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Abstract
Secondary alkylcarbamic acid biphenyl-3-yl esters are a class of Fatty Acid Amide Hydrolase
(FAAH) inhibitors, which include the reference compounds URB597 and URB694. Given the
intrinsic reactivity of the carbamate group, the in vivo potency of these molecules in rats is
strongly affected by their hydrolysis in plasma or hepatic metabolism. In the present study, in vitro
chemical and metabolic stability assays (rat plasma and rat liver S9 fraction) were used to
investigate the structure-property relationships (SPRs) for a focused series of title compounds,
where lipophilicity and steric hindrance of the carbamate N-substituent had been modulated. The
resulting degradation rates indicate that a secondary or tertiary alkyl group at the carbamate
nitrogen atom increases hydrolytic stability towards rat plasma esterases. The calculated solvent
accessible surface area (SASA) of the carbamate fragment was employed to describe the
differences observed in rate constants of hydrolysis in rat plasma (log kplasma), suggesting that
stability in plasma increases if the substituent exerts a shielding effect on the carbamate carbonyl.
Stability in rat liver S9 fraction is increased when a tertiary carbon is bound to the carbamate
nitrogen atom, while other steric effects showed complex relationships with degradation rates. The
SPRs here described may be applied at the pharmacokinetic optimization of other classes of
carbamate FAAH inhibitors.
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1. Introduction
Fatty Acid Amide Hydrolase [1,2,3,4] (FAAH, EC number 3.5.1.4), is, with the more lately
discovered FAAH2 [5], a mammalian member of the ‘amidase signature’ family of
enzymes. It catalyzes the hydrolytic cleavage of biologically active fatty acid ethanolamides,
which include the endocannabinoid agonist arachidonoylethanolamide (anandamide) [6].
FAAH also catalyzes the hydrolysis of endogenous peroxisome proliferator-activated
receptor type-α agonists such as oleoylethanolamide (OEA) [7,8] and
palmitoylethanolamide (PEA) [9,10,11]. These natural substrates of FAAH activity are
thought to regulate many physiological processes in the central nervous system and in
peripheral tissues. Furthermore, deficits in the signaling activity of these molecules have
been linked to a variety of pathologic conditions, including pain, inflammation, anxiety and
depression [12].

The ability of selective FAAH inhibitors to upregulate anandamide signaling at cannabinoid
receptors, thus causing a variety of potentially favorable effects in animal models, has fueled
the discovery of various chemical scaffolds that result in FAAH inhibition [13,14,15,16,17].
Our work has focused on cyclohexylcarbamic acid biphenyl-3-yl esters [18,19] and has led
to several interesting molecules such as URB597 [18,20,21], URB694 [22,23,24] and
URB937 [25] (See Figure 1). In particular, URB597 has been intensely investigated with
regard to its pharmacological properties [18,26,27,28] and mechanism of action
[29,30,31,32].

In recent studies, we observed that intrinsic reactivity of the carbamate group influences
reaction rate [22], inhibitory potency [22], off-target protein selectivity and affinity for
metabolic enzymes [23,24]. In particular, small polar electrondonating groups (e.g. OH) at
the para position of the proximal phenyl ring, as in URB694, are well tolerated with regard
to FAAH inhibitory potency [22], and are also able to increase in vitro chemical and rat
plasma hydrolytic stability [23]. This enhanced in vitro stability was also associated to
improved in vivo [24] distribution and reduced inhibition of broad spectrum liver
carboxylesterases, which had been reported as off-targets for URB597 when this compound
is administrated at concentrations that exceed those needed to fully block FAAH activity
[33].

The reactivity of the carbamate is, however, just one of the factors influencing the
interaction with FAAH or with other possible targets, including different enzymes that may
be carbamoylated by this group or catalyze its metabolic cleavage. Equally crucial for
biological activity, in vivo selectivity and pharmacokinetic profile is molecular recognition
at FAAH binding cavity, a process influenced by the overall size, shape and lipophilicity of
the inhibitor. The recent publication of several co-crystal structures with FAAH and
covalent [34,35,36] and non-covalent [37] inhibitors has shed new light on inhibitor-enzyme
interactions within the catalytic core. The structure of humanized rat FAAH carbamoylated
by URB597 confirmed the orientation of the cyclohexyl substituent within the acyl chain
binding pocket and provided new information about the shape of the lipophilic channel
allocating the N-substituent [35]. This structure also pointed out that carbamates
monosubstituted at nitrogen are a peculiar class of FAAH inhibitors, as their amino group
can make a relevant hydrogen bond in the carbamoylated enzyme. As also shown by
structure-activity relationship (SAR) studies on these compounds, a primary or a secondary
carbon, attached to the nitrogen atom, is well tolerated at FAAH binding site, while the
tertiary carbon of an adamantyl derivative led to a drop of inhibitor potency [38]. On the
other hand, as recently evidenced by comparison of in vivo potencies, carbamate stability is
also affected by the size and shape of their N-substituent [24].
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In the present study, we focused our attention on the relationship between the structure of
this fragment and carbamate stability in different chemical environments, as well as in rat
plasma and liver. To this aim, we employed a series of alkylcarbamic acid biphenyl-3-yl
esters (compounds 1–20, Table 1), previously investigated for their SARs [38], in which the
substituents at the carbamate nitrogen atom have different degrees of lipophilicity and steric
hindrance. The compounds were selected in order to minimize the differences of intrinsic
reactivity of the carbamate group and evaluate the sole effect produced by steric hindrance
modulation at the N-portion on the molecular recognition process.

Therefore, as reported in Table 1, the lipophilicity of substituents was increased from methyl
(3) and isopropyl (4) to n-butyl (5) and n-hexyl (6). The size and length of N-alkyl
substituent were varied with cycloalkyl groups such as cyclobutyl (7), cyclopentyl (8), and
cyclohexylmethyl (9), arylalkyl ones such as benzyl (11) and phenethyl (12), and
phenylalkyl ones of increasing lengths (16, 17). Highly bulky groups such as 1-adamantyl
(10), a hydrophilic terminal group such as 6-morpholinohexyl (18), and conformationally
constrained substituents, such as 2-indanyl (13), and α- and β-naphthylmethyl (14 and 15,
respectively) were also included. Two derivatives bearing the hydrophilic 3′-carbamoyl
group on the biphenyl-3-yl moiety (19, 20) were considered for their high in vitro FAAH
inhibitory potency and to compare them with their more lipophilic unsubstituted analogues
(15 and 16, respectively).

Rat plasma and rat liver S9 fraction were chosen as reference in vitro models for the
hydrolytic and oxidative metabolic cleavage, respectively. Chemical stability was evaluated
at physiological (7.4) and alkaline (9.0) pH values.

Experimental data were analyzed with the aim to disclose the most convenient set of
physico-chemical properties (lipophilicity, steric hindrance), which would allow to keep in
vitro inhibitory potency on FAAH combined with a diminished affinity for rat plasma
hydrolases and liver oxidative enzymes, two critical elements for in vivo potency [24].

2. Results and discussion
The results of chemical and enzymatic stability assays on compounds 1–20 are reported in
Table 1, which also lists pIC50 values for all tested compounds on rat brain membrane
FAAH activity [38].

2.1. Effect of N-substitutions on chemical stability
The stability to chemical hydrolysis was evaluated by measuring residual concentrations of
the compounds 1-20 at various time points in thermostated, buffered solutions at
physiological (7.4) or alkaline (9.0) pH.

A 24 h cleavage of all carbamates at physiological pH yields percentages of remaining
compound that range from 16.2% (13) to 66.7% (10). Hydrolysis at alkaline pH was
significantly faster than that at pH 7.4, with half-lives (t1/2) ranging from 13.9 min (19) to
260.4 min (10). With the exception of the cyclohexylmethyl (9) and 1-adamantyl (10)
derivatives, substitution of the N-cyclohexyl (1) group with an alkyl (3–6), cycloalkyl (7, 8)
or arylalkyl (11, 12, 14-20) group did not significantly influence t1/2 values, which showed
an averaged value of 39.2 min (n = 18). These results are consistent with the fact that the
chemical stability of O-aryl carbamates is pH-dependent, with hydrolysis rates increasing
with hydroxide ion concentration as a consequence of two concurring mechanisms, a
common BAC2 and an elimination-addition one (E1cB) [39,40,41,42].
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For three representative compounds (i.e. the lead compound URB524, the hindered
adamantyl derivative 10 and the lipophilic phenylbutyl 16) we measured dependence of
pseudo half-lives on concentration at pH 9.0. No significant difference was observed
between pseudo half-lives at 1 μM, 300 nM, 100 nM (see Table 3 in Supplementary
Material). This seems to rule out that variations in chemical stability can be ascribed to
different solubility of the tested compounds, even if accurate solubility data should be
needed to confirm this.

The intrinsic reactivity of the carbamate group was conserved along the series. The
modulation of size, shape and lipophilicity of the N-substituent had, therefore, only little
effect on the propensity of the carbamate to be chemically cleaved, in accordance to what
we could expect from lipophilicity and steric hindrance change of the N-portion.

2.2. Effect of N-substitutions on rat plasma stability
In biological model systems endowed with high hydrolytic activity, e.g. rat plasma, the
stability of carbamate-based compounds depends on their interaction with various non-
specific hydrolases, where both carbamate reactivity and recognition processes may
markedly influence hydrolysis rates [43].

For the present series of derivatives, no quantitative correlation between hydrolysis rate
constants at alkaline pH (log kpH9) and in the presence of rat plasma (log kplasma, Table 2)
could be found for compounds 1-20. No significative correlation was also found between
log kplasma and calculated Lowest Unoccupied Molecular Orbital (LUMO) energy,
previously employed by us as a descriptor of carbamate electrophilicity [23] (data not
shown). Therefore, we may infer that additional factors other than the intrinsic reactivity of
the hydrolyzable center could influence and control carbamate hydrolysis.

Replacing of N-cyclohexyl group of 1 (t1/2, plasma = 42.7 min) with a small alkyl group such
as methyl (3) brought about in a 10-fold reduction in stability (t1/2 = 3.8 min), and such
stability could not be recovered with the introduction of a long n-hexyl chain (6, t1/2 = 7.5
min). The presence of two additional alkyl substituents, i.e. isopropyl (4) and n-butyl (5),
yielded t1/2 values of approximately 20 min. The cyclobutyl derivative (7, t1/2 = 19.9 min)
showed a resistance to hydrolysis similar to that of its linear isomer (5), whereas the
introduction of bulkier cycloalkyl groups such as cyclopentyl (8, t1/2 = 40.0 min) and,
particularly, 1-adamantyl (10, t1/2 = 183.3 min) markedly increased the stability of the
carbamate group to rat plasma hydrolases. Homologation, as exemplified by the
methylcyclohexyl derivative (9), caused a drop in stability (t1/2 = 15.3 min).

The dependence of rat plasma stability on N-alkylaryl substitution (11–20) was more
complex, as it depended on the chain length and the characteristics of the aromatic group. In
general, the presence of short alkyl chains (11, 12) led to a moderate decrease in plasma
stability (t1/2 = 14.3 and 22.1 min, respectively), which became critical when the phenyl ring
was replaced by a naphthalene one (14, t1/2 = 7.3 min; 15, t1/2 = 1.0 min) or linked to an n-
butyl (16, t1/2 = 6.6 min) or n-hexyl (17, t1/2 = 8.4 min) spacer. Finally, replacement of the
aromatic portion of 17 with a ionizable morpholine group (18) had no effect on plasma
stability (t1/2 = 8.0 min), suggesting that lipophilicity is not a major factor influencing
interaction with plasma hydrolases. In principle, plasma protein binding can significantly
affect stability of our compounds in different ways [44].

In fact, we had previously observed that albumin protects a class of prodrugs, having a
carbamate fragment, from both enzymatic and chemical hydrolysis [45]; as all the present
compounds resulted more stable in buffer at pH 7.4 than in plasma, protection from
chemical hydrolysis looks negligible. On the other hand, different protein binding could
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affect the esterase-catalysed hydrolysis, thus explaining the different stabilities in rat plasma.
In this regard, as it is reasonable to expect higher protein binding for more lipophilic
compounds [46], the lack of correlation between lipophilicity and stability could be due to
compound-specific competitions between hydrolytic enzymes and other proteins, or to the
absence of a significant role for protein binding.

The introduction of a 3′-carbamoyl group on the biphenyl-3-yl moiety of compounds 15 and
16 led to compounds 19 (t1/2 = 13.9 min) and 20 (t1/2 = 30.3 min), which displayed t1/2
values that were comparable to those of their parent carbamates.

A QSPR analysis of rat plasma hydrolysis data was attempted to assess the role of different
steric and lipophilic descriptors of the selected N-substituents on hydrolysis rate constants.
Multiple regression analysis (MRA) employing traditional descriptors for lipophilicity
(clogP) and steric hindrance (MR, L, B1, B5) [47], alone or in combination, did not yield
any statistically significant model.

The 3D descriptor solvent accessible surface area (SASA) [48] for compounds 1 and 3-18
was therefore calculated for the carbamate fragment (SASAcarbamate), as a measure of the
shielding effect provided by the substituents at the carbamate nitrogen, and used in the
search of QSPR models (see Experimental section). In Figure 2, the SASAcarbamate (in blue
colour) for the lead compound URB524 (1) is represented. Similar descriptors had been
successfully applied to model kinetic data on the hydrolysis of esters by plasmatic
carboxylesterases [49] or rat liver esterases [50]. While a general trend in the plot of log
kplasma versus SASA can be discerned (See Figure 3), a single compound (15) behaves as an
outlier, strongly affecting the correlation statistics (N=17, R2= 0.28, s=0.43, F=5.7). This
structure, having a β-naphthylmethyl substituent, was less stable in rat plasma than
expected, in particular if compared to the benzyl derivative 11 (t1/2= 1.0 min. vs 14.3 min,
respectively) and to compounds of similar lipophilicity. Notably, the compounds 11 and 15
showed similar chemical stability at pH 9.0, suggesting that the peculiar unstability of
compound 15 is likely due to specific interactions with some undefined rat plasma esterases.
When 15 was excluded from the dataset, linear regression of the data represented in Figure 3
gave a statistically significant equation (Equation 1).

Eq. 1

This linear trend strongly depends on two data points, i.e. on compounds endowed with the
lowest (10, adamantyl) and highest (3, methyl) SASA values. Their exclusion from the data
set reduces the variation in SASA and stability. However, further exclusion of these two
compounds gave an equation retaining similar regression coefficient (0.045±0.014) and
standard error (0.21), even if R2 drops to 0.46, due to the reduced standard deviation of log
kplasma (from 0.40 to 0.22). This is indicative of model robustness, even if anomalous
behaviours, due to specific biomolecular processes, should be expected for plasma stability.

From a general point of view, from the analysis of the plot we can infer that the presence of
a secondary (1, 8) or, better, tertiary (10) cycloalkyl group directly linked to the carbamate
nitrogen atom is favourable to maintaining or enhancing rat plasma stability, because
shielding of the carbamate carbonyl group might prevent cleavage by rat plasma enzymes. If
a methylene group or even a longer alkyl chain is interposed between the bulky branched
carbon atom and carbamate nitrogen, e.g. going from the N-cyclohexyl (1) to N-
methylcyclohexyl (9) substituted carbamates, rat plasma stability drops.

Vacondio et al. Page 5

Eur J Med Chem. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



All carbamates presenting SASA values over the 45.0 Å2 limit value (i.e. higher surface area
of the carbamate fragment accessible to solvent, see also Table 2) showed lower stability in
rat plasma, with pseudo half-lives (t1/2) spanning in the 4–20 min range.

An evidence on how a certain degree of in vitro liability to rat plasma hydrolytic enzymes
could affect in vivo potency came from the comparison between the phenylbutyl derivative
16 and parent compound 1 (pIC50 = 8.03 vs 7.20, respectively). Despite being almost ten
fold more potent in vitro than 1, the in vivo potency on FAAH inhibition of 16, expressed as
ID50, was comparable (0.96 vs 0.81 mg kg−1, respectively) [24]. This result could be
explained on the basis of an increased sensitivity of 16 to plasma esterases hydrolysis
(t1/2, plasma = 6.6 min for 16 vs. 42.7 min for 1), also because a similar chemical stability was
observed in aqueous buffer at physiological pH [23].

2.3. Effect of N-substitutions on metabolism by rat liver S9 fraction
Liver subcellular fractions, such as S9, cytosol and microsomes, obtained by differential
centrifugation methods, have become reference in vitro models for drug stability studies in
drug discovery setting [51]. To our aim, data of this kind could enable us to evaluate which
modifications at the carbamate N-portion are related to a reduced clearance by rat liver
metabolic enzymes and, therefore, are favourable to improve the in vivo half-life and oral
bioavailability of the compounds [52]. All carbamates, with the sole exception of the 1-
adamantyl derivative (10), which remained stable for the entire testing period, were
susceptible to in vitro liver metabolism with half-lives ranging from less than 2 min for the
isopropyl (4) and n-butyl (5) derivatives to over 1 hour for the 2-indanyl carbamate (13). A
plot of log kS9 versus calculated molar refractivity (MR) showed a trend, which suggests
that the increase in steric hindrance is inversely related to rat liver metabolic clearance (See
Figure 4). A similar plot could also be drawn between log kS9 and calculated lipophilicity,
expressed as clogP (clogP, see Table 2); however, since as clogP significantly correlated
with MR (clogP = 0.68(± 0.02) MR −1.49(±0.28); n = 16; R2 = 0.974; s = 0.15; F = 533), it
did not increase the obtained information. Among most stable compounds we can enumerate
the N-alkylaryl substituted carbamates 13-15 for which conformational constraints could
have reduced the overall affinity for rat liver enzymes. However, the observed trend
remained qualitative; for instance, the methyl derivative (3) was much more stable than
expected, if compared to the other short alkyl substituents isopropyl (4) and n-butyl (5),
probably due to a poorer recognition by rat liver enzymes. No correlation was found, as
expected, between rate constants in rat plasma (kplasma) and liver S9 fraction (kS9), the latter
being a composite function of hydrolytic and oxidative reactions taking place within rat liver
preparation [51].

3. Conclusion
We have examined a series of alkylcarbamic acid biphenyl-3-yl esters to show that it is
possible to regulate their rat plasma hydrolases recognition by varying the steric hindrance
of the carbamate N-substituent. In particular, we have shown that the introduction of a
secondary or bulkier tertiary carbon atom in close proximity to the carbamate nitrogen atom
(8, 10) shields the hydrolytic attack by rat plasma esterases, if compared to what observed
for linear substituents. This SPR also provides an explanation for the better in vivo/in vitro
potency ratios previously observed in rats for cyclohexyl derivatives over the linear
phenylalkyl ones [24]. The calculated area-based 3D descriptor SASA helped to rationalize
these findings, with a trend where the hydrolysis rate constants were inversely related to the
polar surface area of the carbamate fragment.

The results should be taken into consideration in the design of new carbamate-based FAAH
inhibitors endowed with adequate stability toward rat plasma hydrolysis.
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4. Experimental section
4.1. Chemistry

All chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich srl, Cologno Monzese,
Italy), and Analyticals Carlo Erba (Carlo Erba, Rodano, Italy) in the highest quality
commercially available. Syntheses of compounds 1-20 were published elsewhere [24,38].

4.2. Biological Media
Rat plasma was obtained from male Wistar rats, 250–300 g (Charles River Laboratories,
Milan, Italy). Animals were housed, handled, and cared for according to the European
Community Council Directive 86 (609) EEC, and the experimental protocol was carried out
in compliance with Italian regulations (DL 116/92) and with local ethical committee
guidelines for animal research. Pooled plasma was obtained by cardiac puncture, collected
into heparinized tubes, centrifuged (1,900 g, 4 °C, 10 min) using a ALC refrigerated
centrifuge (ALC srl, Cologno Monzese, Italy) and stored at −70 °C until use.

Rat liver S9 fractions were obtained from the same rats, transcardially perfused with 60 mL
ice-cold KCl 0.15 M. Livers were removed, weighted, sliced into small pieces, and
homogenized on ice with an ice-cold phosphate-buffered saline (PBS) solution (0.01 M, pH
7.4, 20% w/v). The S9 fraction was obtained by centrifugation (9,000 g, 4 °C, 30 min) and
stored at −70 °C until use. Protein content was quantified by the colorimetric Bradford
method, employing bovine serum albumin (BSA) as internal standard [53].

4.3. In vitro chemical stability
Chemical stability was investigated, at fixed ionic strength (μ = 0.15 M), under
physiological (0.01 M PBS, pH 7.4), and alkaline (0.01 M borate buffer, pH 9.0) pH
conditions. Stock solutions of compounds were prepared in DMSO, and each sample was
incubated at a final concentration of 100 nM-1 μM in pre-warmed (37 °C) buffer solution;
the final DMSO concentration in the samples was kept at 1%. The samples were maintained
at 37 °C in a temperature-controlled shaking water bath (60 rpm). At various time points,
100 μL aliquots were removed and analyzed by HPLC. Apparent half-lives (t1/2) for the
disappearance of carbamate drugs were calculated from the pseudo-first-order rate constants
obtained by linear regression of plots of log [drug] versus time plots, and are reported in
Table 1 as mean values along with their standard deviations (n = 3).

4.4. In vitro enzymatic stability
Rat plasma was quickly thawed and diluted to 80% (v/v) with PBS (pH 7.4) to buffer the
solution pH, which was checked during the course of experiments. Pooled rat plasma (400
μL) was incubated with PBS buffer (95 μL, pH 7.4) and compound stock solution (5 μL) in
DMSO (final DMSO concentration in samples: 1%; final compound concentration: 1 μM).

In rat liver S9 fraction stability experiments, aliquots (50 μL) of liver S9 fraction were
quickly thawed and incubated for 5 min at 37 °C with the NADPH-regenerating system (2
mM NADP+, 10 mM glucose-6-phosphate, 0.4 U mL−1 glucose-6-phosphate
dehydrogenase, 5 mM MgCl2) in PBS (pH 7.4). At the end of the incubation period,
compound stock solution (5 μL, 100 μM) in DMSO was added (final DMSO concentration
in samples: 1%; final compound concentration: 1 μM). Final protein concentration in the
liver S9 fraction, measured according to Bradford method with BSA as standard [53], was 2
mg mL−1.

Samples from rat plasma and rat liver S9 fraction for stability studies were maintained at 37
°C in a temperature-controlled shaking water bath (60 rpm) throughout the experiments. At
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regular time points, aliquots (50 μL) were withdrawn, added with two volumes of CH3CN,
centrifuged at 8,000 g for 5 min at 4 °C, and analyzed by RP-HPLC. Apparent half-lives
(t1/2) for the disappearance of test compounds were calculated from the pseudo-first-order
rate constants obtained by linear regression of plots of log [drug] versus time; t1/2 values
reported in Table 1 are the mean values of three experiments along with standard deviations.

4.5. Analytical methods
The disappearance of compounds 1, 2, 4-17, 19 and 20 was monitored by RP-HPLC
employing a Shimadzu gradient system (Shimadzu Corp., Kyoto, Japan) consisting of two
Shimadzu LC-10ADvp solvent delivery modules, a 20 μL Rheodyne sample injector
(Rheodyne LLC, Rohnert Park, CA, USA), a SPD-10Avp UV-VIS and a fluorometric
detector, equipped with a reversed-phase C18 column (LC-18-DB, 5 μm, 150 × 4.6 mm i.d.;
Supelco, Bellefonte, PA, USA). The HPLC system was interfaced with PeakSimple 2.83
software for data acquisition. Mobile phases consisted of various percentages of CH3CN: 10
mM phosphate buffer, pH 7.0 (70:30→50:50, v/v) delivered at a flow rate of 1 mL min−1.
Each compound was monitored at its relative absorbance maximum for UV detection and at
an excitation/emission wavelength of 285/315 nm for fluorescence detection.

Compounds 3 and 18 were monitored by an API150EX single quadrupole LC-MS system
(AB/Sciex, Toronto, Canada) equipped with an ESI (Electrospray ionization) Turbo
IonSpray and an Atmospheric Pressure Chemical Ionization (APCI) ion sources working in
positive ion mode (PIM) and coupled to an Agilent 1100 series HPLC system (Agilent
Technologies, Waldbronn, Germany) constituted of a G1312A binary pump, a G1379A
degasser and a 5 μL Rheodyne sample injector.

Compound-dependent parameters were optimized by flow-injection analysis (FIA) and
ramping of the potentials. Final settings were: for compound 3, declustering potential (DP):
3.0 V, focusing potential (FP): 100 V, entrance potential (EP): 10 V; [M+H]+ ion was
detected at m/z = 228.09. For compound 18, DP = 30 V; FP = 200 V; EP = 10 V and [M
+H]+ was detected at m/z = 383.23. In both cases, higher voltages led to compound in-
source fragmentation. The ion source temperature was set at 400 °C. In the ESI-MS-LC
system (for 18) an Ascentis™ C18 reverse-phase column, 100 × 2.1 mm, 5 μm (Supelco,
Bellefonte, PA, USA) was used; flow rate was kept at 250 μL min−1. In the APCI-MS-LC
system (for 3) a Supelcosil C18-DB column, 150 × 4.6 mm, 5 μm (Supelco, Bellefonte, PA,
USA) was used; flow rate was kept at 1 mL min−1. Mobile phases consisted of various
percentages of 0.1% HCOOH:CH3CN (45:55→25:75, v/v). Data were acquired employing
Analyst 1.4 software package (AB/Sciex, Toronto, Canada).

4.6. SPR analysis
Three-dimensional molecular models of compound 1 and 3–18 were built by applying
standard tools in Macromodel [54] and their geometry optimised with OPLS2005 force field
[55] until an energy gradient of 0.01 kcal/(mol · Å). The resulting structures were submitted
to 20 ns of molecular dynamics simulation at 298 K, (time step for integration = 1 fs)
applying OPLS2005 force field, in combination with the Surface Generalized Born
continuum model (GB/SA) for water representation [56].

For each simulation, 5,000 snapshots were collected and, for all of them, SASA of the
carbamate group (based on its N, H, and O atoms) was measured with Maestro software
[57], using a probe-radius of 1.4 Å. Finally, for each compound, the mean value of the
SASA was calculated and employed as steric descriptor in the QSPR models. The dependent
variable was log kplasma, i.e. the logarithm of the apparent first-order kinetic constant
observed in the presence of rat plasma, calculated as ln2/t1/2[min]. clogP values of
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compounds 1 and 3–18 were calculated employing Qikprop [58] as implemented in
Macromodel, while MR values of the same compounds were calculated using MOE
software [59].
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Acknowledgments
This work was supported by MiUR (Ministero dell’Istruzione, dell’Università e della Ricerca), Universities of
Parma and Urbino “Carlo Bo”. The S.I.T.I. (Settore Innovazione Tecnologie Informatiche) and C.I.M. (Centro
Interdipartimentale Misure) of the University of Parma are gratefully acknowledged.

References
1. Desarnaud F, Cadas H, Piomelli D. Anandamide amidohydrolase activity in rat brain microsomes.

Identification and partial characterization. J Biol Chem. 1995; 270:6030–6035. [PubMed: 7890734]

2. Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T. Partial purification and characterization of the
porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995; 270:23823–
23827. [PubMed: 7559559]

3. Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB. Characterization of the kinetics and
distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochim Biophys
Acta. 1995; 1257:249–256. [PubMed: 7647100]

4. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization
of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996; 384:83–87.
[PubMed: 8900284]

5. Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide
hydrolase with variable distribution among placental mammals. J Biol Chem. 2006; 281:36569–
36578. [PubMed: 17015445]

6. Devane WA, Hanuš L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A,
Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid
receptor. Science. 1992; 258:1946–1949. [PubMed: 1470919]

7. Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, Murillo-Rodríguez E,
Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D. An anorexic lipid mediator
regulated by feeding. Nature. 2001; 414:209–212. [PubMed: 11700558]

8. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, Rosengarth A, Luecke
H, Di Giacomo B, Tarzia G, Piomelli D. Oleylethanolamide regulates feeding and body weight
through activation of the nuclear receptor PPAR-α. Nature. 2003; 425:90–93. [PubMed: 12955147]

9. Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and
degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem. 1997;
272:3315–3323. [PubMed: 9013571]

10. Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M,
Antonietti F, Duranti A, Tontini A, Cuzzocrea S, Tarzia G, Piomelli D. Selective N-
acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous
palmitoylethanolamide in inflammation. Proc Natl Acad Sci USA. 2009; 106:20966–20971.
[PubMed: 19926854]

11. Solorzano C, Antonietti F, Duranti A, Tontini A, Rivara S, Lodola A, Vacondio F, Tarzia G,
Piomelli D, Mor M. Synthesis and structure-activity relationships of N-(2-oxo-3-oxetanyl)amides
as N-acylethanolamine-hydrolyzing acid amidase inhibitors. J Med Chem. 2010; 53:5770–5781.
[PubMed: 20604568]

12. Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug
Discovery. 2008; 7:438–455.

13. Deng H. Recent advances in the discovery and evaluation of fatty acid amide hydrolase inhibitors.
Exp Opin Drug Discovery. 2010; 5:961–993.

Vacondio et al. Page 9

Eur J Med Chem. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



14. Sit SY, Conway CM, Xie K, Bertekap R, Bourin C, Burris KD. Oxime carbamate–discovery of a
series of novel FAAH inhibitors. Bioorg Med Chem Lett. 2010; 20:1272–1277. [PubMed:
20036536]

15. Gattinoni S, De Simone C, Dallavalle S, Fezza F, Nannei R, Battista N, Minetti P, Quattrociocchi
G, Caprioli A, Borsini F, Cabri W, Penco S, Merlini L, Maccarrone M. A new group of oxime
carbamates as reversible inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett. 2010;
20:4406–4411. [PubMed: 20591666]

16. Gustin DJ, Ma Z, Min X, Li Y, Hedberg C, Guimaraes C, Porter AC, Lindstrom M, Lester-Zeiner
D, Xu G, Carlson TJ, Xiao S, Meleza C, Connors R, Wang Z, Kayser F. Identification of potent,
noncovalent fatty acid amide hydrolase (FAAH) inhibitors. Bioorg Med Chem Lett. 2011;
21:2492–2496. [PubMed: 21392988]

17. Johnson DS, Stiff C, Lazerwith SE, Kesten SR, Fay LK, Morris M, Beidler D, Liimatta MB, Smith
SE, Dudley DT, Sadagopan N, Bhattachar SN, Kesten SJ, Nomanbhoy TK, Cravatt BF, Ahn K.
Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH
inhibitor. ACS Med Chem Lett. 2011; 2:91–96. [PubMed: 21666860]

18. Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G,
Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D. Modulation of anxiety
through blockade of anandamide hydrolysis. Nat Med. 2003; 9:76–81. [PubMed: 12461523]

19. Tarzia G, Duranti A, Tontini A, Piersanti G, Mor M, Rivara S, Plazzi PV, Park C, Kathuria S,
Piomelli D. Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl
esters, a new class of fatty acid amide hydrolase inhibitors. J Med Chem. 2003; 46:2352–2360.
[PubMed: 12773040]

20. Mor M, Rivara S, Lodola A, Plazzi PV, Tarzia G, Duranti A, Tontini A, Piersanti G, Kathuria S,
Piomelli D. Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide
hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular
modeling studies. J Med Chem. 2004; 47:4998–5008. [PubMed: 15456244]

21. Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott
JA, Putman D. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597).
CNS Drug Rev. 2006; 12:21–38. [PubMed: 16834756]

22. Tarzia G, Duranti A, Gatti G, Piersanti G, Tontini A, Rivara S, Lodola A, Plazzi PV, Mor M,
Kathuria S, Piomelli D. Synthesis and structure-activity relationships of FAAH inhibitors:
cyclohexylcarbamic acid biphenyl esters with chemical modulation at the proximal phenyl ring.
ChemMedChem. 2006; 1:130–139. [PubMed: 16892344]

23. Vacondio F, Silva C, Lodola A, Fioni A, Rivara S, Duranti A, Tontini A, Sanchini S, Clapper JR,
Piomelli D, Mor M, Tarzia G. Structure-property relationships of a class of carbamate-based fatty
acid amide hydrolase (FAAH) inhibitors: chemical and biological stability. ChemMedChem. 2009;
4:1495–1504. [PubMed: 19554599]

24. Clapper JR, Vacondio F, King AR, Duranti A, Tontini A, Silva C, Sanchini S, Tarzia G, Mor M,
Piomelli D. A second generation of carbamate-based fatty acid amide hydrolase inhibitors with
improved activity in vivo. ChemMedChem. 2009; 4:1505–1513. [PubMed: 19637155]

25. Clapper JR, Moreno-Sanz G, Russo R, Vacondio F, Duranti A, Tontini A, Sanchini S, Sciolino
NR, Spradley JM, Hohmann AG, Calignano A, Mor M, Tarzia G, Piomelli D. Anandamide
suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010;
13:1265–1270. [PubMed: 20852626]

26. Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese
MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V,
Piomelli D. Antidepressant-like activity and modulation of brain monoaminergic transmission by
blockade of anandamide hydrolysis. Proc Natl Acad Sci USA. 2005; 102:18620–18625. [PubMed:
16352709]

27. Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, Tontini A, Mor M, Tarzia G,
Piomelli D. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a
rat model of chronic mild stress. Biol Psychiatry. 2007; 62:1103–1110. [PubMed: 17511970]

28. Russo R, LoVerme J, La Rana G, Compton TR, Parrott J, Duranti A, Tontini A, Mor M, Tarzia G,
Calignano A, Piomelli D. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic

Vacondio et al. Page 10

Eur J Med Chem. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



acid 3′-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J
Pharmacol Exp Ther. 2007; 322:236–242. [PubMed: 17412883]

29. Basso E, Duranti A, Mor M, Piomelli D, Tontini A, Tarzia G, Traldi P. Tandem mass
spectrometric data-FAAH inhibitory activity relationships of some carbamic acid O-aryl esters. J
Mass Spectrom. 2004; 39:1450–1455. [PubMed: 15578755]

30. Alexander JP, Cravatt BF. Mechanism of carbamate inactivation of FAAH: implications for the
design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol. 2005;
12:1179–1187. [PubMed: 16298297]

31. Lodola A, Mor M, Rivara S, Christov C, Tarzia G, Piomelli D, Mulholland AJ. Identification of
productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM
mechanistic modelling. Chem Commun. 2008:214–216.

32. Lodola A, Capoferri L, Rivara S, Chudyk E, Sirirak J, Dyguda-Kazimierowicz E, Sokalski WA,
Mileni M, Tarzia G, Piomelli D, Mor M, Mulholland AJ. Understanding the role of carbamate
reactivity in fatty acid amide hydrolase inhibition by QM/MM mechanistic modelling. Chem
Commun. 2011:2517–2519.

33. Zhang D, Saraf A, Kolasa T, Bhatia P, Zheng GZ, Patel M, Lannoye GS, Richardson P, Stewart A,
Rogers JC, Brioni JD, Surowy CS. Fatty acid amide hydrolase inhibitors display broad selectivity
and inhibit multiple carboxylesterases as off-targets. Neuropharmacology. 2007; 52:1095–1105.
[PubMed: 17217969]

34. Mileni M, Garfunkle J, Demartino JK, Cravatt BF, Boger DL, Stevens RC. Binding and
inactivation mechanism of a humanized fatty acid amide hydrolase by α-ketoheterocycle
inhibitors revealed from cocrystal structures. J Am Chem Soc. 2009; 131:10497–10506. [PubMed:
19722626]

35. Mileni M, Kamtekar S, Wood DC, Benson TE, Cravatt BF, Stevens RC. Crystal structure of fatty
acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water
molecule and insight into enzyme inactivation. J Mol Biol. 2010; 400:743–754. [PubMed:
20493882]

36. Mileni M, Garfunkle J, Ezzili C, Kimball FS, Cravatt BF, Stevens RC, Boger DL. X-ray
crystallographic analysis of α-ketoheterocycle inhibitors bound to a humanized variant of fatty
acid amide hydrolase. J Med Chem. 2010; 53:230–240. [PubMed: 19924997]

37. Min X, Thibault ST, Porter AC, Gustin DJ, Carlson TJ, Xu H, Lindstrom M, Xu G, Uyeda C, Ma
Z, Li Y, Kayser F, Walker NPC, Wang Z. Discovery and molecular basis of potent noncovalent
inhibitors of fatty acid amide hydrolase (FAAH). Proc Natl Acad Sci U S A. 2011; 108:7379–
7384. [PubMed: 21502526]

38. Mor M, Lodola A, Rivara S, Vacondio F, Duranti A, Tontini A, Sanchini S, Piersanti G, Clapper
JR, King AR, Tarzia G, Piomelli D. Synthesis and quantitative structure-activity relationship of
fatty acid amide hydrolase inhibitors: modulation at the N-portion of biphenyl-3-yl
alkylcarbamates. J Med Chem. 2008; 51:3487–3498. [PubMed: 18507372]

39. Williams A, Douglas KT. Elimination-addition mechanisms of acyl transfer reactions. Chem Rev.
1975; 75:627–649.

40. Adams P, Baron FA. Esters of carbamic acid. Chem Rev. 1965; 65:567–602.

41. Christenson I. Alkaline hydrolysis of some carbamic acid esters. Acta Chem Scand. 1964; 18:904–
922.

42. Hegarty AF, Frost LN. Elimination–addition mechanism for the hydrolysis of carbamates.
Trapping of an isocyanate intermediate by an o-amino-group. J Chem Soc Perkin Trans. 1973;
2:1719–1728.

43. Testa, B.; Krämer, SD. The Biochemistry of Drug Metabolism: Principles, Redox Reactions,
Hydrolyses, Helvetica Chimica Acta. Zurich: 2008. p. 201-248.

44. Vacondio F, Silva C, Mor M, Testa B. Qualitative structure-metabolism relationships in the
hydrolysis of carbamates. Drug Metab Rev. 2010; 42:551–589. [PubMed: 20441444]

45. Rivara M, Vacondio F, Silva C, Zuliani V, Fantini M, Bordi F, Plazzi PV, Bertoni S, Ballabeni V,
Flammini L, Barocelli E, Mor M. Synthesis and stability in biological media of 1H-imidazole-1-
carboxylates of ROS203, an antagonist of the histamine H3 receptor. Chem Biodivers. 2008;
5:140–152. [PubMed: 18205116]

Vacondio et al. Page 11

Eur J Med Chem. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



46. Fessey, RE.; Austin, RP.; Barton, P.; Davis, AM.; Wenlock, MC. The role of plasma protein
binding in drug discovery. In: Testa, B.; Krämer, SD.; Wunderli-Allenspach, H.; Folkers, G.,
editors. Pharmacokinetic profiling in drug research. VHCA; Zurich: 2006. p. 137-139.

47. Verloop, A.; Tipker, J. Physical basis of sterimol and related steric constants. In: Hadzi, D.;
Jerman-Blazic, B., editors. Pharmacochemistry library, QSAR in Drug Design and Toxicology.
Vol. 10. Elsevier; Amsterdam: 1987. p. 97-102.

48. Buchwald P. Structure-metabolism relationships: steric effects and the enzymatic hydrolysis of
carboxylic esters. Mini Rev Med Chem. 2001; 1:101–111. [PubMed: 12369995]

49. Buchwald P, Bodor N. Quantitative structure-metabolism relationships: steric and nonsteric effects
in the enzymatic hydrolysis of noncongener carboxylic esters. J Med Chem. 1999; 42:5160–5168.
[PubMed: 10602701]

50. Hirota M, Sakakibara K, Yuzuri T, Kuroda S. Evaluation of the steric substituent effect by Ωs:
reinvestigation of the reaction dependency of the steric substituent constant. J Phys Org Chem.
2001; 14:788–793.

51. Testa, B.; van de Waterbeemd, H.; Folkers, G.; Guy, R. Helvetica Chimica Acta. Zurich: 2001.
Pharmacokinetic optimization in drug research; p. 231-234.

52. Masimirembwa CM, Bredberg U, Andersson TB. Metabolic stability for drug discovery and
development: pharmacokinetic and biochemical challenges. Clin Pharmacokinetics. 2003; 42:515–
528.

53. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248–254. [PubMed:
942051]

54. MacroModel, version 9.7. Schrödinger, LLC; New York, NY: 2009.

55. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of
the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations
on peptides. J Phys Chem B. 2001; 105:6474–6487.

56. Ghosh A, Sendrovic Rapp C, Friesner RA. Generalized born model based on a surface integral
formulation. J Phys Chem B. 1998; 102:10983–10990.

57. Maestro, version 9.0. Schrödinger, LLC; New York, NY: 2009.

58. Qikprop, version 3.2. Schrödinger, LLC; New York, NY: 2009.

59. Molecular Operating Environment (MOE 2008.10). C. C. G., Inc; 1255 University St. Montreal,
Quebec, Canada H3B 3X3:

Vacondio et al. Page 12

Eur J Med Chem. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Biphenyl-3-yl alkylcarbamates are a class of fatty acid amide hydrolase
inhibitors

• Steric effects of carbamate N-alkyl substituents can influence metabolic stability

• Secondary or tertiary N-alkyl groups increase hydrolytic stability in rat plasma

• Stability in rat liver S9 fraction is increased by bulky tertiary N-alkyl groups.

• Solvent Accessible Surface Area (SASA) is a suitable descriptor of rat plasma
hydrolysis.
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Figure 1.
Chemical structures of URB597, URB694 and URB937.
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Figure 2.
3D graphical representation of solvent accessible surface area for the carbamate group
(SASAcarbamate) of URB524 (1).

Vacondio et al. Page 15

Eur J Med Chem. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Plot of SASAcarbamate vs hydrolysis constants in rat plasma (log kplasma) for compounds 1
and 3-18.
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Figure 4.
Plot of molar refractivity (MR) vs hydrolysis constants in rat liver S9 fraction (log kS9) for
compounds 1, 3-9 and 11-18.
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