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Low-Dimensional Sensory Feature Representation by

Trigeminal Primary Afferents
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Faculty of Life Sciences, University of Manchester, M13 9PT United Kingdom

In any sensory system, the primary afferents constitute the first level of sensory representation and fundamentally constrain all subsequent
information processing. Here, we show that the spike timing, reliability, and stimulus selectivity of primary afferents in the whisker system can
be accurately described by a simple model consisting of linear stimulus filtering combined with spike feedback. We fitted the parameters of the
model by recording the responses of primary afferents to filtered, white noise whisker motion in anesthetized rats. The model accurately
predicted not only the response of primary afferents to white noise whisker motion (median correlation coefficient 0.92) but also to naturalistic,
texture-induced whisker motion. The model accounted both for submillisecond spike-timing precision and for non-Poisson spike train struc-
ture. We found substantial diversity in the responses of the afferent population, but this diversity was accurately captured by the model: a 2D filter
subspace, corresponding to different mixtures of position and velocity sensitivity, captured 94% of the variance in the stimulus selectivity. Our
results suggest that the first stage of the whisker system can be well approximated as a bank of linear filters, forming an overcomplete represen-

tation of a low-dimensional feature space.

Introduction

At the first stage of any sensory system, modality-specific receptors
transduce sensory stimuli into temporal patterns of action poten-
tials. Primary afferents convey these action potentials to subsequent
stations of the sensory pathway. The manner in which primary af-
ferents encode sensory information thus fundamentally constrains
all subsequent information processing. How well do we understand
how primary afferents in any given sensory system encode sensory
stimuli? A useful test is to formulate knowledge of the afferent’s
behavior as a quantitative model and to attempt to predict the affer-
ent’s response to sensory signals. A successful model will accurately
capture key aspects of the neuronal response: spike timing, response
reliability, spike pattern statistics, and stimulus selectivity.

Rodents use their whiskers (mystacial vibrissae) to explore the
environment by means of exploratory, forward, and backward
“whisking” movements. Both whisking itself and whisker-object
contact evoke spikes in the primary afferents (Szwed et al., 2003;
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Arabzadeh et al., 2005; Leiser and Moxon, 2007; Khatri et al., 2009).
The encoding mechanism is likely to involve stresses and strains
within the tissues of the follicle—sinus complex (FSC), which are
transduced by diverse mechanoreceptors (Mitchinson et al., 2008;
Lottem and Azouz, 2011; Ebara et al., 2002). Primary afferents, with
cell bodies located in the trigeminal ganglion, innervate the whisker
follicle and convey information about whisker motion, encoded as
patterns of action potentials, to the cerebral cortex by means of
parallel, trisynaptic pathways through the brainstem and thala-
mus (for review, see Diamond and Arabzadeh, 2013).

Previous investigations have determined features of whisker
motion to which primary afferents respond and have found that
they do so with remarkable reliability and spike-timing precision
(Zucker and Welker, 1969; Gibson and Welker, 1983; Lichten-
stein et al., 1990; Szwed et al., 2003; Jones et al., 2004; Arabzadeh
et al., 2005; Lottem and Azouz, 2011; Storchi et al., 2012). Our
aim here was to capture the relationship between whisker motion
and primary afferent responses in a simple model and thereby to
address the following questions. What kinetic features of whisker
motion (position, velocity, etc) do primary afferents encode?
How diverse are different primary afferents? Can a model capture
the response to random whisker motion? Can such a model gen-
eralize to whisker motion induced by whisking textured objects?
Collectively, what space of kinetic features does the afferent pop-
ulation encode?

To investigate these issues, we recorded extracellular responses of
individual primary afferents both to deflection of the whiskers with
low-pass-filtered white noise (hereafter referred to as “white noise”),
and to playback of texture-induced whisker motion (Wolfe et al.,
2008). We found that the spike timing, reliability, and stimulus se-
lectivity of primary afferents in the whisker system could be accu-
rately described by a generalized linear model (GLM), consisting of
linear stimulus filtering combined with spike feedback. The model
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not only predicted the response of primary A
afferents to white noise whisker motion but

also generalized to texture-induced whisker

motion. Analysis of the model gave insight

into the space of kinetic features encoded by

the primary afferent population.

Materials and Methods
Electrophysiology

All experiments were conducted in accordance

with international, UK Home Office and insti-

tutional standards for the care and use of ani- B
mals in research. Experimental procedures

have been previously described (Bale and Pe-

tersen, 2009). Briefly, adult male Wistar rats

(n = 8, mean weight 293 g, SD 24 g) were anes-

thetized with urethane (1.5 g/kg body weight)

and placed into a stereotaxic apparatus. Sup-

plemental anesthetic doses were administered

(10% of initial dose) if corneal or hindpaw re-

flexes were observed. Body temperature was C
maintained at 37.5°C using a homeothermic

heating system. A square craniotomy was made

0-3 mm posterior to bregma, 0.5-3.5 mm lat-

eral to bregma and the dura reflected. A metal

ground screw was attached to the skull 2 mm

posterior to the craniotomy. A tungsten micro-

electrode (8—10 M) was inserted vertically into

the brain using a piezoelectric motor. Extracellu-

lar signals were pre-amplified, digitized (sam-

pling rate 24.4 kHz), bandpass filtered (300—-3000 D
Hz), and continuously stored to hard disk for off-

line analysis.
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The presence of a unit was detected by contin-
ual, manual deflection of the whiskers with a
hand-held probe, as the microelectrode was

lowered. Once a well isolated unit was identi- 1
fied, its principal whisker was determined by
manual deflection of individual whiskers. All
whiskers were cut to 5 mm from the skin and
the principal whisker was inserted into a snugly
fitting plastic tube attached to a piezoelectric
actuator. The resulting dynamic range of whis-
ker movement was 0.8 mm, ~40°. We used this
device to apply two types of stimulus: filtered
white noise whisker motion (see Fig. 1A,B)
and texture-induced whisker motion (Fig. 1 E, F).

White noise was generated at the stimulus sampling rate (12.2 kHz)
and low-pass filtered by convolution with a Gaussian (SD 1.6 ms). The
texture stimulus was constructed from optical recordings of whisker mo-
tion (sampled at 4 kHz) in the rostrocaudal plane, obtained by Wolfe et
al. (2008) from awake rats as they whisked a textured surface (P150 grade
sandpaper). Episodes of whisker-texture contact (median duration 723
ms) were stitched together so that the final position of one trace equaled
the first position of the subsequent one, to form a single 10 s sequence. To
minimize discontinuities in the first derivative, we ensured that whisker
velocity was low near the episode edges. Finally, the entire 10 s sequence
was bandpass filtered (1-600 Hz). For consistency with the conditions
under which the whisker motion data were registered, all whisker motion
stimuli were delivered in the rostrocaudal direction.

The stimulus protocol included both stimulus sequences that were
repeated on each trial (“repeated”) and stimulus sequences where the
sequence presented on each trial was different (“nonrepeated”). Nonre-
peated white noise thoroughly explores stimulus space and responses to
these episodes were used for fitting the model parameters, as detailed
below. Responses to repeated stimuli were used for testing the predictive

Trial
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Primary trigeminal afferent responses to dynamic whisker stimulation. A, Autocorrelation of white noise stimulus,
plotted in normalized units. B, Excerpt of white noise stimulus. €, D, Raster plots of spikes evoked by the white noise excerpt in B.
E, Autocorrelation of texture-induced whisker motion. F, Excerpt of texture-induced whisker motion. G, H, Raster plots of spikes
evoked by texture-induced whisker motion for the same units in Cand D.

power of the model. Each trial (total 50) consisted of the following: 10 s
texture (repeated), 10 s white noise (repeated), and 10 s white noise
(nonrepeated).

We confirmed that mechanical playback of the whisker motion stim-
ulus through the piezoelectric actuator was accurate when using a pho-
totransistor circuit (Storchi et al., 2012).

Data analysis

Single units were isolated from the extracellular recordings as previously
described, by thresholding and clustering in the space of 3—5 principal
components using a mixture model (Bale and Petersen, 2009). Only units
exhibiting a clear refractory period were accepted.

GLM and linear—nonlinear Poisson model. To investigate the coding
properties of trigeminal ganglion neurons, we fitted single unit responses
to white noise to two types of model: a linear—nonlinear Poisson (LNP)
model (for review, see Schwartz et al., 2006) and a GLM (Nelder and
Wedderburn, 1972; Truccolo et al., 2005; Paninski, 2004). To perform
these analyses, the observed spike trains were discretized into bins
(0.125-10 ms) and represented by the vector 7: element r, was 1 if one or
more spikes occurred in time bin £, and 0 otherwise. The whisker stimu-
lus was represented as a matrix, X, with rows denoted X,. The elements of
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these rows were samples of the whisker position in the interval [—30, 10]
ms relative to the time bin #, sampled at 1 ms intervals.

GLMs provide a natural way to account for, and estimate, both the
receptive field of a neuron and spike-history effects such as refractori-
ness. The input to the GLM consists of both the stimulus time series and
the recent spiking history of the neuron. These inputs are linearly filtered,
and passed through a nonlinear function. A probabilistic (Bernoulli)
spike generator uses the resulting output to produce a sequence of ones
and zeros representing the presence or absence of spikes.

The functional form of the model that we used was as follows:

y. = f(k"%, + 'R, + b). (1)

Here, the output y, was the expected number of spikes in time bin t, and
depended on three terms. The first term was the dot product between the
whisker stimulus vector X;, and the “stimulus filter” k, which determined
the kinetic features of whisker motion to which the model neuron was
sensitive. The second term was the dot product between the recent spik-
ing history, represented by 71,, and the “spike history filter” h. 71, consisted
of 10 elements #,,, #1,5,... and was defined in terms of Gaussian basis
functions:

t—1

S el )

t'=t-20

Ny =

where w;, = t — a,t — 3a,...,t — 19a was the center of the ith basis
function, ¢ = awas the width of the basis functions, and a was 1 ms in time
bin units. Depending on the form of h, the probability that the model fired a
spike could be suppressed by recent spiking (refractoriness) and/or facili-
tated (burstiness). The final term of Equation 1 was the constant input b,
which set the spontaneous firing rate of the model. The nonlinear function
f(+) was the logistic function flx) = 1/(1 + exp) — x))._ R

The GLM was fitted by finding the parameters b, k, and h, which
maximized the probability of the model given the data 7 and x—the
“posterior” distribution. We used an uncorrelated Gaussian prior for the
parameters, with the scale determined by hyperparameters o and B:

. a - B, -
log p(kh | aB) = S [IKlI3 + 5[l (2)

This high dimensional search was greatly facilitated by the fact that, due
to properties of GLMs, the posterior probability is a concave function of
the parameters, and therefore has a single, global maximum (Paninski et
al., 2007). This maximum was located by iteratively reweighted least-
squares (Nelder and Wedderburn, 1972). A type II maximum likelihood
procedure was used to fit the hyperparameters (MacKay, 1992; Park and
Pillow, 2011). For this procedure, the marginal likelihood was calculated
using the Laplace approximation for the posterior distribution.

The input to the LNP model was the whisker stimulus time series. This
was linearly filtered by convolution with a stimulus filter to produce a
time-dependent coefficient z,, which was passed through a nonlinear
“tuning function” to produce a time-dependent spiking probability
p(spike|z,). For each single unit, the stimulus filter and tuning function
were fitted to its response as previously described (Petersen et al., 2008).
Depending on the form of this filter, the model could be sensitive to one
of the canonical kinetic features (position, velocity, acceleration), to
higher order derivatives of whisker motion, and/or to linear combina-
tions of these. To estimate the stimulus filter, we computed the spike-
triggered average (STA) of the spikes evoked by the nonrepeated white
noise stimulus:

STA = EE”C (3)
t Ty

The tuning function ensured a positive firing rate and accounted for
potential nonlinear effects such as response saturation. To estimate the
tuning function, a kernel density method was used to estimate the prob-
ability densities p(z) and p(z|spike), and the tuning function was esti-
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Figure 2.  Comparison of primary afferent response to texture versus white noise. 4, Each
point shows the firing rate (averaged over 10 s stimulus presentation) evoked by white noise
compared with that evoked by texture, for a given unit. B, Analogous comparison for spike-
timing jitter.

mated as p(spike|z) = p(z|spike)p(spike)/p(z), where p(spike) was estimated
as the proportion of time bins containing a spike.

Prediction quality. Once the best-fitting GLM/LNP parameters had
been identified for a given unit, the next step was to assess the predictive
power of the model. To do this, we used the neural responses evoked by
the repeated stimulus sequences (white noise and texture) to measure the
“experimental peristimulus time histogram (PSTH).” Then, we used the
repeated stimulus sequence as input to the model and obtained its pre-
dicted response. By repeating this 50 times and averaging the responses,
we obtained the “predicted PSTH.” To compare the quality of the pre-
diction, the Pearson correlation coefficient between the experimental
PSTH and predicted PSTH was calculated for each unit. This correlation
coefficient was corrected for sampling error as described by Sahani and
Linden (2003).

Feature analysis. We characterized feature selectivity as previously de-
scribed (Petersen et al., 2008). Briefly, we fitted a mixture model consist-
ing of 1-3 Gaussians to each STA. An STA fit well by a single Gaussian
(goodness of fit > 0.95) was classified as a position unit, by 2 Gaussians a
velocity unit, and by 3 Gaussians an acceleration unit. Units with bipha-
sic STAs were classified as position/velocity hybrids if the absolute
difference in the integral of each phase divided by their sum was >0.1.

We examined the structure of the set of learned stimulus filters further
by applying principal components analysis (PCA) to the set of stimulus
filter vectors. We defined the relevant feature space as the hyperplane
spanned by the eigenvectors accounting for 95% of the variance.

Results

Our primary aim was to develop a simple model that captures
how whisker motion evokes spikes from primary whisker af-
ferents. To be able to rigorously test the model, it was essential
to record the responses of single units to multiple, identical
repeats of controlled, whisker motion sequences and to con-
trol the statistics of the stimulus. To this end, we recorded the
responses of single units from the trigeminal ganglion of anes-
thetized rats to controlled whisker deflection (N = 34). For
each single unit, we used its responses to nonrepeated white
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Diverse responses in the population of primary afferents. 4, PSTHs (1 ms bins, normalized to each unit’s maximum firing rate) of all recorded units evoked by white noise. B, For each

unit, correlation coefficient between the PSTH and position, velocity, and acceleration of the white noise. C—E, STAs for ideal position, velocity, and acceleration-sensitive units. F, STAs for each
recorded unit. G, STAs classified by fitting to a mixture of Gaussians model (Petersen et al., 2008). P/V denotes position/velocity hybrids (see Materials and Methods).

noise whisker deflection to fit the parameters of the model. To
test the accuracy of the model, we also recorded the unit’s
responses to repeated sequences of both white noise and tex-
ture (playback of whisker motion measured during active
whisking of sandpaper by Wolfe et al., 2008). The SD of the
white noise stimulus was the same as that of the texture stim-
ulus. We start by reporting how the primary afferents re-
sponded to these whisker stimuli.

Response of primary afferents to whisker motion

Consistent with previous studies (Jones et al., 2004; Arabzadeh et
al., 2005; Lottem and Azouz, 2011), primary afferents responded
precisely and reproducibly to both white noise whisker motion
(Fig. 1A-D) and texture-induced whisker motion (Fig. 1E-H ).

Spontaneous activity was almost absent (median 0.04 spikes/s,
interquartile range across means (IQR) 0—0.14 spikes/s).

On average, firing rates were significantly higher for white
noise than for texture (medians 12.0 spikes/s and 2.3 spikes/s,
respectively, p = 7 X 107, Wilcoxon signed-rank test). There
was substantial variability in the firing rates evoked by white noise
(IQR 4.1-43.2 spikes/s) from different units (Figs. 1C,D, 2A). In
contrast, the firing rates evoked by texture were more consistent
(IQR 0.9-3.9 spikes).

As illustrated in Figure 1, C, D, G, and H, whisker motion typi-
cally evoked a series of temporally isolated firing episodes. Within
each firing episode, spikes were precisely aligned across trials. To
measure the spike timing precision, we measured the differences in
spike time across trials within each episode (Montemurro et al.,
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units were hybrids of the ideal types, with

Stimulus filter, I? Logistic function, f

‘Ao

Random spike
generation

the single most common type of STA be-
ing biphasic (29/34 units, 85%; Fig. 3G).
This indicates that most primary afferents
are not exclusively sensitive to the canon-
ical kinetic features of position, velocity,
or acceleration, but rather are sensitive to

Spike filter, A

Stimulus, X;

multiple features.

Next, we tested whether there were in-
teractions between spikes in the evoked
response. In the simplest type of spike
train, a Poisson process, the mean of the
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number of spikes that occur in a particular
time window (the “spike count”) is equal
to its variance. We tested this (using 20 ms
time windows) and found that the spike
count variance was typically lower than its
mean (see Fig. 5CI,C2). This indicates
that, for both types of stimulus, the
evoked spike trains were more regular
than expected from a Poisson process.
The variance frequently tracked the theo-
retical minimum value consistent with the
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mean (Fig. 5CI,C2, scalloping). In sum,
we found that responses of primary affer-
ents were characterized by reliability, high
temporal precision, sub-Poisson variabil-
ity, and diverse stimulus selectivity. The
challenge was to capture these character-
istics with a simple model.
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Figure 4. Model structure and parameter fitting. A, Schematic of the GLM. The linear filters K and 7 are convolved with the
whisker stimulus and spike history, respectively. The resulting coefficients are summed with the constant b and passed through the
nonlinear function f{ + ) to produce the time-dependent probability of a spike. B1, Stimulus filter for an example unit. €7, The
stimulus filter convolved with the white noise autocorrelation (black line), compared with the unit's STA (gray line). D7, The unit’s

spike feedback filter. B2—D2, Corresponding results for a second example unit.

2007). The median SD of these differences (“jitter”) was 0.15 ms for
white noise (IQR 0.130—0.23 ms) and 0.22 ms for texture (IQR
0.17-0.30 ms) (Fig. 2B). For every unit in our sample, the jitter was
<1 ms.

We found diversity in how different primary afferents re-
sponded to the same white noise stimulus (Figs. 2, 3). Units dif-
fered not only in evoked firing rate (Fig. 2A) but also in the
temporal pattern of the evoked response (Fig. 3A). This suggests
that different units might be tuned to different kinetic features of
whisker motion (position, velocity, etc.). To test this, we cross-
correlated the PSTH of each unit with the white noise sequence
that evoked it, and also with the first derivative of the whisker
motion (“velocity”) and the second derivative (“acceleration”).
This analysis revealed diversity in the feature selectivity of the
primary afferent population (Fig. 3B). Some units correlated best
with velocity in the rostral direction (unit 28) or caudal direction
(unit 1); others correlated best with position (unit 26) or with
acceleration (unit 25). To test whether units might be sensitive to
more complex kinetic features, we computed STAs (Fig. 3F). Asa
comparison, the STAs expected for ideal position, velocity, and
acceleration-sensitive units stimulated with white noise are
shown in Figure 3C—E (Petersen et al., 2008). We did find units
with STAs similar to the ideal types (Fig. 3F). However, most

Pre-spike time (ms)

GLM of response to whisker motion

We used the responses of each primary
afferent to 500 s of nonrepeated white
noise to fit the parameters of the GLM,
schematized in Figure 4A.

The aim of the GLM was to capture the
transformation between sensory stimulus
and spike train response. In any time bin,
a GLM fires a spike with a certain proba-
bility. This probability depends on two principal elements. The
first is a time-independent stimulus filter: the parameters of this
filter determine the kinetic feature to which the model is sensi-
tive. For example, the stimulus filter shown in Figure 4A approx-
imately differentiates the stimulus, and makes the model sensitive
to instantaneous velocity. The filters shown in Figure 3, Cand E,
make the model sensitive to position and acceleration, respec-
tively. The second element of the GLM is a “spike history filter.”
This makes the response of the model depend not only the stim-
ulus but also on the spikes fired in the recent past. For example,
the filters shown in Figure 4, D1 and D2, produce large negative
values immediately following a spike, briefly silencing the
model (refractoriness).

Any model can be fitted to data, but there is no guarantee that
the best-fitting model fully captures the neuron’s encoding be-
havior. It was therefore crucial to rigorously test the GLM. To this
end, we first asked whether the GLM could accurately predict the
response evoked by a sequence of white noise. To do this, we used
experimental recordings of the unit’s response to 50 repetitions
of the same 10 s sequence of repeated white noise (a sequence not
used for GLM parameter fitting) to obtain a PSTH. We then used
this same sequence of white noise as input to the GLM and reg-
istered its spike train output (bin size 2 ms). By repeating this 50

-15 -10 -5
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times, and averaging the responses, we
obtained a predicted PSTH. We typically
found a remarkably close match between
the experimental and predicted PSTHs
(Fig. 5A1,A2). The GLM accurately cap-
tured both the timing of the PSTH peaks

>
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and their amplitudes. We quantified the
prediction quality by calculating a modi- 0 0.2
fied Pearson correlation coefficient be-
tween the predicted and experimental
PSTHs (see Materials and Methods). For
the example units of Figure 5, AI and A2,
the prediction coefficients were 0.95 and
0.93, respectively.
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To test whether these results were repre-
sentative, we fitted GLMs to all single units
in our sample and tested their prediction
quality as above. We found that GLMs gen-
erally provided excellent fits to the PSTH
evoked by white noise (Fig. 6 A, B). The me-
dian prediction correlation coefficient was
0.92 (IQR 0.90-0.94).
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Although these results were encourag-
ing, the statistics of white noise whisker
motion differ from those of natural ex-
ploratory whisking (Hipp et al., 2006; Fig.
1A,B,E,F). This is significant since, in
general, the best-fitting parameters of a
model depend on the statistics of the data
used for parameter estimation. There is
no guarantee that a model fitted on white
noise data will extrapolate well to stimuli with different statistics
(Talebi and Baker, 2012). Hence it was important to test whether
the GLM extrapolated to more naturalistic whisker motion. To
this end, we tested how well a GLM (with parameters fitted to
white noise data only) could predict the response to playback of
whisker motion generated by active exploration of a textured
surface (see Materials and Methods). As above, we used the tex-
ture sequence as input to the GLM and obtained a predicted
PSTH, which we compared with the corresponding experimental
PSTH. We found that the model PSTHs matched the experimen-
tal PSTH remarkably well. For the example units of Figure 5, BI
and B2, the prediction coefficients were 0.78 and 0.85, respec-
tively. This was typical (Fig. 6A): the median prediction coeffi-
cient was 0.86 (IQR 0.71-0.89).

The accuracy of the predicted PSTHs suggests that GLMs
accurately captured the response of primary afferents to our
whisker motion stimuli. This indicates that useful insight into
how these neurons encode whisker motion might be obtained
by examining the parameters of the model. Figure 4 shows
both stimulus filters and spike history filters for two example
units. The stimulus filters (Fig. 4B1,B2) indicate that the units
responded most strongly to precisely timed stimulus features
occurring 4—8 ms before the current time. To facilitate inter-
pretation of the stimulus filters, we multiplied each stimulus
filter vector by the covariance matrix of the white noise stim-
ulus. We found that the smoothed stimulus filters were simi-
lar, although not identical, to the corresponding STAs (Fig.
4C1,C2). This indicates that the kinetic feature selectivity re-
vealed by GLM and STA approaches were consistent, but that
the GLM was able to uncover stimulus filter structure on a
significantly finer timescale. This was important for the ability

0 2

Figure 5.

unit.

Spike count mean

0
0 2 0 1 2 0 1 2
Spike count mean  Spike count mean  Spike count mean

PSTH prediction performance for the GLM: single-unit examples. A7, PSTH of an example unit (black line) evoked by
white noise, compared with PSTH predicted by the GLM model with parameters shown in Figure 4C7-D7 (gray line). B, Corre-
sponding data for the texture stimulus (same unit as A7). €1, Variance of spike count across trials (20 ms time window) plotted
against its mean (same unit as A7). D1, Corresponding data for the GLM model. A2-D2, Analogous results for a second example

of GLMs to account for the fine temporal structure of the
PSTHs.

For both units, the spike history filters (Fig. 4D1,D2) were
large and negative for recently occurring spikes, and approached
zero for spikes occurring >10 ms in the past. This enforced a
refractory period: similar spike history filters were found for all
units in our sample. To test the importance of the spike history
component of the GLM, we refitted the model without the spike
history filter h (Eq. 1). As shown in Figure 6B, the performance of
this model variant was significantly inferior to that of the full
model (median prediction qualities 0.86 and 0.92; p = 2 X 10 ¢,
Wilcoxon signed-rank test).

To test whether the GLM was able to capture the spike-timing
precision of the primary afferents, we repeated the parameter
fitting process using a range of time bins (0.1-10 ms) and quan-
tified performance, as above, by computing a correlation coeffi-
cient between experimental and predicted PSTHs (Fig. 7A). The
most accurate prediction was observed for bin sizes of 2 ms (me-
dian prediction coefficient for white noise 0.92; for texture 0.86).
However, the PSTH prediction was accurate for a range of bin sizes;
for white noise, exceeding a median prediction coefficient of 0.8 for
bin sizes from 0.25 to 4 ms. Thus, the GLM was able to account
accurately for submillisecond spike-timing precision.

To get further insight into why the predictions of the GLM
were accurate even at submillisecond timescales, we compared
the prediction performance of the GLM to that of an STA-based
LNP model (see Materials and Methods). The LNP model is sim-
ilar to the GLM in that its output is a nonlinear function of a filter
convolved with the sensory stimulus. However, it differs in that
there is no spike feedback mechanism. We found that, for larger
bin sizes (6—8 ms), prediction performance was similar for GLM
and LNP (both medians 0.78 at 6 ms; Fig. 7A). However, for small
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Figure6. PSTHPrediction performance of the GLM: population data. 4, Each point shows the
prediction quality (correlation coefficient between actual and predicted PSTH) for white noise
compared with that for texture, for a given unit; 1 ms bins. B, Effect of spike feedback term on
PSTH prediction: correlation coefficient between actual and predicted PSTH with spike feedback
compared with that without spike feedback for a given unit. Results computed for white noise.

bin sizes, the GLM showed a substantial advantage (medians 0.88
and 0.62 for GLM and LNP, respectively, at 0.5 ms). The LNP
model was able to predict quite well the occurrence of major
peaks in the PSTH, but, in contrast to the GLM, the LNP model
was unable to accurately predict their precise temporal structure
(Fig. 7B). Together, these results indicate the importance of fitting
the stimulus filter at a timescale finer than the correlation timescale
of the stimulus and the importance of taking spike feedback into
account.

As noted above, a good model should be able to account not
only for the mean response of a neuron to the stimulus (the
PSTH) but also for higher order statistical structure of the evoked
spike trains. Our next aim was to test whether the GLM could
account for the sub-Poisson variance of the evoked response (Fig.
5C,D). To this end, we used the GLM fitted to each afferent to
generate spike trains evoked by white noise. We then used these
responses to generate scatter plots of mean spike count versus its
variance as above (Fig. 5C2-D2; 20 ms time window). We found
that the model data exhibited similar scalloped structure to that
of the experimental data.

To summarize, we found that GLMs successfully captured a
number of fundamental characteristics of primary afferents: they
accurately predicted the response of primary afferents to white
noise, they generalized accurately to texture, they captured sub-
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Figure 7.  Timing precision of PSTH prediction. A, Correlation coefficient (median across
units) between recorded and predicted PSTHs for white noise and texture, as a function of spike
time bin size. Data shown both for GLM and LNP models. Bars denote SEM, computed by
bootstrap resampling. B, Example of PSTH evoked by white noise (black line above the x-axis)
compared with predicted PSTH from GLM (black line below) and LNP model (gray line below).

millisecond spike timing precision, and they accounted for sub-
Poisson spike train statistics.

Feature representation

The results of the previous section imply that the best-fitting
stimulus filter of a GLM accurately captured the stimulus selec-
tivity of the corresponding primary afferent. Our final aim was to
use this as a basis for getting insight into the space of whisker
motion features represented by primary whisker afferents. In par-
ticular, we asked whether it might be possible to capture the
variety of the stimulus filters by a lower dimensional description.
To test this, we applied PCA to the set of GLM stimulus filters.
To obtain robust results, we first smoothed the stimulus filters
by multiplication with the autocorrelation matrix of the white
noise (Fig. 4C). We found that a small number of principal com-
ponents (PCs) captured almost all the variance in the stimulus
filters (Fig. 8A). The first PC explained 81% of the variance, the
first two PCs explained 94%, and the first three PCs explained
99%. This indicates that the diversity of stimulus selectivity in the
population of primary afferents could be accurately described by
alow (2-3D) dimensional “filter space.”

Since the filter space was low dimensional, it was possible to
directly visualize its structure. The first and second PCs were both
biphasic (Fig. 8B1,B2). To visualize the space spanned by these
two PCs, we systematically generated filters composed of differ-
ent linear combinations of them (Fig. 8C, gray lines). For exam-
ple, filters along the x-axis were proportional to the first PC and
filters along the main diagonal to the sum of the two PCs. Differ-
ent directions in this space corresponded to selectivity to differ-
ent kinetic features. Positive, monophasic filters (compare Figs.
8C, top middle, 3C) imply tuning to whisker position and pref-
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erence for the caudal direction and nega-
tive monophasic filters (bottom middle)
for the rostral direction. Biphasic filters
imply tuning to whisker velocity (com-
pare Fig. 3D) either in the caudal direction
(Fig. 8C, top left) or, if the sign is reversed,
in the rostral direction (bottom right).
Most regions of the space contained bi-
phasic filters different to the canonical
ones of Figure 3, C and D, in that the two
phases were of unequal amplitude (Fig.
8C, left middle and right middle). Such
filters reflect sensitivity to both position
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Proportion of variance accounted for

Bale, Davies et al. @ Whisker Coding in the Trigeminal Ganglion

and velocity (Petersen et al., 2008). The 1
third PC (Fig. 8B3) was triphasic. Includ-
ing this PC as a third dimension (Fig. 8D,
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gray lines) thus produced also triphasic 10 A _J
filters, sensitive to acceleration (compare g n
Fig. 3E). 2 .

For each unit in our database, we com- g
puted the projection of its stimulus filter o *
onto the first three PCs and plotted the E 2
stimulus filter in the corresponding loca- s 0
tion of the PC1-PC2 plane (Fig. 8C, black .g_h -2
lines) and PC1-PC3 plane (Fig. 8D, black o -4
lines). The stimulus filters were spread 6
relatively widely. Thus, although the space
of features was low dimensional, there was -10
nonetheless diversity between units. Ap-
proximately, the primary afferent units Figure 8.

“tiled” the filter space.

Discussion

To identify a neural code, it is necessary to
determine the sensory events that are en-
coded by spikes. For primary whisker afferents, previous research
has shown that spikes evoked by whisker motion exhibit high
temporal precision, and that firing rate is modulated by a num-
ber of parameters of whisker deflection, including the location,
direction, and velocity (Zucker and Welker, 1969; Gibson and
Welker, 1983; Lichtenstein et al., 1990; Jones et al., 2004; Arabza-
deh et al., 2005). In some cases, it has also been shown that the
response of primary afferents to complex tactile stimuli can be
predicted by mathematical models (Mitchinson et al., 2004, 2008;
Arabzadeh etal., 2005; Lottem and Azouz, 2011). Our study builds
on this work by seeking to develop a simple, but general, model that
captures this and other fundamental characteristics of primary affer-
ent responses. We found that a GLM not only accurately predicted
the response of primary afferents to white noise whisker motion, but
also accurately predicted their response to texture-induced whisker
motion. The GLM captured primary afferent submillisecond spike-
timing precision; it also captured their sub-Poisson spike train sta-
tistics. Analysis of the model indicated that primary afferents
approximately tile a low-dimensional feature space.

GLM

The GLM (Paninski, 2004; Truccolo et al., 2005) consists of a
time-independent stimulus filter and a spike history filter. Its
elegant mathematical structure is conducive to effective parame-
ter fitting (Paninski et al., 2007), but its assumptions are poten-
tially limiting. For barrel cortical neurons, multiple stimulus
filters are typically necessary, and time-dependent adaptive pro-
cesses exert a marked effect on the evoked response (Maravall et

Projection onto first PC

0 10 -10 0 10

Projection onto first PC

Kinetic feature space encoded by the primary afferent population. A, Proportion of variance of stimulus filters
explained by 1-4 PCs in order of decreasing eigenvalue. B, The first three PCs. ¢, Smoothed stimulus filters for each primary
afferent plotted at its location in the space spanned by PCs 1.and 2 (gray lines). Superimposed are the stimulus features corre-
sponding to different locations in the space, as detailed in the main text (black). D, Corresponding plot for PCs 1and 3.

al., 2007; Lundstrom et al., 2010; Estebanez et al., 2012). For
primary afferents, slow adaptive mechanisms are necessary to
capture phase shifts exhibited by some neurons in response to
periodic whisker deflections superimposed on a DC offset (Lot-
tem and Azouz, 2011). It is therefore striking that the GLM was
sufficient to accurately capture the evoked responses to complex
whisker motion for the bulk of our units, even though our
texture-induced whisker motion stimulus had substantial low
frequency content (Fig. 1E). However, it should be noted that the
average prediction accuracy for texture, while high (median
0.86), was lower than that for white noise (median 0.92). More-
over, there was a small minority of primary afferents that were
less well described. It is possible that a more complex model,
taking slow time course features of the stimulus into account,
might be even more accurate. Indeed, Lottem and Azouz (2011)
showed that a biomechanical model with a novel dynamic recti-
fication mechanism was able to account for phase shifts not cap-
tured by simpler models. An interesting challenge for future
theoretical work is to extend the GLM to capture slow time course
stimulus effects.

Precision of spike timing

We found, consistent with previous studies (Jones et al., 2004;
Arabzadeh et al., 2005; Storchi et al., 2012) that primary whisker
afferents responded with remarkably high timing precision: the
median jitter was 0.2 ms. The significance is that it endows neu-
rons with a high capacity for transmitting information (Petersen
et al., 2009; Petersen, 2013). Submillisecond timing precision is
challenging to reproduce in a model when the correlation time-
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scale of the stimulus is longer: here, the full-width at half-
maximum of the white noise autocorrelation was 5 ms. Yet, we
found that the GLM parameter-fitting procedure was able to
accurately predict the units’ responses at submillisecond preci-
sion, resolving stimulus features at higher precision than the STA.

Predicting the response to complex whisker motion

White noise is a valuable stimulus for model fitting, since it ex-
plores a large stimulus space in an efficient and unbiased manner
(Jones et al., 2004; Arabzadeh et al., 2005; Maravall et al., 2007;
Montemurro etal., 2007; Petersen et al., 2008; Lottem and Azouz,
2011; Estebanez et al., 2012). However, the statistics of white
noise differ from those of natural whisker motion (Hipp et al.,
2006). To test whether the model predicted PSTHs evoked by
more naturalistic whisker motion, we used a playback approach
(Arabzadeh et al., 2005) to reproduce whisker motion recorded
optically while rats actively whisked a sandpaper-textured surface
(Wolfe et al., 2008). We found that, although the GLM parame-
ters were fitted using only white noise data, the model accurately
predicted the texture-induced PSTHs. Other types of mathemat-
ical model also predict texture-induced responses (Arabzadeh et
al., 2005; Lottem and Azouz, 2011). The advantage of the GLM is
that, for any dataset, there is a global optimum solution to the
parameters that can be automatically learned. Moreover, its sim-
plicity is conducive to insight into the neural code (see below). An
important challenge for future research will be to test the model
in the awake, behaving animal. However, since multiple trials of
identical whisker motion sequences cannot be delivered under
these conditions, the present PSTH prediction approach is inap-
plicable and new methods will be required.

Capturing higher order spike train structure

For the simplest type of spike train, a Poisson process, the PSTH
is a sufficient statistical description of a neuron’s response (Rieke
et al., 1997). However, we found that the spike trains evoked by
primary afferents were significantly more regular than Poisson.
Non-Poisson structure cannot be captured by LNP models,
which assume that spikes are generated independently, but an
advantage of the GLM is that spike interaction effects can be learned
from data (Pillow et al., 2005). We found that GLMs could account
for the quadratic (“scalloped”) relationship between spike count
variance and spike count mean (Fig. 5D1,D2). This was due to the
spike history mechanism of the GLM. The spike history filter was
typically strongly negative just after a spike. This induced a refractory
effect. Within a short time window neurons thus fired at most one
spike, with probability p. It follows that the variance of the spike
count within this window is the quadratic function p (1 — p) (de
Ruyter van Steveninck et al., 1997).

Feature selectivity of primary afferents

Arabzadeh etal. (2005) showed that, for some primary afferents, the
PSTH evoked by texture-induced whisker motion could be accu-
rately predicted by tuning to instantaneous whisker velocity. We
found that 85% of units did indeed exhibit biphasic stimulus filters
indicative of velocity tuning. Yet we also found considerable diver-
sity. Diversity has been consistently reported under a variety of ex-
perimental paradigms (Zucker and Welker, 1969; Gibson and
Welker, 1983; Lichtenstein et al., 1990; Shoykhet et al., 2000; Szwed
et al,, 2003). We found that other afferents exhibited monophasic
position filters or triphasic acceleration filters. The most common
case was a biphasic stimulus filter, sensitive to both position and
velocity. This is consistent with mechanotransduction models,
where forces applied to the whisker follicle induce stresses/strains
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within the visco-elastic tissues of the FSC: these forces are gated by
ion channels in the mechanoreceptor membrane (Mitchinson et al.,
2004, 2008; Lottem and Azouz, 2011). Mitchinson et al. (2004) re-
ported that, to first approximation, the strain within the FSC is pro-
portional to a linear combination of whisker position and whisker
velocity. Diversity in the primary afferent population may reflect
variation in morphological types of mechanoreceptor (Rice et al.,
1986), in location of the mechanoreceptors within the FSC (Ebara et
al., 2002; Mitchinson et al., 2004) and in expression of voltage-
dependent membrane currents. The stimulus filters that we found
were similar to those previously reported in the ventroposterior me-
dial thalamus (Petersen et al., 2008), suggesting that the primary
afferents fundamentally shape feature selectivity in the whisker
system.

Feature space encoded by primary afferents

To investigate the “space” of features that the primary afferent
population encodes, we applied principal components analysis to
the stimulus filters. Ninety-nine percent of the variance could be
explained by three dimensions. Dimensions 1-2 accounted for
sensitivity to position and velocity; dimension 3 reflected also
acceleration. Thus, primary afferents were sensitive to different
linear combinations of position, velocity, and acceleration, with
the major weight carried by the former two. Our results imply
that the population approximately tiles this feature space. A ca-
veat is that we only studied whisker motion in the rostrocaudal
direction. Primary afferents are typically direction dependent
(Zucker and Welker, 1969), implying that the complete feature
space will include additional dimensions to capture components
of whisker motion in the ventrodorsal direction.

On the face of it, this way of encoding a sensory input seems
inefficient. In principle, a 3D space could be represented by just
three “Cartesian” neurons, with linearly independent stimulus
filters. However, the whisker follicle is innervated by many times
more neurons than this scheme would require. A drawback of the
Cartesian scheme is that each neuron must accurately encode its
corresponding coordinate, and transmitting a real-valued coor-
dinate (e.g., through the spike count in a given time window)
takes time. Instead, the primary whisker afferents appear to rep-
resent a low-dimensional feature space as a high (~200 D) di-
mensional, distributed population code. This may allow the
system to transmit which feature has occurred by single spikes
from the appropriate subpopulation of neurons and thereby
achieve rapid information transfer to the CNS (Chase, 2012).

Conclusion: neural coding in whisker primary afferents

Our results suggest that the response of primary afferents to com-
plex whisker motion can be comprehensively captured by a sur-
prisingly simple model based on stimulus filtering and spike
feedback. Whisker motion is encoded as an overcomplete repre-
sentation of, primarily, whisker position and whisker velocity.
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