA), there was a sig-
nificant interaction between rule-cue context (chosen vs speci-
fied) and ROI groups (F(1,18) � 5.01, p � 0.05). These results
suggest a broad representation of rule-specific information in a

A

Chosen rule

Specified rule

Training data Testing data

Classification
Cross

Classification

PMd PMv DLPFC Insula dIPS vIPSpreSMA cACC OFC
30

35

40

45

Cl
as

si
fic

at
io

n 
ac

c.
 (%

)

30

35

40

45

30

35

40

45

C Rule cross-classification

* ** ***

Chosen
Specified

B Rule classification

30

35

40

45

Cl
as

si
fic

at
io

n 
ac

c.
 (%

)

30

35

40

45

30

35

40

45

PMd PMv DLPFC Insula dIPS vIPSpreSMA cACC OFC
* * * * ** * * * * * * * * *

All
Chosen
Specified

D

Cr
os

s-
cl

as
si

fic
at

io
n 

ac
c.

 (%
)

Classification acc. (%)

20 30 40 50 60
20

30

40

50

60 PMv

20 30 40 50 60
20

30

40

50

60 dIPS+vIPS Chosen
Specified
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frontoparietal network during mainte-
nance of the three perceptual decision
rules.

Generalization and consistency of rule
representation across contexts
Maintaining a voluntarily chosen task rule
might elicit the same pattern information
as maintaining the same rule established
by specific instructions. Alternatively, the
representation may be distinct, according
to the context under which the rules were
established. To distinguish these alterna-
tives, we examined the relationship be-
tween the fMRI pattern information of
chosen and specified rules within ROIs.
Specifically, we trained the pattern classi-
fier on specified rules and tested its gener-
alized performance on discriminating
chosen rules, and vice versa (i.e., “cross-
classification”; Fig. 4A).

The pattern classifier trained on speci-
fied rules could accurately discriminate
between chosen rules in PMv (p � 0.01)
and dIPS (p � 0.01), and marginally in vIPS (p � 0.06). Multi-
voxel patterns in the same regions can also discriminate between
specified rules when the classifier was trained on chosen rules [PMv
(p � 0.05), dIPS (p � 0.05), and vIPS (p � 0.01)], suggesting that
rule representations in these brain regions are independent of the
context under which the rule was established (Fig. 4C). We also
observed significant classification accuracy in BA 17 for training
on chosen rules and testing on specified rules (p � 0.01), and for
the reverse direction of cross-classification (p � 0.01).

Interestingly, for pre-SMA the classifier trained on chosen
rules could accurately discriminate between specified rules (p �
0.05), but not for the opposite direction (p � 0.13), suggesting
that rule representation in the pre-SMA is not fully context inde-
pendent, but that some voxels in this region may retain their
response preferences independently under different contexts.

A whole-brain searchlight analysis for cross-classification be-
tween chosen and specified conditions was consistent with the
ROI results (Fig. 5B; Table 3). Cross-classification accuracies
were significant above chance in the PMv, and also in the IPS and
the visual cortex at a lower threshold (voxelwise p � 0.001 un-
corrected and a cluster extent threshold of 35 voxels).

We further examined whether there is a consistency of
classification accuracies between different analyses in the
context-independent ROIs. Correlation analysis performed on
classification accuracies across all participants confirmed a
significant relationship between classification and cross-
classification results in PMv (chosen: r � 0.52, p � 0.05; speci-
fied: r � 0.53, p � 0.05). When dIPS and vIPS voxels were pooled
together, we also observed consistency between classification and
cross-classification accuracies (chosen: r � 0.45, p � 0.05; spec-
ified: r � 0.56, p � 0.05) (Fig. 4D). No significant correlation was
observed in BA 17 (chosen: r � 0.36, p � 0.13; specified: r � 0.34,
p � 0.15).

Invariant rule representation during maintenance and
execution stages
Because participants executed rules that had been maintained
during delay periods, it is possible that rule-specific information
during maintenance relates to its representation during the later

execution stage. Therefore, we constructed fMRI patterns of rule
execution from activations at the onset of the RDK stimuli, and
examined whether classifiers trained on patterns from mainte-
nance stage could discriminate patterns from execution stage
(Fig. 6). This cross-stage classification analysis revealed invariant
rule representations across maintenance and execution stages for
the chosen condition in dIPS (p � 0.01), vIPS (p � 0.05), and
PMv (p � 0.01), and marginally for the specified condition in
dIPS (p � 0.09) and vIPS (p � 0.09), but not in PMv (p � 0.99).
Other ROIs with significant rule-specific information during

Figure 5. Whole-brain searchlight analysis results. Regions with significant classification accuracies above the chance level are
displayed in yellow ( p � 0.05 corrected for cluster-size threshold) or red (voxelwise p � 0.001 uncorrected, with a cluster extent
threshold of 35 voxels). A, Multivariate searchlight analysis of rule classification during delay periods. Data from chosen and
specified trials are pooled together. B, Multivariate searchlight analysis of rule cross-classification between chosen and specified
conditions.
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Figure 6. Generalization of rule representation between maintenance and execution. MVPA
accuracies per ROI for the classification of three rules across maintenance and execution stages
are shown for chosen and specified conditions. Error bars denote SEM.

Table 3. Regions associated with significant coding of task rules in whole-brain
searchlight analysis

Analysis Region t value

MNI coordinates

x y z

Rule classification PMv* 4.51 �51 9 36
4.10 57 9 42

DLPFC* 5.96 �48 27 36
dIPS* 4.99 �27 �54 51
Calcarine sulcus* 5.13 �6 �96 �3

5.31 15 �90 �3
Medial superior frontal gyrus 5.21 9 45 42
vIPS 3.78 �27 �72 30
Supramarginal gyrus 5.08 45 �48 27

Rule cross-classification PMv* 4.84 45 21 45
vIPS 5.15 �42 �78 21
Calcarine sulcus 4.17 6 �93 6

Values are statistics (*p � 0.05 cluster corrected, or p � 0.001 uncorrected with a cluster extent threshold of
35 voxels) and peak coordinates reported in MNI space (mm).
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maintenance stage did not have invariant representations during
execution stage: PMd (chosen: p � 0.21; specified: p � 0.24),
DLPFC (chosen: p � 0.99; specified: p � 0.99), pre-SMA (chosen:
p � 0.99; specified: p � 0.99), and BA 17 (chosen: p � 0.99;
specified: p � 0.99).

Control analyses: low-level visual features, motor responses,
rule difficulties, and eye movements
Is it possible that the significant rule-specific information we
observed could be caused by differences in low-level visual
features in the rule cues presented at the beginning of each
trial? To rule out this possibility, we conducted a control anal-
ysis by using a six-way classifier to discriminate the six possible
rule cues for the chosen condition (Fig. 1B). This analysis
showed that no ROI encodes information of rule cues during
delay periods (Fig. 7) and found no significant difference in the
classification accuracies between the ROIs (F(9,162) � 0.73, p �
0.68), suggesting that our results of rule representation during

maintenance cannot be attributed to differences in low-level vi-
sual features in rule cues. However, it is recognized that this six-
way classification analysis has reduced power because of fewer
patterns per class than the main classification analysis. Further ROI
analysis of the univariate response on unsmoothed and un-
normalized data showed no significant effect of rules in either chosen
(F(2,36) � 0.25, p � 0.78) or specified conditions (F(2,36) � 1.28, p �
0.29) (Fig. 8), suggesting that our results could not be caused by
differences in the overall BOLD response between rules.

We investigated whether planning, encoding, or executing
motor responses for rule execution may have an effect on rule
encoding during delay periods. Note that the correct responses
were randomized across trials and hence were dissociated from
task rules, allowing us to decode participant’s binary motor re-
sponses. This analysis did not show any ROI that encodes infor-
mation about future button press during delay periods (p � 0.19,
permutation tests). A second analysis tested whether the ob-
served rule-specific information could be explained by the

marginal differences in behavioral per-
formance across rules. We repeated the
MVPA procedure only using trials with
correct responses and RT no longer than
the 90% percentile of individual RT dis-
tributions (75.39% of total trials). The
results were similar to the main analysis
with all trials included (F(1,18) � 0.27,
p � 0.61). For the chosen condition,
rule decoding was significant in the
PMd, PMv, DLPFC, pre-SMA, dIPS,
and vIPS ( p � 0.01, permutation tests).
For the specified condition, rule decod-
ing was significant in the PMv ( p �
0.01), and marginally significant in the
dIPS ( p � 0.08) and vIPS ( p � 0.05).
Therefore, the significant rule coding
cannot be adequately explained by the
marginal performance differences be-
tween rules.

Finally, analysis of eye movement data
did not show any significant difference in
the eye position or number of saccades
between context conditions or task rules
(Fig. 9), suggesting that our results could
not readily be attributed to eye move-
ments during rule cue or execution stages.

Discussion
Our findings provide novel insights into the functional organiza-
tion and properties of the neural systems underlying goal-
directed behaviors. Using MVPA, we found that a frontoparietal
network prominently encodes rule-specific information when a
task rule is actively maintained before its actual performance,
consistent with previous studies (Li et al., 2007; Rowe et al., 2007;
Woolgar et al., 2011a).

However, our results suggest that regions within this network
differentially contribute to the representations of rules, according
to whether the rules were chosen by participants themselves or
instructed to the participants. In particular, rule representations
in the dorsolateral and medial frontal cortex depend on rule-cue
context: the rules could be decoded only when the rules were
voluntarily chosen by participants, but not when the rules were
instructed. In contrast, rule representations maintained in the ven-

Figure 7. MVPA on task cues in the chosen condition. Classification accuracies to discrimi-
nate the six task cues in the chosen condition (motion/color, color/motion, size/color, color/size,
motion/size, and size/motion) were estimated from a six-way classification for each ROI. Error
bars denote SEMs across participants. Mean classification accuracies are not significantly differ-
ent from chance level (16.67%, dashed line) in any ROI ( p � 0.10, nonparametric permutation
tests).
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trolateral frontal and parietal cortex were significant in both chosen
and specified contexts and were context independent, as indicated
by cross-classifications between different rule-cue contexts. Further-
more, our study shows how maintaining rule-specific information
in anticipation of stimuli can influence the later execution of the rule:
rule representations in context-independent regions are invariant
from maintenance to execution stages, whereas rule representations
in the context-dependent regions do not generalize to execution
stage.

Previous work has linked dedicated frontal regions to partic-
ular task rules (Sakagami and Tsutsui, 1999; Sakai and Passing-
ham, 2003). However, neurophysiological studies in nonhuman

primates and human neuroimaging studies suggested that differ-
ent rules can be differentially and dynamically represented by
single neurons or single regions, within a dynamic and adaptive
coding scheme (Asaad et al., 2000; Wallis et al., 2001; Wallis and
Miller, 2003; Haynes et al., 2007; Soon et al., 2008; Bode and
Haynes, 2009; Woolgar et al., 2011a,b).

The current study goes further in demonstrating the contex-
tual influences on neural representations of task rules (Fig. 10). In
context-dependent regions, a lack of common rule representa-
tions between chosen and specified conditions suggests that the
specified and voluntarily selected rules are possibly encoded by
separate neural populations even when the rule formally repre-
sents the same cognitive process. These subpopulations may be
intermixed and thus detectable with multivariate but not uni-
variate methods. Neurons in these regions may be turned to
code rule-specific information (i.e., the rule to perform)
and/or context-specific information (i.e., more than one rule
available to choose from), and hence multivoxel fMRI pat-
terns for task rules measured at a large population level are
distinct between different contexts. Context-independent re-
gions, on the other hand, only code information that is rele-
vant to the pending task rules and do so with a similar
neuronal ensemble (at least at the limits of MVPA resolution).

We used three task rules that shared the same procedural steps
(i.e., two-alternative visual discriminations), but differed in (1)
the visual feature to attend, and (2) the corresponding responses
to the attended feature. Participants achieved high and similar accu-
racy in all the three rules and did not have significant switch cost
when changing from one rule to another. This suggests that dur-
ing delay periods, the participants not only maintained informa-
tion for the visual feature to attend, but also information about
associations between corresponding rule-specific categories and
responses. Our study is therefore distinct from previous work
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that manipulated top-down control of attention but did not
change the operation of the tasks (Corbetta et al., 1990; Shulman
et al., 1999; Meinhardt and Grabbe, 2002) or manipulated stimu-
lus–response mapping while maintaining top-down control
(Bode and Haynes, 2009; Reverberi et al., 2012). The three rules
used here could be characterized as attentional sets that define the
task-relevant features and associated responses (Corbetta and
Shulman, 2002), and fall within the concept of task set (Sakai,
2008). The rule-specific information during the delay periods is
more likely to be associated with a reconfiguration process that
links visual features and responses, rather than selective attention
to visual features alone.

Our study does not in itself rule out the possibility that, after
extensive training, some regions might in principle maintain a
“pointer” to long-term memory representation of the rules.
However, this account is not sufficient to explain all our results.
Consistent with our interpretation, the parietal cortex encodes
task rules even after the participants only have a few minutes of
practice (Woolgar et al., 2011a). In addition, verbal cuing of dif-
ferent tasks sets leads to differential activations in regions that are
relevant to the respective spatial, verbal, or semantic nature of the
task (Sakai and Passingham, 2003, 2006; Rowe et al., 2007). This
cannot be explained if the pointer reflects the instruction rather
than the rule itself.

Choosing to perform a rule, compared with specifically
instructing the same rule, is associated with transiently in-
creased activations in the frontoparietal cortex, similar to pre-
viously reported activations for voluntary selection of task
rules (Forstmann et al., 2006; Haynes et al., 2007; Arrington,
2008; Rowe et al., 2008; Bengtsson et al., 2009), voluntary
selection of actions (Walton et al., 2004; Karch et al., 2010;
Rowe et al., 2010; Thimm et al., 2012; Zhang et al., 2012), and
voluntary decisions of whether or not to implement a specific
rule (Kühn and Brass, 2009; Kühn et al., 2009). This cortical
network is commonly activated with multiple kinds of cogni-
tive demands, including perception, selection, memory, and
problem solving (Duncan and Owen, 2000; Duncan, 2001,
2010). In our paradigm, these regions may execute a compe-
tition process during voluntary selections (Rowe et al., 2010;
Zhang et al., 2012) or monitor potential conflicts when more
than one rule is available to choose (Botvinick et al., 2001).
While participants voluntarily choose between two rules in the
chosen condition, the design of our study discourages several
potential selection strategies. First, only two of three possible
rules are available in chosen trials, and the chosen trials are
further intermixed with specified trials. Recent studies suggest
that such a design encourages participants to make a choice in
each trial and discourages simply repeating or switching from
the last performed rules, because these strategies are not al-
ways possible (Lau et al., 2004; van Eimeren et al., 2006; Mu-
eller et al., 2007; Zhang et al., 2012). Second, difficulties of
each task rule were presented at individually calibrated level
and the rules were not associated with differences in explicit or
expected rewards. Therefore, a participant’s choice was not
determined by reward-based mechanisms or implicit differ-
ences in reward that may arise from different levels of perfor-
mance of each rule. Third, our data suggested that a
participant’s choice was not determined by the cue locations.
Although it remains conceivable that some participants use
particular strategies in some trials, this would not affect our
main research question regarding the contextual modulation
of rule representations during maintenance periods.

Two results require further consideration. First, the role of
the visual cortex in rule-based visual perceptual decisions re-
mains unclear. We observed significant rule representations in
the visual cortex under both chosen and specific contexts.
However, the classification accuracies in the visual cortex did
not correlate with that from cross-classification analysis, sug-
gesting the rule-specific information in the visual cortex may
not be fully context independent. It is possible this rule-
specific information is modulated by top-down control signals
from frontoparietal cortex (Yantis et al., 2002). Other imaging
methods with superior temporal resolution like magneto- or
electro-encephalography would be required to explore this
hypothesis. Second is the lack of rule encoding in the cACC in
both ROI and whole-brain searchlight analysis, contradictory
to a previous study on rule representation with arithmetic
operations (Haynes et al., 2007). Interestingly, we observed
that the rule information can be decoded from the medial
superior frontal gyrus, close to the areas identified by other
studies of task rules (Haynes et al., 2007; Momennejad and
Haynes, 2012). It is possible that representation of rule-
specific information is domain dependent. We investigated
three stimulus–response mapping rules for perceptual deci-
sions, which may preferentially engage more posterior regions
(Koechlin et al., 2003). A recent study on abstract stimulus–
response mapping also demonstrated a lack of rule representa-
tion in the ACC (Woolgar et al., 2011a). Another possibility is
that this difference arose because our participants underwent ex-
tensive prescan training, during which the cognitive load during
early learning is later reduced (Chein and Schneider, 2005). Fu-
ture studies using abstract task rules and multiple scan sessions
over the course of training (Zhang and Kourtzi, 2010; Zhang et
al., 2010) may test these possibilities.

In summary, these findings provide novel insights into the
effects of acquisition context on the distributed neuronal repre-
sentations of task rules. Rule representations in the ventrolateral
and parietal cortex are independent of how the rules are estab-
lished and are invariant from maintenance to execution. In con-
trast, rule representations in the dorsolateral and medial frontal
cortex depend how the rules are first established: by choice or
instruction. These results raise an intriguing possibility that
context-independent representations enable robust selective at-
tention to task-relevant information, while context-dependent
representations enable efficient flexibility to external environ-
ment changes. Balancing these mechanisms to achieve one’s goals
in a changing environment may be ecologically important, em-
phasizing the need for adaptive cognitive control.
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