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Abstract
We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker
malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular
matrix protein encoding gene NID1. In a second family, protein interaction network analysis
identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the
NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings
implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders.
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The Dandy-Walker spectrum of disorders including ADDWOC are characterized by
variable cerebellar hypoplasia, meningeal anomalies, and occipital skull defects. (Barkovich,
et al., 2009) We have previously reported deletions that encompass FOXC1 (Aldinger, et al.,
2009) or ZIC genes (Grinberg, et al., 2004) in rare familial and sporadic cases of Dandy-
Walker spectrum disorders. These mutations likely affect the extracellular matrix (ECM) of
bone, meninges, and brain. (Aldinger, et al., 2009; Grinberg, et al., 2004; Inoue, et al., 2008)

We previously ascertained the phenotype of a family with ADDWOC and normal eye
examination of Vietnamese origin (Fig. 1a, family; previously described by Bassuk et al.
(Bassuk, et al., 2004), and Jalali et al. (Jalali, et al., 2008)). Genome-wide linkage analysis in
the seven affected family members with obvious cephaloceles followed by resequencing
failed to identify a mutation in the only significant LOD peak (Jalali, et al., 2008). To
directly determine if a protein-coding mutation segregated with the phenotype in this
pedigree, we re-examined this family by whole-exome capture and massively parallel
sequencing.

Whole-exome capture and massively parallel sequencing were performed for seven affected
family members with cephalocele. Re-sequencing of putative segregating variants by Sanger
sequencing in the entire pedigree revealed only a single mutation that was present in all
fourteen affected family members (all with Dandy-Walker variant/cerebellar vermal
hypoplasia ± cephalocele (Jalali, et al., 2008)) and absent from 384 Vietnamese control
chromosomes, dbSNP135, the 1000 Genomes Project, or from the National Heart, Lung, and
Blood Institute (NHLBI) Exome Sequencing Project (ESP). This segregating variant at
position 236201527 of chromosome 1 (hg19) corresponded to a nonsense mutation in the
gene NID1 [MIM# 131390; www.lovd.nl/NID1; NM_002508.2 (NID1_v001): c.1162C>T,
p.(Gln388*)] (Fig. 1c). The NID1 protein coordinates extracellular matrix protein
interactions. (Mayer, et al., 1998; Mayer, et al., 1993; Takagi, et al., 2003)

A second ADDWOC family from India with normal eye examinations (Fig. 1b; previously
described by Ghonge et al(Ghonge, et al., 2011)) was examined for NID1 mutations by
Sanger resequencing. No NID1 mutations were discovered. Since the functional
consequence of the NID1 stop mutation found in Family 1 was the deletion of several
domains that interact with other ECM proteins (Figure 2a), (Mayer, et al., 1998; Mayer, et
al., 1993; Takagi, et al., 2003) we investigated binding partner interactions that might be
disrupted. A NID1 interactome was generated, and the NID1 interacting proteins were
considered candidate genes for Family 2 (Figure 1d, Supp. Tables S1 and S2). The coding
sequence for each of these genes was then interrogated following whole-exome capture and
massively parallel sequencing of Family 2. Only one single mutation from the NID1-
interactome segregated with the phenotype in the Indian ADDWOC family. This
segregating variant at position 183091222 of chromosome 1 (hg19) corresponded to a
missense mutation in the gene LAMC1 [MIM# 150290; NM_002293.3 (LAMC1_v001): c.
2237C>T, p.(Thr746Met)] (Fig. 1e). The LAMC1 gene encodes the laminin gamma chain.
This mutation was not found in dbSNP135, the 1000 Genomes or data from the NHLBI
Exome Sequencing Project. The variant alters a threonine residue conserved throughout
evolution (Fig. 2c). Note that there was insufficient DNA samples available to analyze an
English and Brazilian pedigree described previously (Jalali, et al., 2008).
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Since LAMC1 was selected as a candidate gene based on its physical interaction with NID1,
we investigated how the mutations might disrupt this interaction by computational three-
dimensional structural homology modeling of the involved domains in the context of known
NID1-LAMC1 interaction (pdb ID: 1NPE, Fig. 2).(Takagi, et al., 2003) The NID1 stop
mutation (c.1162C>T, p.(Gln388*)) results in a loss of the entire G2 and G3 regions of
NID1, including the β-propeller domain that directly interacts with LAMC1 (Fig. 2a). The
LAMC1 mutation (c.2237C>T, p.(Thr746Met)) occurs in the epidermal growth factor-like
(EGF-like)-6 domain (Fig. 2b, 2d), a highly rigid structure with 4 disulfide linkages
compared to 3 disulfide linkages of a typical EGF domain. This mutation maps to a four-
residue beta sheet, one of only 3 short stretches in this domain with secondary structure.
Normally the buried threonine-746 (M.W. 117 Da) is constrained by rigid disulfide linkages
on either side, and mutation to a 25% larger residue such as methionine (M.W. 149 Da) is
predicted to significantly decrease the stability of the protein (△△G of 7.7 kcal/mol for
Thr→Met), primarily due to steric clashes with neighboring residues (Fig. 2e)
(Schymkowitz, et al., 2005). While there are no reports of EGF-like-6 domain directly
interacting with NID1, unraveling of this domain due to a highly destabilizing mutation
could indirectly lead to loss of the well-documented binding of neighboring EGF-like-7-8-9
stretch to the NID1 β-propeller domain.(Mayer, et al., 1998; Mayer, et al., 1993; Takagi, et
al., 2003) Interestingly, of the eleven EGF-like domains in LAMC1, the EGF-like-6 domain
aligns best to the NID1 binding EGF-like-8 domain (Fig 2f, see Supp. Methods).

While a genetic etiology for the Dandy-Walker spectrum of disorders has long been
appreciated, to date, causative mutations have been identified only in a few cases. Loss of
Foxc1 and Zic cause ECM abnormalities(Grinberg, et al., 2004; Inoue, et al.,
2008),(Zarbalis, et al., 2007) and analysis of these Dandy-Walker mouse models has lead to
the hypothesis that disruptions of mesenchymal development adjacent to the developing
cerebellum underlie the developmental pathogenesis of Dandy-Walker spectrum
phenotypes(Aldinger, et al., 2009; Blank, et al., 2011). This mesenchyme directly gives rise
to the meninges and skull, directly accounting for structural abnormalities of the posterior
fossa. Additionally, since signaling from the mesenchyme is essential for normal cerebellar
development, the hindbrain itself is secondarily affected (Aldinger, et al., 2009). Notably, in
mice, both Nid1 (http://www.informatics.jax.org/image/MGI:4534594) and Lamc1 (various
figures in http://www.informatics.jax.org/searches/expression.cgi?60953) are highly
expressed in the mesenchyme and the ECM surrounding the developing cerebellum in the
posterior fossa. Our current finding of Nid1 and Lamc1 mutations in ADDWOC patients
indicates that the ECM is required for the normal structural integrity of the developing
posterior fossa. Interestingly, mutations in the COL18A1 gene (encoding type XVIII
collagen), another member of the Nid1 interactome cause Knobloch syndrome, which is
characterized by occipital cephaloceles (Mahajan, et al., 2010),(Sertie, et al., 2000), and type
XVIII collagen and Nid1 interact physically to support the BM even in species as distant
from human as Caenorhabditis elegans.(Ackley, et al., 2003) Mice harboring missense or
stop mutations in Nid1 and Lamc1 have not been described, but mice with deletions in these
genes do display BM abnormalities and neurological deficits. Homozygous deletion of Nid1
leads to BM defects in brain capillaries, and behavioral abnormalities(Dong, et al., 2002).
Mice null for Lamc1 in Shwann cells display disrupted basal lamina and peripheral nerve
function,(Chen and Strickland, 2003) while mice with specific homozygous deletion of the
Lamc1 binding site of Nid1 die in utero with multiple BM defects.(Willem, et al., 2002) It
remains to be determined if the hindbrain defects our ADDWOC patients are a direct result
of loss of normal NID1 and LAMC1 function within the developing hindbrain or if their loss
in the ECM surrounding the developing brain is sufficient to impair normal mesenchymal to
brain signaling.
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In addition to furthering our understanding of the genetics of Dandy-Walker spectrum
disorders, our study demonstrates several important aspects of combining next-generation
sequencing technologies, proteomics, and tertiary structural modeling. First, we show that
implementation of whole-exome capture and sequencing allowed us to rapidly identify a
mutation in a family where genome-wide linkage analysis failed. Second, proteomic
network analysis followed by whole-exome capture and massively parallel sequencing
allowed us to rapidly identify a disease causing variant in a second pedigree too small to
perform linkage analysis. Third, combining the known high-resolution atomic structure of
the complex of the two interacting proteins with structural bioinformatics tools allowed us to
model the pathogenic interaction of the two mutations. It seems likely that as more
mutations are identified by next-generation sequencing technologies and as more tertiary
structures are deposited in public repositories, genotype-structural solutions will become
increasingly common. In many cases, this improved facility will greatly enhance our ability
to design novel pharmaceuticals.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pedigrees and Phenotyptes of Affected ADDWOC Families, NID1 and LAMC1
mutations, and NID1 interactome
a. Pedigree of the Vietnamese family (Family 1) with photo of cephalocele (dotted circle)
and skull defect (white arrow) on sagittal brain MRI (T1 weighted image). Black
arrow=proband.
b. Pedigree of the Indian family (Family 2) with examples photos of cephalocele and skull
defect on x-ray. Black arrow=proband.
c. NID1 mutant sequence from Family 1 (top) compared with the normal NID1 sequence
(bottom). Red arrow indicates site of mutant nucleotide.
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d. Construction of a NID1 interactome reveals putative candidates for the ADDWOC
phenotype that include LAMC1.
e. LAMC1 mutant sequence from Family 2 (top) compared to the normal LAMC1 sequence
(bottom).
c and e. Nucleotide numbering reflects cDNA with +1 as the A of the ATG translation
initiation codon in the reference sequence (see text). Initiation codon is codon 1.
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Figure 2. Protein Domain and Structure analysis
a. Nidogen1 domains. A stop codon leads to deletion of the Nidogen1 G2 beta barrel domain
(green), several EGF-like domains (blue), and the thyroglobulin Type-1 domain.
b. LamininC1 domains. The family-2 mutation was found in EGF-6-like (blue asterisk).
There are 11 EGF-like domains (blue), and a previously known interaction with Nidogen-1
occurs through EGF-8-like domain (grey asterisk).
c. Ortholog alignment shows high evolutionary conservation of the Threonine-746 residue
(red box).
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d. Paralog alignment of three human EGF-6-like domains from LAMC1, C2, and C3 shows
size conservation of the 746-residue, Threonine (M.W. 119 Da) and Valine (M.W. 117 Da,
red box).
e. The normal threonine-746 (red) occupies a small space between rigid cysteine disulfide
bridges (orange), and a mutation to methionine leads to steric interference with surrounding
residues (blue).
f. EGF-like-6 domain (homology model in blue) shows 33% sequence identity to EGF-
like-8 domain (grey), which interacts with the Nidogen1 G2 beta barrel domain (green). The
mutation is expected to disrupt a beta sheet (red).
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