Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Jul;66(1):36–42. doi: 10.1172/JCI109832

Lamellar body depletion in dogs undergoing pulmonary artery occlusion.

J W Shepard Jr, D Hauer, K Miyai, K M Moser
PMCID: PMC371502  PMID: 6772668

Abstract

We have investigated the relationship between pulmonary artery occlusion (PAO) and the surfactant system of the lung by studying the ultrastructural responses of type II alveolar pneumocytes to PAO of 4-12 h duration in 16 mongrel dogs. In six of these animals, the occluded lung was allowed to reperfuse for 6 h before killing and in four animals subjected to PAO of 4 h duration, the occluded lung was ventilated with 5% CO2 balance air. PAO by itself resulted in a dramatic 80% reduction in the volumetric density of lamellar bodies (LB) in the type II cells. This resulted predominantly from a decrese in volume of the individual LB. Although reperfusion was associated with an increase in LB volume density toward normal, 6 h of reperfusion was insufficient to re-establish normal type II cellular morphology. Ventilation of the occluded lung with 5% CO2 prevented LB depletion indicating that alveolar CO2 tension may affect the release and/or synthesis of LB in type II pneumocytes.

Full text

PDF
36

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVERY M. E., MEAD J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959 May;97(5 Pt 1):517–523. doi: 10.1001/archpedi.1959.02070010519001. [DOI] [PubMed] [Google Scholar]
  2. Askin F. B., Kuhn C. The cellular origin of pulmonary surfactant. Lab Invest. 1971 Sep;25(3):260–268. [PubMed] [Google Scholar]
  3. BENSCH K., SCHAEFER K., AVERY M. E. GRANULAR PNEUMOCYTES: ELECTRON MICROSCOPIC EVIDENCE OF THEIR EXOCRINIC FUNCTION. Science. 1964 Sep 18;145(3638):1318–1319. doi: 10.1126/science.145.3638.1318-a. [DOI] [PubMed] [Google Scholar]
  4. Balis J. U., Cox W. D., Pifarré R., Lynch R., Neville W. E. The role of pulmonary hypoperfusion and hypoxia in the postperfusion lung syndrome. Ann Thorac Surg. 1969 Sep;8(3):263–273. doi: 10.1016/s0003-4975(10)66236-4. [DOI] [PubMed] [Google Scholar]
  5. Balis J. U., Shelley S. A., McCue M. J., Rappaport E. S. Mechanisms of damage to the lung surfactant system. Ultrastructure and quantitation of normal and in vitro inactivated lung surfactant. Exp Mol Pathol. 1971 Apr;14(2):243–262. doi: 10.1016/0014-4800(71)90069-4. [DOI] [PubMed] [Google Scholar]
  6. Buckingham S., Heinemann H. O., Sommers S. C., McNary W. F. Phospholipid synthesis in the large pulmonary alveolar cell. Its relation to lung surfactants. Am J Pathol. 1966 Jun;48(6):1027–1041. [PMC free article] [PubMed] [Google Scholar]
  7. Chernick V., Hodson W. A., Greenfield L. J. Effect of chronic pulmonary artery ligation on pulmonary mechanics and surfactant. J Appl Physiol. 1966 Jul;21(4):1315–1320. doi: 10.1152/jappl.1966.21.4.1315. [DOI] [PubMed] [Google Scholar]
  8. Chevalier G., Collet A. J. In vivo incorporation of choline- 3 H, leucine- 3 H and galactose- 3 H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radoautographic study in mouse by electron microscopy. Anat Rec. 1972 Nov;174(3):289–310. doi: 10.1002/ar.1091740303. [DOI] [PubMed] [Google Scholar]
  9. DAVIS H. A., GORDON W. B., HAYES E. W., Jr, WASLEY M. T. Effects upon the lung of varying periods of temporary occlusion of the pulmonary artery. AMA Arch Surg. 1952 Apr;64(4):464–474. doi: 10.1001/archsurg.1952.01260010480006. [DOI] [PubMed] [Google Scholar]
  10. Edmunds L. H., Jr, Huber G. L. Pulmonary artery occlusion. I. Volume-pressure relationships and alveolar bubble stability. J Appl Physiol. 1967 May;22(5):990–1001. doi: 10.1152/jappl.1967.22.5.990. [DOI] [PubMed] [Google Scholar]
  11. Faridy E. E. Effect of alterations in PO2, PCO2, pH, and blood flow on elastic behavior of dogs' lungs. J Appl Physiol. 1969 Sep;27(3):342–349. doi: 10.1152/jappl.1969.27.3.342. [DOI] [PubMed] [Google Scholar]
  12. Farrell P. M., Avery M. E. Hyaline membrane disease. Am Rev Respir Dis. 1975 May;111(5):657–688. doi: 10.1164/arrd.1975.111.5.657. [DOI] [PubMed] [Google Scholar]
  13. Giammona S. T., Mandelbaum I., Foy J., Bondurant S. Effects of pulmonary artery ligation on pulmonary surfactant and pressure-volume characteristics of dog lung. Circ Res. 1966 Jun;18(6):683–691. doi: 10.1161/01.res.18.6.683. [DOI] [PubMed] [Google Scholar]
  14. Huber G. L., Edmunds L. H., Jr Pulmonary artery occlusion. II. Morphologic studies. J Appl Physiol. 1967 May;22(5):1002–1011. doi: 10.1152/jappl.1967.22.5.1002. [DOI] [PubMed] [Google Scholar]
  15. Kikkawa Y., Motoyama E. K., Gluck L. Study of the lungs of fetal and newborn rabbits. Morphologic, biochemical, and surface physical development. Am J Pathol. 1968 Jan;52(1):177–210. [PMC free article] [PubMed] [Google Scholar]
  16. LIEBOW A. A., HALES M. R. Studies on the lung after ligation of the pulmonary artery; anatomical changes. Am J Pathol. 1950 Mar;26(2):177–195. [PMC free article] [PubMed] [Google Scholar]
  17. Longmore W. J., Mourning J. T. Effect of CO2 concentration on phosphatidylcholine and phosphatidylglycerol metabolism in surfactant and residual lung fractions. J Lipid Res. 1977 May;18(3):309–313. [PubMed] [Google Scholar]
  18. Longmore W. J., Niethe C. M., Sprinkle D. J., Godinez R. I. Effect of CO 2 concentration on phospholipid metabolism in the isolated perfused rat lung. J Lipid Res. 1973 Mar;14(2):145–151. [PubMed] [Google Scholar]
  19. MACKLIN C. C. The pulmonary alveolar mucoid film and the pneumonocytes. Lancet. 1954 May 29;266(6822):1099–1104. doi: 10.1016/s0140-6736(54)92154-6. [DOI] [PubMed] [Google Scholar]
  20. Merritt T. A., Farrell P. M. Diminished pulmonary lecithin synthesis in acidosis: experimental findings as related to the respiratory distress syndrome. Pediatrics. 1976 Jan;57(1):32–40. [PubMed] [Google Scholar]
  21. Morgan T. E., Edmunds L. H., Jr Pulmonary artery occlusion. 3. Biochemical alterations. J Appl Physiol. 1967 May;22(5):1012–1016. doi: 10.1152/jappl.1967.22.5.1012. [DOI] [PubMed] [Google Scholar]
  22. SCHAEFER K. E., AVERY M. E., BENSCH K. TIME COURSE OF CHANGES IN SURFACE TENSION AND MORPHOLOGY OF ALVEOLAR EPITHELIAL CELLS IN CO2-INDUCED HYALINE MEMBRANE DISEASE. J Clin Invest. 1964 Nov;43:2080–2093. doi: 10.1172/JCI105082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SEVERINGHAUS J. W., SWENSON E. W., FINLEY T. N., LATEGOLA M. T., WILLIAMS J. Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J Appl Physiol. 1961 Jan;16:53–60. doi: 10.1152/jappl.1961.16.1.53. [DOI] [PubMed] [Google Scholar]
  24. SWENSON E. W., FINLEY T. N., GUZMAN S. V. Unilateral hypoventilation in man during temporary occlusion of one pulmonary artery. J Clin Invest. 1961 May;40:828–835. doi: 10.1172/JCI104316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sobonya R. E., Kleinerman J., Primiano F., Chester E. D. Pulmonary changes in cardiopulmonary bypass: short-term effects on granular pneumocytes. Chest. 1972 Feb;61(2):154–158. doi: 10.1378/chest.61.2.154. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES