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Abstract
It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system
dysfunction, as well as a multitude of immune responses. However, the close interplay of these
systems in the development and establishment of high blood pressure and its associated
pathophysiology remains elusive and is the subject of extensive investigation. It has been
proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the
“pro-inflammatory sympathetic” arm in conjunction with dampening of the “anti-inflammatory
parasympathetic” arm of the autonomic nervous system. In addition to the neuronal modulation of
the immune system, it is proposed that key inflammatory responses are relayed back to the central
nervous system and alter the neuronal communication to the periphery. The overall objective of
this review is to critically discuss recent advances in the understanding of autonomic immune
modulation, and propose a unifying hypothesis underlying the mechanisms leading to the
development and maintenance of hypertension, with particular emphasis on the bone marrow, as it
is a crucial meeting point for neural, immune, and vascular networks.
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1. Introduction
Hypertension remains a global health concern despite significant advancements in its
treatment in recent years. Approximately 10% of hypertensive patients suffer from resistant
hypertension [1, 2], characterized by blood pressures that remain uncontrolled in spite of
simultaneous administration of three antihypertensive agents of different classes [3]. The
neurogenic component of resistant hypertension presents with a dysfunctional autonomic
nervous system (ANS) [4-8], increased norepinephrine (NE) spillover and sympathetic nerve
activity (SNA) and decreased cardiac parasympathetic tone [9-16]. Similar findings have
been described in association with several of the hypertension comorbidities, including
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obesity, diabetes, and sleep apnea [17-20], thus complicating diagnosis and treatment [3,
21].

Multiple emerging therapies target autonomic dysfunction in patients with neurogenic
hypertension [4, 8, 22, 23]. Renal denervation therapy [24-28] employs radiofrequency to
specifically ablate the renal sympathetic nerves [22] resulting in a significant and long-
lasting decrease in blood pressure and whole-body norepinephrine spillover in some patients
[29-32]. While proof of concept has been established, the long term effectiveness of this
strategy remains to be validated in view of recent evidence of reinnervation of the kidney
following ablation [33]. Renal denervation may only be effective in lowering blood pressure
and muscle sympathetic nerve activity in a small proportion of patients [34], possibly owing
to low renin levels in some cases of neurogenic hypertension [35], amongst other issues.
Similarly, chronic carotid baroreceptor activation has been shown to lower blood pressure
and sympathetic activity in resistant patients [36-39], prompting initiation of clinical trials
with promising long term results [40, 39]. Other more adventurous techniques such as the
deep brain stimulation [41-47] and surgical relief of micro-vascular compression [48, 49]
have demonstrated promising outcomes, but the invasive nature of these procedures
decreases their general therapeutic use and renders them mainly experimental.

Present therapies that target the neurogenic component of hypertension highlight the need
for novel therapeutic strategies for patients with resistant hypertension. However, the
invasive nature of the procedures and the potential high cost and relatively low efficacy of
treatment, coupled with a lack of understanding of underlying pathophysiological
mechanisms of autonomic imbalance, further complicate the development of innovative
strategies for the treatment of resistant hypertension. Recent advances have underscored the
role of the immune system (IS) and the importance of neuro-immune pathways in autonomic
regulation in hypertensive patients and animal models of hypertension. The aim of this
review is to summarize latest advances in the field, review the current understanding of
connections between the autonomic and immune systems, and discuss issues that remain to
be addressed in the field of autonomic modulation of immunity in hypertension.

2. Immune system and neurogenic hypertension
It is well established that hypertension and cardiovascular disease (CVD) in humans are
characterized by increased systemic inflammation [50-54]. Increased circulating levels of
inflammatory markers have been reported even in pre-hypertensive patients [55-57],
suggesting a causative role of the immune system in CVD. As a result, extensive
investigation is underway to elucidate the role of innate and adaptive immunity in the
development and maintenance of hypertension. Animal experiments have demonstrated that
elimination of the immune response by thymus transplant or immunosuppressant drugs can
delay and even arrest the progression of hypertension [58, 59]. David Harrison's group was
among the first to show that T-lymphocytes are essential for the development of
hypertension in several animal models [60, 61]. For example, RAG-/- mice lacking the
mature B- and T-lymphocytes did not develop high blood pressure, but the adoptive transfer
of T-cells, not B-cells, was able to restore the hypertensive phenotype [60, 61], suggesting
an exclusive role of activated T-cells in hypertension. It is pertinent to note that not all types
of T-cells behave similarly, as recent reports showed that the adoptive transfer of the T
regulatory (Treg) lymphocytes (CD4+/CD25+), but not the T effector (helper) lymphocytes
(Th, CD4+/CD25-), prevented both the angiotensin II (Ang II)- and aldosterone-dependent
hypertension [62, 63]. Treg lymphocytes are thought to be able to suppress both the innate
and adaptive immune responses by suppressing the pro-inflammatory actions of the effector
Th lymphocytes, thereby playing a role in immune system homeostasis. These and other
studies have led to the hypothesis that activation of the IS in hypertension depends on
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formation of specific neoantigens, which, through dendritic cell (DC)–dependent activation,
lead to activation of naïve T-cells and their differentiation into effector Th lymphocytes
[64]. Thus, Treg lymphocytes are able to protect against the development of hypertension by
counter-acting renal vascular remodeling that is induced by effector Th cell activation [64].
However, the triggering mechanism that initiates this process remains to be identified.

Recent animal data suggest that, in addition to the increased pro-inflammatory pathways,
anti-inflammatory pathways are dysfunctional in hypertension [65-67]. Francois Abboud's
group has recently shown that the anti-inflammatory modulation of the innate IS in
normotensive rats is reversed in pre-hypertensive SHRs [67]. They demonstrated that
nicotine, a neurotransmitter of the cholinergic neurons, exerted an anti-inflammatory effect
by suppressing a large population of myeloid DCs in the WKY, but had an opposite, pro-
inflammatory effect in the SHR, exhibited in the activation of macrophages [67]. In another
animal model, chronic vascular risk factors have been associated with decreases in
cholinergic neurons [68]. Further evidence from a two-kidney one-clip hypertension model
suggests that secondary hypertension induces cholinergic receptor down-regulation, which
may ultimately contribute to the inflammatory processes [69]. Therefore, the importance of
understanding the mechanism of the cholinergic anti-inflammatory pathway in hypertension
is becoming increasing evident, and may provide a novel therapeutic target in the treatment
of neurogenic hypertension. These pathways will be discussed in the section on autonomic
regulation of the immune system.

3. Neuroinflammation and microglia
Involvement of brain inflammation in various CNS diseases such as Parkinson's and
Alzheimer's disease and stroke has been well documented [70-72]. However, the role of
brain inflammation in hypertension and CVD is less well understood and is a rapidly
emerging field. It has been shown that increased inflammation in the cardioregulatory areas
of the brain is associated with increased sympathetic nervous system activity and
hypertension, and inhibition of inflammation in these brain regions attenuates the
hypertension [73-78]. Furthermore, inhibition of pro-inflammatory oxidative stress by
specific deletion of p22phox in the subfornical organ (SFO) attenuates hypertension and
eliminates vascular inflammation in the chronic Ang II infusion model [74]. In addition,
SHRs exhibit increased leukotriene B4 in the nucleus of tractus solitarius (NTS), which has
been proposed to be pro-hypertensive in the SHR [79]. Pro-inflammatory pathways, such as
NF-κB in the paraventricular nucleus of the hypothalamus (PVN) have been shown to
enhance the hypertensive response to Ang II [80]. Taken together, these observations
suggest that neuroinflammation plays an important role in the development and maintenance
of hypertension.

Increased activity of the renin-angiotensin system (RAS) in hypertensive models [81-83] has
a role in driving pro-inflammatory responses in the periphery as well as the brain [80, 84,
85]. For example, chronic knockdown of AT1 receptors in the NTS of SHR animals
increases peripheral inflammation and vascular dysfunction [86]. As mentioned earlier, T-
lymphocytes are essential for the development of hypertension [60, 61], and central Ang II
appears critical for T-lymphocyte activation [87]. A study by Marvar et al. showed that
lesioning the anteroventral third cerebral ventricle (AV3V) eliminates the Ang II-induced
blood pressure increase, T-cell activation, and vascular leukocyte infiltration. The authors
postulated a feed-forward mechanism that includes modest increases in blood pressure
promoting inflammation, further raising blood pressure, and eventually culminating in
severe hypertension [87]. These studies emphasize the link between the central RAS and the
immune system. Whether the initial pro-inflammatory trigger comes from the brain remains
the topic of many studies, and will be discussed in detail in the following sections.
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Investigation of the role of microglia and neuroinflammation in hypertension may provide
valuable insight into this problem. Microglia are the immune cells of the central nervous
system and make up approximately 12% of the brain cell population [88, 72]. Within the
healthy CNS, microglia are tightly regulated in order to continuously monitor the brain
environment [89, 90]. Their phenotype can rapidly change in response to alterations of
homeostasis, pathological insults, and even systemic inflammation in an attempt to repair
injury at inflammatory sites [88, 91, 92]. However, over-activation of microglia is
detrimental, as they release pro-inflammatory cytokines and generate ROS, thereby
contributing to the inflammation in the brain [77, 76, 93]. Neurogenic hypertension involves
activation of microglia in the PVN in both the Ang II-dependent and SHR models [94, 77].
Moreover, close interactions between the microglia, astrocytes, and neurons can lead to the
modulation of neuronal activity in the PVN, enhancing the neuronal response to Ang II [95].
On the other hand, inhibition of the brain mitochondrial ROS, but not the peripheral ROS, is
able to attenuate hypertension, inhibit microglial activation in the PVN, and normalize
peripheral IC levels [78]. Therefore, microglia are emerging as a novel therapeutic target for
the treatment of resistant hypertension, although further understanding of the molecular
mechanisms underlying these processes is needed.

Taking all this into consideration, we propose that activation of endogenous microglia in
cardioregulatory areas of the brain is an early event in the development of hypertension (Fig.
1). Ang II and other pro-hypertensive stimuli directly activate the microglia and stimulate
the microglial release of the pro-inflammatory cytokines. These cytokines, in addition to the
pro-hypertensive stimuli, may influence neuronal activity, particularly in the autonomic
areas of the brain (Fig. 1). These central responses then give rise to intermediate effects in
the periphery, which include autonomic dysregulation, increased inflammation and vascular
dysfunction. Furthermore, we propose that the maintenance of hypertension involves a late
event, in which bone marrow-derived inflammatory progenitors extravasate in brain and
differentiate into microglia, further enhancing neuroinflammation in the autonomic areas of
the brain. Our model highlights the importance of central pro-hypertensive stimuli,
proposing that these processes are crucial for the development of hypertension. Furthermore,
we make the novel inclusion of bone marrow sensory inputs which may signal important
information about the inflammatory status of the periphery. The role of autonomic
dysregulation in the control of inflammatory responses in hypertension will be discussed in
the following section.

4. Autonomic regulation of the immune system
The concept that the central nervous system (CNS) can regulate the IS has existed for
several decades. However, the notion that heightened emotional stress can exacerbate
inflammatory responses has only recently been supported by scientific evidence [96-99]. It
is now known that specific cell types such as lymphocytes, myeloid cells and endothelial
cells respond to changes in hormones and neurotransmitters of CNS origin [100].
Specifically, activation of the sympathetic arm of the ANS has been shown to play a major
role in regulation of inflammatory responses [101]. This is particularly manifested in CVD
and diabetes, where a direct link between elevated sympathetic drive and exaggerated
inflammation has been demonstrated [50, 78, 102]. In SHR, the pro-inflammatory innate
immune response is exaggerated even before the development of the high blood pressure
[67], due to elevated central sympathetic drive preceding the blood pressure increase [103].
Furthermore, specific T-lymphocyte responses are crucial in development of Ang II
hypertension [61], which is characterized by elevated central sympathetic drive to the spleen
[104] and the bone marrow [78], where it directly regulates the activity of pro-inflammatory
and other hematopoietic cells [105, 78, 106].
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We have recently demonstrated that the chronic Ang II-dependent increase in central
sympathetic drive stimulates the release of bone marrow-derived pro-inflammatory
lymphocytes. This effect was abolished by blockade of the Ang II effect on the brain,
particularly in the PVN [78]. Furthermore, our anatomical tracing studies revealed that the
brain-bone marrow connections involve a direct sympathetic neuronal input to the bone
marrow, which is enhanced in hypertension [78]. This enhanced ANS-IS communication is
also present in other forms of CVD, such as myocardial infarction (MI), where elevated SNS
is a major signal for recruitment of hematopoietic cells from the bone marrow [107].
Further, the abundance of adrenergic receptors in metabolic tissues such as fat supports a
role for elevated SNS-dependent initiation of inflammatory responses [108-110] in diseases
such as diabetes and obesity [61]. The role of SNS is further highlighted by the observation
that the release of hematopoietic progenitor cells from the bone marrow depended on
circadian oscillations of expression of certain clock genes which were governed by
adrenergic stimulation from the sympathetic nerves innervating the bone marrow [111, 112].
Furthermore, blood leukocyte numbers exhibit circadian oscillations [113, 101], with their
peak activation and migration from the bone marrow occurring at night [101], corresponding
to the highest sympathetic drive in mice. This effect is completely dependent on the
presence of the bone marrow sympathetic innervation, as well as the presence of beta 2 and
3 adrenergic receptors on the bone marrow hematopoietic cells, including the EPCs [101].
Since the circadian rhythms are entrained by the suprachiasmatic hypothalamic nuclei
[114-116], any changes in neuronal activity within the hypothalamus, such as those seen in
neurogenic hypertension [78, 77, 95], may affect the circadian control of the bone marrow
activity.

Epidemiological evidence also suggests that these diurnal oscillations are clinically
significant. Some inflammatory and immune diseases present a diurnal pattern of onset and
progression [117]. For example, in models of sickle cell anemia and septic shock, where
increased leukocyte inflammatory response contributes to the pathology of the disease,
survival was appreciably compromised when inflammation was stimulated at night
compared to the day [101]. In patients with MI, there is a significant increase in onset in the
morning (9 am) compared to night (11pm), which is reduced in those receiving beta
adrenergic blockers [118]. The diurnal oscillatory pattern of hematopoietic progenitor and
immune cell regulation should also be considered when designing bone marrow and organ
transplant protocols [112], as evidence suggests differential survival rates of recipients
depending on the time of the day of the transplant [101]. In summary, it appears that the
SNS plays a pivotal role in regulation of inflammatory responses in health and disease, and
that the bone marrow may be a major if not the main contributor to the immune cell pool.

The balancing arm of the sympathetic influence is the parasympathetic arm of the ANS
which regulates the “cholinergic anti-inflammatory pathway” or the “vagal immune reflex”
[52, 94, 119-121]. Substantial evidence exists supporting the beneficial anti-inflammatory
effect of vagal activation in inflammatory and immune conditions [122-128]. Vagal nerve
stimulation is effective in reducing the peripheral release of cytokines such as TNF-alpha,
IL-6, and IL-1, which is dependent on acetylcholine (ACh)-mediated reduction of
macrophage activation via nicotinic acetylcholine receptor (nAChR)-dependent inhibition of
NF-κB signaling in these cells [119, 129]. The afferent vagal fibers are also able to sense
changes in the peripheral inflammatory status; for example, the glomus cells located in close
proximity to the vagal nerve fibers possess IL-1beta binding sites, and therefore the sensory
portion of the inflammatory reflex is able to sense changes in IL-1beta levels in the
periphery [130]. The sensory message is then relayed to the brainstem, particularly the NTS
and the dorsal vagal motor nucleus, where the signal is processed, integrated and relayed
back to the periphery via the vagal efferents [121, 131].
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It has been proposed that the spleen serves as an end-organ of the cholinergic anti-
inflammatory pathway, albeit indirectly [132], as the vagal parasympathetic efferents
communicate with the splenic postganglionic nerves via the celiac-superior mesenteric
plexus [133, 134]. Therefore, the cholinergic anti-inflammatory vagal-splenic reflex requires
activation of the splenic sympathetic (catecholaminergic) postganglionic nerves and possibly
release of NE. This reflex could exert its anti-inflammatory effects either directly, via the
anti-inflammatory subset of beta adrenergic receptors on macrophages [135], or indirectly,
by stimulating a subset of CD4+ T-cells thought to be capable of releasing acetylcholine
[132, 136], which could in turn activate the anti-inflammatory nAChRs within the spleen.

Importantly, the cholinergic anti-inflammatory pathway may not be confined to the spleen,
and the anti-inflammatory actions of the vagus may also be exerted via other peripheral
lymphoid tissues such as the gut [136-138] or the bone marrow. The effect of vagus on the
bone marrow could be particularly pertinent in hypertension and other forms of CVD, which
are characterized by inflammation and a dampened vagal reflex. This view is supported by
our preliminary data indicating that direct administration of NE into the bone marrow
increases mobilization of pro-inflammatory T-cells, which can be attenuated by ACh,
suggesting that the bone marrow itself may be a beneficiary of the anti-inflammatory
cholinergic pathway. The bone marrow, like the spleen, does not have a direct vagal input;
however, the vagal message may be relayed through the superior cervical ganglion, as it
contains both the vagal input [139] and the sympathetic output innervating the bone marrow
[101]. Therefore, the vagal anti-inflammatory input to the bone marrow could be similar to
that described in the spleen [136, 140].

Francois Abboud's group recently demonstrated that the cholinergic input to the spleen was
pro-inflammatory in the pre-hypertensive SHR, whereas there was a pronounced anti-
inflammatory cholinergic modulation of the innate IS in the WKY [67], suggesting that a
dysfunctional ANS-IS communication may precede the development of hypertension. It is
attractive to propose that the anti-inflammatory cholinergic input to the bone marrow could
also be processed in a similar dysfunctional fashion, causing pro-inflammatory effects in the
SHR and anti-inflammatory effects in the WKY. Alternatively, reduced cholinergic release
in the periphery due to dampened vagal activity in hypertension may have a direct anti-
inflammatory effect on the bone marrow, as suggested by our preliminary data showing that
the activation of the bone marrow ICs can be inhibited by direct application of ACh.

In summary, recent findings have underscored the importance of sympathetic and
parasympathetic modulation of IS responses. We propose that an imbalance between
sympathetic and parasympathetic control could be associated with several pathologies,
including hypertension, CVD and diabetes. Furthermore, the anti-inflammatory
parasympathetic axis may present as a potential therapeutic target in hypertension. The role
of the vagus and of the bone marrow in modulating IS responses is an area of emerging
interest.

5. Possible role of sensory input
A plethora of evidence describes how the ANS controls immune responses, as discussed in
the previous section. There is also good evidence of a bidirectional communication between
the CNS and the IS. As mentioned before, the vagal sensory afferents are able to detect
cytokine levels in the periphery and relay the message to the brainstem nuclei, subsequently
activating the vagal efferents in an immune reflex loop.

Whether the bone marrow is able to relay messages back to the brain in a similar fashion
may be of great interest in relation to CVD. Many of the fibers innervating the bone marrow,
in addition to the sympathetic, are primary afferent sensory fibers [141-143]. Pain studies
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have demonstrated that the periosteum, mineralized bone, and the bone marrow are
innervated by various sensory nerve fibers, including thickly and thinly myelinated A-fibers,
as well as the peptide-rich C-fibers [144, 145]. These fibers are able to detect multiple
environmental factors, including the inflammatory cytokines, which enhance the excitability
of the sensory nerve fibers [146]. In hypertensive patients who have increased levels of
systemic inflammation, it is possible that the bone marrow can directly relay the pro-
inflammatory message back to the CNS. In line with this, the nociceptive afferent sensory
message from the periphery is processed in brainstem pre-sympathetic nuclei such as the
NTS [147], in close proximity to the vagus. Nociception has been shown to attenuate the
parasympathetic, but not the sympathetic, arm of the baroreflex within the NTS [148, 149]
by dampening the vagal activity. Moreover, direct electrical stimulation of the bone marrow
increases blood pressure [150], supporting a direct afferent neuronal input to the pre-
sympathetic areas of the brain. Both sensory and sympathetic nerve fibers in the limbs are
able to sprout in response to inflammation [151, 152], suggesting high responsiveness of the
sensory fibers to pro-inflammatory signals and providing additional support for the concept
of bidirectional communication in the system. The increased inflammatory responses seen in
hypertension may be directly related to the increased sympathetic activity and originating in
the bone marrow.

In light of the evidence presented here, we propose that the dysfunctional cholinergic anti-
inflammatory reflex stimulates inflammation in the bone marrow, and thus contributes to the
pathophysiology of neurogenic hypertension. Understanding the sensory input from the bone
marrow may hold the answers to the mechanisms underlying the establishment and
maintenance of hypertension.

The recent discovery of a new RAS member by Robson Santos's group poses many
interesting questions about the role of the RAS in sensory afferent nerve function.
Alamandine is a heptapeptide formed from angiotensin A or angiotensin-(1-7) and is present
in vivo [153]. It acts through the MrgD receptor, a member of the Mas-related gene receptor
family that is found in many sensory structures, particularly in skin [154, 155]. Although the
fibers expressing this novel RAS-related receptor are not present in the bone marrow [144],
these sensory fibers could be important in other peripheral organs and even the vasculature.
Recently, MrgD receptors have been found to regulate mast cell activation during intestinal
inflammation [156, 157]. Therefore, it is possible that there is a direct link between the
peripheral RAS communicating to the brain through afferent nerves and the inflammatory
response in hypertension. Interestingly, sensory dorsal root ganglion neurons also express
functional Ang II receptors [158, 159], suggesting a role for multiple members of the RAS
in this novel bidirectional communication loop.

6. Role of bone marrow in hypertension and CVD
As inferred in the previous section, the importance of bone marrow in neurogenic
hypertension is extremely undervalued. Studies suggest that the bone marrow harbors
memory T-cells, and most importantly, it is a site for the initiation of T-cell activation
responses [160]. Given the importance of T-cell activation in hypertension, discussed in
earlier sections, the bone marrow may be a key organ in neurogenic hypertension. The bone
marrow is also the primary source of EPCs [161], which play a particularly important role in
endothelial repair in the setting of arterial and renal injury following inflammatory and other
pro-hypertensive stimuli [162-164]. Compromising the ability of the EPCs to repair
endothelial damage may perpetuate the pathophysiology of hypertension.

In the bone marrow, EPCs are localized in the stem cell niche. This niche is particularly
important for controlling the ability of these cells to mobilize and differentiate [165], and
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has recently been shown to have immune privilege provided by Treg cells [166]. It is
important, however, to note that stem cells and lymphoid progenitors occupy separate bone
marrow compartments [167]. EPCs respond differently to various stimuli. For example,
acute inflammatory stimuli trigger EPC mobilization, while chronic inflammation can have
the opposite effect and actually decrease the number of circulating EPCs [168]. In addition
to inflammation, EPCs are also able to respond to autonomic stimulation. Recently, it has
been suggested that beta-2 adrenergic receptor stimulation can improve EPC function [169].
However, chronic elevation in bone marrow NE may impair the function of EPCs, and this
may be important in the context of hypertension. These observations are strengthening the
link between the nervous system and the bone marrow.

There is evidence linking bone pathologies with vascular lesions in chronic kidney disease,
including end-stage kidney disease [170-172]. Further, bone vascularization is of particular
interest in the context of hypertension and other forms of CVD, since the cross-talk between
the ANS and the bone marrow vasculature could be a key mechanism of hypertension
pathophysiology. As in other vascular beds, NE acts as a vasoconstrictor in the bone marrow
and plays an important role in controlling blood flow [173]. Within the bone marrow, there
is an oxygen gradient responsible for maintaining healthy cell environments. Hematopoietic
stem cells are found in the osteoblastic niche, which is hypoxic, and upon maturation, travel
to the vascular niche where they are able to differentiate [174]. It is possible that in the
context of neurogenic hypertension, which presents with increased circulating NE, there
may be extensive vasoconstriction in the bone marrow, creating a hypoxic environment that
could negatively modulate stem and progenitor cell function, as well as enhance local
inflammatory responses. These ideas merit further investigation in the context of
hypertension, as improvement of the bone marrow blood flow may present a novel
therapeutic target for that condition.

7. Conclusion
In the present review we have discussed the interplay between the ANS and the IS. Both
systems hold particular importance in the pathophysiology of hypertension. We propose that
the relevance of bone marrow in the field of CVD is greatly undervalued. The bone marrow
is a crucial meeting point for neural, immune, and vascular networks. Afferent sensory
fibers may relay important inflammatory signals to the brain, and sympathetic efferent fibers
could affect both inflammatory and progenitor cells in the bone marrow niches. The
interplay among these systems in the bone marrow is likely complex. It is important to
determine the nature and origins of the signals transmitted to the brain by the bone marrow
afferents, as well as to determine how the vasculature within the bone marrow is regulated in
hypertensive subjects. .

There is current interest in studying these systems in subjects with pre-hypertension. The
finding of increased inflammation and autonomic dysfunction in pre-hypertensive patients
and animals has led to emerging interest in examining the time course of the development of
hypertension and identifying novel biomarkers that may yield new therapeutic targets for
prevention of high blood pressure. While increasing amounts of data suggest that both
increasing sympathetic activity and inflammatory responses precede increases in blood
pressure, the exact timing of these events and their specific roles in the development of
hypertension remain to be elucidated. Therefore, the question remains: which comes first,
inflammation or hypertension?

We propose the following unifying hypothesis to summarize our discussion (Fig. 1).
Hypertensive stimuli, including Ang II, work centrally to activate both microglia and
neurons. Changes in neuronal activity lead to dysfunction of ANS signaling to the periphery,
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including decreased parasympathetic efferent signaling through the vagus and increase
sympathetic efferent signaling through the sympathetic chain to key lymphoid organs, such
as the spleen and bone marrow. Autonomic dysfunction in these organs works to increase
inflammatory responses, such as the production of pro-inflammatory cytokines and cells, as
well as to inhibit EPC function and ultimately vascular repair. Elevation in the pro-
inflammatory factors may be detected by the sensory afferents in the periphery, including
those within the bone marrow, which may relay the message to the brainstem
cardioregulatory areas, ultimately contributing to dampening of the vagal anti-inflammatory
reflex and perpetuating the pro-inflammatory responses via the feed-forward loop. These
increases in peripheral inflammation and endothelial dysfunction ultimately lead to the
vascular, renal, and cardiac lesions of hypertension (Fig. 1).

Despite important recent advances in the field, several key questions remain. First, what are
the underlying mechanisms triggering both peripheral and central inflammation? Can the
vagus relay messages to the bone marrow? Can bone marrow afferent signals modify
function in cardioregulatory regions of the brain? Better understanding of the balance
between the pro-inflammatory sympathetic system and the anti-inflammatory
parasympathetic system will provide many answers to these questions.
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Fig. 1. Proposed hypothesis of a dysfunctional brain-bone marrow communication in the
development and establishment of hypertension
Activation of microglia in cardioregulatory areas of the brain is an early event in the
development of hypertension. AngII and other pro-hypertensive stimuli activate both
microglia and neurons, thus altering neuronal activity in the hypothalamus and the
brainstem. These central responses give rise to intermediate events in the periphery, which
include increased sympathetic and decreased parasympathetic signaling to the spleen and
bone marrow, leading to increased inflammation and impairment in vascular repair.
Moreover, the bone marrow sensory afferents may relay information about the inflammation
to the brain. Finally, the late event involves the extravasation of bone marrow-derived
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inflammatory progenitors in brain that differentiate into microglia, further enhancing
neuroinflammation in the autonomic regulatory areas of brain, thus facilitating the
development of hypertension.
Abbreviations- PICs: pro-inflammatory cytokines; ICs: inflammatory cells; EPCs:
endothelial progenitor cells; SNS: sympathetic nervous system; PNS: parasympathetic
nervous system
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