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Abstract
DNA looping plays a key role in the regulation of the lac operon in Escherichia coli. The presence
of a tightly bent loop (between sequentially distant sites of Lac repressor protein binding)
purportedly hinders the binding of RNA polymerase and subsequent transcription of the genetic
message. The unexpectedly favorable binding interaction of this protein-DNA assembly with the
catabolic activator protein (CAP), a protein that also bends DNA and paradoxically facilitates the
binding of RNA polymerase, stimulated extension of our base-pair level theory of DNA elasticity
to the treatment of DNA loops formed in the presence of several proteins. Here we describe in
detail a procedure to determine the structures and free energies of multi-protein-DNA assemblies
and illustrate the predicted effects of CAP binding on the configurations of the wild-type 92-bp
Lac repressor-mediated O3-O1 DNA loop. We show that the DNA loop adopts an antiparallel
orientation in the most likely structure and that this loop accounts for the published experimental
observation that, when CAP is bound to the loop, one of the arms of LacR binds to an alternative
site that is displaced from the original site by 5 bp.

Introduction
Understanding the biological functions of macromolecules and their assemblies requires
detailed knowledge of their three-dimensional structures. The experimental methods that are
used to elucidate biomolecular structure provide data that represent a compromise between
the size of the object studied and the amount of detail obtained, e.g., low-resolution electron
microscopic images of large multi-component systems sacrifice the precise atomic
information found in the high-resolution X-ray structures of small molecules. Computational
methods help to overcome this limitation by combining the available experimental data with
models that reflect well-known biophysical properties of the molecular systems.

This paper describes the computational approach that we have developed for determining
the structures and free energies of multi-protein-DNA assemblies. Our method assumes that
the DNA deforms in such an assembly, with the protein components providing spatial
constraints on DNA, either by distorting the DNA double-helical structure at the binding site
or by placing restrictions on the locations of the ends of an otherwise free DNA segment.
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Thus, correct determination of the configuration and energy of the constrained DNA leads to
a model that provides a very good approximation of the actual structure of the assembly.

We make use of a base-pair level theory of DNA elasticity [1] and an efficient algorithm for
calculating the configuration of protein-constrained DNA. One of the important advantages
of this procedure is that the DNA and protein molecules are represented as elastic bodies
and, consequently, that their deformations can be described using a relatively small number
of variables. Such an approach makes the modeling of assemblies with tens of thousands of
atoms both computationally feasible and efficient.

We developed this methodology in order to gain deeper understanding of the large protein-
DNA assemblies formed during transcription, the first step in the expression of genes, and
the communication of the many molecular species involved in the regulation of this process.
The transcription of most genes reflects the interplay of activator or repressor proteins that
bind in the vicinity of the transcription start site, i.e., the precise location on DNA where
RNA polymerase (RNAP), the enzyme that copies the information encoded in DNA into
RNA, first binds. The mechanisms of control range from the simple competition of
repressors with RNAP for overlapping binding sites on DNA to the recruitment of RNAP by
activators near the transcription start site and the so-called “action at a distance” [2] of
activators/repressors and RNAP from binding sites separated by hundreds of base pairs
(100–500 bp). The DNA in the latter case forms loops, which bring sequentially distant sites
close together. The classic example of transcription regulation in which DNA looping plays
an important role is the E. coli lac operon, the system of proteins and the DNA sequences
responsible for the expression of the enzymes used by the bacterium in lactose metabolism.
A 5-bp change in the separation of the nucleotide sites where proteins bind alters the looping
ability of DNA and can completely disrupt the regulatory function of the operon [3].

Here we continue our investigation of the DNA loops formed by the binding of the
tetrameric Lac repressor (LacR) protein to its recognition sequences within the lac operon.
The primary site of attachment of LacR to DNA, called O1, lies 401 and 92 bp away from
two secondary sites, respectively called O2 and O3. The LacR complex can adopt either a
rigid V-shaped structure, or a flexible extended arrangement with dimeric domains
connected by a flexible hinge. The DNA can associate with LacR in one of several possible
looping modes, depending upon the orientation of the bound nucleotide sequence with
respect to the protein. Our earlier work [4] predicts that LacR adopts the extended form
when bound to the O3-O1 loop in vitro. The sequence of the wild-type O3-O1 loop of the
lac operon contains a binding site for another E. coli protein, the catabolite activator protein
(CAP), also called the cAMP receptor protein, located 11 bp away from the O3 LacR
recognition site [5]. Other weaker sites of CAP binding within the lac operon do not appear
to play a role in transcription activation [6]. Much attention has been given to the question of
whether LacR, a repressor of Lac genes, and CAP, an activator of those genes, can bind
simultaneously to DNA in the so-called promoter region preceding (downstream of) the
transcription start site. Hudson and Fried [7] concluded from enzyme-cutting patterns of
DNA that CAP binding places no restrictions on the binding of LacR to the O1 site but
precludes binding to the O3 site. They subsequently found [8] that simultaneous binding of
CAP and LacR to the O3 site is possible at high concentrations of LacR but that the
sequence covered by LacR, the so-called footprint, is shifted approximately 5–6 bp
upstream. Balaeff et al. [9] recently constructed a model of the LacR-CAP-DNA loop
complex in one of the possible looping modes using the V-shaped LacR structure and an
ideal elastic-rod representation of DNA. A 6–8 bp upstream relocation of the O3 site lowers
the computed energy of their modeled DNA loop.
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Here we determine the configurations and deformational free energies of LacR-CAP-DNA
loop complexes using our sequence-dependent treatment of DNA. We take into account all
DNA looping modes, the precise structural changes in DNA induced by the binding of LacR
and CAP, the possibility of opening LacR, and the binding interactions of LacR with DNA.
We find that, in the vicinity of the O3 binding site, there is an alternative LacR binding site,
which we call O3*, that preserves nearly all of the observed hydrogen-bonding interactions
of DNA with LacR in the complex with the O1 site [10]. When CAP is bound to the loop
and LacR to O3*, one of the antiparallel loop types becomes very favorable in terms of its
free energy. We propose that this structure is the LacR-mediated loop found by Fried and
Hudson [8] in the presence of CAP.

Methods
Sequence-dependent DNA elasticity

The mechanical properties of DNA influence its role in the cell [11]. High-resolution
structural studies show that both the intrinsic structure and the elastic properties depend on
sequence. Some base-pair steps, i.e., neighboring base pairs, act as natural wedges that
change the direction of the helical axis; others are sites of under- or overtwisting relative to
the average twist of ca. 36°. The positioning of local bends in phase with the double-helical
structure gives the DNA intrinsic curvature [12]–[14], and the positioning of the local
stiffness in phase with the helical repeat leads to bending anisotropy [15]. The six rigid-body
motions describing the relative rotation and displacement of neighboring base pairs,
depicted in Fig. 1, can be strongly coupled [16]. The untwisting of adjacent residues
frequently induces an increase in roll, the parameter that describes the component of
bending with predominant influence on the widths of the major and minor grooves.
Untwisting can also induce a decrease in slide, the parameter describing the motion of a
base-pair plane along its long axis.

The elastic theory used here captures these deformational features of DNA and also accounts
for the dependence of the mechanical properties on nucleotide sequence [1], [17]. The DNA
configuration is specified by giving, for each base pair, numbered by index n, its location xn

in space and its orientation described by an embedded orthonormal frame . The
relative orientation and position of the base pair and its predecessor are specified by six
kinematical variables , termed, respectively, tilt, roll, twist, shift,
slide, and rise (see Fig. 1 for representative images and the Appendix for a convenient
definition of the kinematical variables) [18].

Let us write  for the configuration of a DNA segment of length N. The elastic
energy Ψ = Ψ(Ξ) is taken to be the sum of the base-pair step energies ψn, each of which is a
quadratic function of the corresponding variables , i.e.,

(1)

here XY is the nucleotide sequence (in the direction of the coding strand) of the nth base-pair

step,  are the deviations of variables from their intrinsic values 
are the elastic moduli. We use empirical estimates of intrinsic values and moduli deduced
from the averages and fluctuations of base-pair step parameters in high-resolution DNA-
protein complexes [16] and normalized so that the persistence length of mixed-sequence
DNA matches observed values (~500Å) [19].
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Electrostatic energy of DNA
We account for the polyelectrolyte nature of DNA by adding to the total energy the
contribution resulting from the repulsion between negatively charged phosphate groups on
the DNA backbone. The electrostatic energy Φ is a sum of pairwise interactions, adjusted
for counterion condensation and screening effects due to ionic environment. For simplicity it
is convenient to merge the two charges associated with each base pair into a single charge of
twice the magnitude located at the centroid of the base pair, in which case the energy Φ
becomes:

(2)

where rmn = xm – xn is the position vector connecting the centers of base pairs m and n, δ is
the net effective charge of the base pair, taken to be 0.48e− or 7.7 × 10−20 Coulombs
assuming 76% charge neutralization by condensed cations [20], ε is the permittivity of water
at 300 K, and κ is the Debye screening parameter, which, for monovalent salt such as NaCl,

depends on the molar salt concentration c as . The merging of charges
reduces the amount of computer time needed to evaluate Φ and introduces, in our
experience, only small error to the resulting configurations [unpublished results]. The sum in
(2) does not include the electrostatic interaction of nearest neighbors, because we assume
that such an interaction is already accounted for in the local elastic terms in (1). Thus,
equation (2) represents only nonlocal (i.e., long-range) effects.

Constraints on DNA configurations
The binding of proteins imposes several types of constraints on DNA in macromolecular
complexes.

(A) Intrinsic structure—The binding of a protein to DNA between base pairs n1 and n2,

alters the intrinsic values  and moduli , of the contacted base-pair
steps. Good estimates of these quantities can be found from analysis of available high-
resolution structures of the protein-DNA complex of interest [21]. If no such structures exist,
one can approximate the configuration of the bound complex with a related structure or a so-
called homology model [22]. We generally assume that the configuration of protein-bound
DNA is identical to the configuration of the crystal structure, and that that configuration is
rigid and unaffected by the deformation of adjacent DNA, i.e.,  will
be held fixed for each bound protein.

(B) Rigid end conditions—Some proteins bind two DNA sites simultaneously and
impose spatial constraints, i.e., end conditions, on the DNA segment between the binding
sites. Such proteins, if rigid, will impose constraints on the relative position and orientation
of the bound DNA segments. If the bound DNA is also rigid, a relation between two base
pairs, one from each bound segment, is sufficient to describe the constraint:

(3)

(C) Semi-rigid end conditions—In some circumstances, the protein can deform via one
or several degrees of freedom αk, k = 1,…,K. In such cases the relative position and
orientation of the bound DNA segments are functions of the degrees of freedom:
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(4)

(D) Cyclization—Ring closure imposes special configurational constraints on a DNA
segment. Such constraints can be accounted for by introducing an additional, hypothetical
(N+1) base pair and then requiring that the position and orientation of such a base pair are
identical to the position and orientation of the first base pair:

(5)

(E) Linking number—A circular DNA or a DNA closed by binding to a protein at two or
more sites is subject to the topological constraint of fixed linking number. The linking
number of circular DNA is an integer that represents how many times the two strands of the
molecule are intertwined [23],[24]. For closed DNA, the linking number cannot be changed
unless one of the strands of DNA is severed. The linking number of a DNA segment bound
to a protein at two ends, however, can be changed. The linking number is defined in this
case by introducing a virtual closure for each strand and can be changed by dissociation of
the protein from the DNA.

The linking number Lk(Ξ) of two piecewise linear curves 
representing the DNA strands can be computed using the results of [25]. An important
consequence of Lk(Ξ) being an integer invariant is that it does not change when the
configuration Ξ is perturbed infinitesimally. Therefore it does not contribute to the
Lagrangian (see below) and serves primarily to classify computed equilibrium
configurations.

We denote the above collection of constraints (A)–(E) imposed on the configuration Ξ of the
DNA under consideration as:

(6)

(F) Soft end conditions—There are proteins that bind to DNA in two places but contain
a flexible polypeptide tether between the DNA binding subunits. Such proteins do not
impose a rigid constraint on the relative location and orientation of the bound DNA, but
rather provide an additional contribution to the total energy of the system:

(7)

For example, for polypeptide linkers one may take the energy derived from the radial
distribution function Θ(Ξ) = −kT ln p(r(Ξ)), where p(r) = cπr2 exp(−a(r − b)2) (see [26]) and
r(Ξ) is the distance between anchoring points on subunits bound to DNA with configuration
Ξ. This added energy Θ can also be used to take account of conservative applied external
forces, as in single-molecule manipulation experiments.[27]

(G) DNA-DNA steric hindrance—Although the total energy contains an electrostatic
term that penalizes configurations in which two parts of the same DNA molecule come into
close proximity, it does not, by itself, prevent overlap of computed configurations. Thus, one
must include constraints of steric hindrance to insure that no points in two distinct DNA
base pairs occupy the same position in space. There are, in fact, two situations that must be
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avoided: (a) cases in which the DNA is bent to such a degree that two neighboring base pairs
intersect and (b) cases in which two DNA segments come together in such a way that
sequentially distant base pairs intersect. For a DNA represented as a tube with a continuous
axial curve, a convenient way to enforce both constraints at once is to restrict the global
curvature of the tube [28]. That method is not appropriate for the discrete model because of
the possibility of shearing deformations. Instead we use a simple and efficient
approximation to enforce the two constraints. Specifically, we treat each base-pair n as a
disc of diameter d = 20 Å centered at xn with normal  and require (a) that for each n the
discs Dn and Dn+1 do not intersect and (b) that the centers of Dn and Dn+1 are separated
more than d for any m, n such that | m − n | > πd /(2 < ρ̅3 >) (where < ρ̅3 > = 3.4 Å is the
average rise in undeformed DNA). Both constraints (a) and (b) can be represented as
inequalities

(8)

(H) Protein-DNA steric hindrance—In addition to constraining the steric interactions of
DNA with itself, the DNA must be prevented from sterically interfering with the bound
proteins and the bound proteins from interfering with one another. These additional
constraints can be implemented by introducing a surface for each bound protein and
requiring that no sphere Sn intersects any protein surface and no two protein surfaces
intersect each other. It should be noted that the detailed features of protein surfaces can
greatly increase the number of equilibrium configurations of the assembly and therefore, in
the interest of computational efficiency, the proteins can be roughly approximated by
appropriate ideal geometrical bodies, such as ellipsoids. The resulting constraints will again
have the form (8).

Classical mechanics
We are concerned with two goals: (i) computing the locally stable configurational states of
the constrained DNA, and (ii) describing the likelihood of occurrence of each of the states in
a thermally excited environment. We omit consideration of the dynamics of DNA or the
rates of transitions between configurational states.

Statistical mechanics tells us that the most likely configuration of DNA is the one for which
the total energy E of the DNA,

(9)

i.e., the sum of the elastic energy Ψ, the electrostatic energy Φ, and the total energy of
deformable proteins and applied loading Θ, is minimized subject to the imposed constraints
(6) and (8). Such a configuration is clearly one for which the first variation in E vanishes for
any perturbation. Following the standard approach to nonlinear constrained optimization
[29] we introduce the Lagrangian L(Ξ,Γ,Λ) with Lagrange multiplier constants

 follows:

(10)

A necessary condition for a configuration Ξ* obeying constraints (6) and (8) to be in
equilibrium is that there are multipliers Γ* and Λ* ≥ 0 such that Ξ* obeys the Kuhn-Tucker
equations [30]:

Swigon and Olson Page 6

Int J Non Linear Mech. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(11a)

(11b)

(11c)

Note that the variational equation in (11) expresses the laws of balance of forces and
moments acting on the nth base pair [1]:

(12)

where fn and mn are the force and moment exerted on the nth base pair by the (n+1)th base
pair, and gn and nn are the external force and moment acting on the nth base pair, which
result from the electrostatic interaction or arise as Lagrange multipliers corresponding to
constraints (6) and (8). Our assumption about the charges centralized in the base pairs
implies (see [31]) that if Θ = 0 and self-contact is absent, then nn = 0 and

(13)

As shown in [1], equations (1) and (12) imply that

(14)

(15)

where the matrices  (not to be confused with the Lagrange multipliers
introduced above) depend on  as shown in the Appendix.

A solution Ξ* of equations (11) (or, equivalently, equations (11b),(11c),(12)–(15)) is in
equilibrium in the sense that the first variation of the total energy vanishes for all
perturbations. Such a solution is not necessarily the configuration globally minimizing E,
but can be any metastable or unstable equilibrium configuration corresponding to the set of
constraints. The stability of an equilibrium configuration Ξ* can be verified by checking
that the constrained Hessian,

(16)

obeys  for all normalized perturbations X such that
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(17)

Equilibrium configurations for which the Hessian is not positive definite are saddle points
on the energy surface and can be used to characterize transition points (mountain passes)
between locally stable configurations.

Statistical mechanics of the assembly
Each configuration Ξ* that locally minimizes the energy E is a possible state of the system.
The probability of occurrence of a state Ξ* is proportional to the integral

(18)

where B(Ξ*) is the basin of attraction of Ξ*, defined as the set of configurations Ξ obeying
constraints (6) and (8) from which there is a downhill path to Ξ* but not to any other local
minimum of the system. The Jacobian J is included in the probability measure because of
the non-canonical choice of independent variables [32]. If Ξ* is a sufficiently deep
minimum, one can approximate the integral in (18) by another in which (i) the integration
domain is extended from B(Ξ*) to the entire set of configurations that obey the constraints,
and (ii) the energy function is replaced (and its definition extended to points not in B(Ξ*))
by a quadratic expansion about Ξ*:1

(19)

where the quadratic functional A has the form:

(20)

The error of this approximation depends on the depth of the potential well corresponding to
the minimum, the size of B(Ξ*) , and the departure of L from a quadratic function.
Therefore it is difficult to asses this error a priori except for very special cases. The presence
of constraints in the integration domain can be treated by using a reduced set of
perturbations Y that belong to the joint nullspace of the linear operators ∇ΞCj (Ξ*) and

 (see next section).

If multiple equilibrium states  are present for given constraints (6) and (8), the
probability of each such state is computed as:

(21)

1To the best of our knowledge this method was first employed in DNA statistical mechanics by Zhang and Crothers [33].
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The aforementioned method can be used to calculate many cases of interest, such as (i) the
free energies of multiple states of a single topoisomer, or (ii) the free energies of
topoisomers, by relaxing the constraint of fixed Lk while keeping the constraint of closure.

The free energy GDNA of a state Ξ* is given by:

(22)

The looping free energy difference ΔGDNA can be estimated as the difference between
GDNA and the free energy Gfree of a state with the closure conditions (B), (C) and (D)
relaxed. The energy ΔGDNA describes only the contribution from DNA deformation and
does not include the protein-DNA binding energies, which must be added in order to assess
the probability of loop formation under experimental conditions. Nonetheless, ΔGDNA can
be used to compare the probability of formation of distinct states (loop types) in which the
number, type, and location of bound proteins are the same.

Although the method above has been applied to computations of looping and ring-closure
probability, the possible errors associated with comparing the closed and open states have
not been thoroughly examined. Thus for the computation of closure probabilities and the
cyclization factor it is better to use a Monte-Carlo procedure [34] which can yield such
quantities efficiently and with high precision.

Computational procedure
The (equations (11) represent a system of non-polynomial algebraic equations in the

variables . If the only contribution to the energy E is the elastic energy Ψ (as
was the case in [1] and [17]) then the equations form a weakly coupled system that can be
solved for base pairs 1,2,…, N consecutively in terms of the moments and forces applied to
the first base pair, in a way similar to solving an initial value problem for an ordinary
differential equation. In the general case, the Hessian matrix for the system is full. A
solution Ξ* can be found by solving the system of algebraic equations (11) numerically
using, for example, the Levenberg-Marquardt procedure starting from an appropriate initial
configuration. Multiple solutions can be found by randomizing starting configurations for
the algorithm.

A more convenient approach is to use a continuation method with one of the constraints
depending on a homotopy parameter 0 ≤ λ ≤1 in such a way that λ = 0 corresponds to
constraints giving a known solution, e.g., the stress-free state, and λ = 1 corresponds to the
constraints for which a solution is sought. One commonly employed situation is that in
which various topoisomers are found by relaxing the constraint of fixed angle ϕ between d1
vectors at the two ends of DNA. Knowing the solution for one topoisomer, one can compute
another topoisomer by varying ϕ over the interval [0,2π]. Other variable parameters may be
the length N, various matrix elements in (3) and (4), or the diameter d.

Once an equilibrium configuration Ξ* is found, its stability is verified by computing the
constrained Hessian (16). If Ξ* is stable then its partition function Z can be computed
approximately using (19) and (20): the quadratic functional A in (20) and the orthogonal
basis B for the joint nullspace of ∇ΞCj(Ξ*) (with j = 1,…,M) and  (with k = 1,
…,K) is computed, and the integral in (20) is converted to a standard multivariate Gauss
integral and evaluated explicitly as:
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(23)

In all computations full use is made of symbolic algebra software (Maple 10 by Maplesoft)
and automatic differentiation [35].

Proteins
Lac repressor—Each arm of the LacR tetramer (represented schematically by boxes I and
III in Fig. 2C) contains two polypeptide chains. A four-helix bundle tetramerization domain,
located at the base of the “V” (represented by cube II in Fig. 2C), holds the two halves of the
complex in place. A small contact interface between the dimeric fragments (located in the
circle in Fig. 2A) further stabilizes the complex. Disruption of that contact interface is
expected to promote the opening of the V-shaped structure. Electron microscopic images of
freeze-etched samples of LacR [36] show extended forms that are presumably obtained by
opening the “V” to the extent that the tetramerization domain occupies the middle of the
assembly and the DNA binding sites lie at opposite ends of the complex.2 As in [4] we treat
the opening of the tetramer as a concerted motion of three rigid domains—I, II, and III—
about two hinges (Fig. 2C). For simplicity we assume that the two hinge angles i.e., the
angle between lI and lII and that between lII and lIII, shown in Fig. 2C, are identical and
hence equal to one half of the total angle of opening α. Additional flexibility is provided by
allowing the rotation of domains I and III about axes lI and lIII by equal amounts β, where
−90° ≤ β ≤ 90°. For the V-shaped configuration found in the crystal α = 34° and β = 33°.
We assume that LacR can exist in two states: (i) the aforementioned V-shaped arrangement
[38],[39] or (ii) a flexible state with two degrees of freedom, α and β. The free-energy
penalty for opening LacR, GLacR, has been estimated [4] to be between 1.8 kT and 3.8 kT.3

For our calculations we assign to the protein-bound segments of DNA a three-dimensional
structure that is in accord with currently available crystallographic data. Because the crystal
structure of the LacR tetramer with one dimer bound to the O3 sequence and the other to O1
has not been determined, we employ a model built by superposing the 2.6-Å resolution
structure [40] of the LacR dimer complexed with the Osym operator (PDB_id: 1EFA) and
the 2.7-Å structure [39] of the LacR tetramer lacking DNA-binding headpieces (PDB_id:
1LBI). We assume that the bound O3 operator adopts the same structure as the bound O1
operator and the complex is symmetric.

The DNA operators can be oriented in one of two ways with respect to each protein dimer,
with the 5′-3′ direction of the coding strand pointing inside or outside the V-shaped
reference state (Fig. 2B). The combination of possible DNA orientations for each dimer
gives rise to four possible DNA looping modes for the repressor assembly (eight possible
modes if the V-shaped complex is asymmetric [41].) Following the notation of
Geanacopoulos et al. [42] and our earlier work [4], we denote these modes A1, A2, P1, P2,
where the A and P refer, respectively, to antiparallel and parallel orientations of operators

2Villa et al. [37] dispute the possibility of opening the LacR tetramer on the basis of their molecular dynamics simulations, in which
two salt bridges form at the dimer-dimer interface during the forced opening of the tetramer and appear to lock the structure in the V-
shape. The force opening, however, occurs on a timescale (16 ns) several orders of magnitude shorter than the expected real timescale
of opening, and there is no experimental support for the salt-bridge formation.
3Villa et al. [37] suggest, on the basis of molecular dynamics simulations of one type of LacR-mediated DNA loop, that the dimer
headpieces rotate with respect to the rest of the protein. We do not consider such deformations here in view of the uncertainty of these
predictions in the absence of supporting experimental data.
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(see Fig. 2B). Because the core regions of the protein monomers are congruent, there
appears to be no a priori preference for a given orientation of DNA on the protein.

For the computation of the linking number, Lk, we introduce virtual closures of the two
DNA strands through the tetramer assembly (see Fig. 2D). Each of these closures originates
at the phosphorus atom on one of the DNA strands attached to the central base pair of the
O3 operator, passes through the Gln 335 Cα atom of the LacR chain that makes direct
contact with the 5′-end of the strand [10], continues through a second Gln 335 Cα atom in
the other half of the protein assembly, and terminates at the corresponding phosphorus atom
on the O1 operator in such a way that the linked phosphorus atoms lie on the same DNA
strand.

Catabolite activator protein—The catabolite activator protein (CAP) is a dimeric
protein, with each subunit containing a ligand-binding domain and a DNA-binding domain.
The affinity of CAP for its DNA binding site increases upon binding two cAMP molecules,
yielding an apparent equilibrium constant of 4.1×107 M−1 [43]. Upon binding DNA, CAP
kinks the double-helical structure sharply at two sites, producing a global bend of 80°±12°
[5],[44]. The base-pair step parameters used here to model the 20-bp CAP binding site found
between the O3 or O3* and O1 operator sites on DNA correspond to those in the crystal
complex of CAP with the consensus binding sequence [5] (PDB_id: 1CGP).

Results
The above procedure underlies our earlier analyses of (i) the sequence-dependent
configurations of closed DNA minicircles [1], [17], (ii) the looping of DNA mediated by
LacR [4], and (iii) the determination of the structures of open and closed complexes of
RNAP and CAP [6]. Here we report an additional application of our method, extending the
analysis of DNA looping mediated by the LacR to cases in which CAP is present.

Figure 3 illustrates representative minimum-energy configurations of the wild-type O3–O1
loop mediated by LacR for various combinations of looping mode, linking number, and
LacR conformation. The configurations shown for each looping mode are the two most
probable topoisomers. Each of these configurations minimizes the energy of DNA looping at
fixed linking number Lk for the given choice of anchoring conditions on the protein.4

Configurations Ea and Eb (previously called P1E) optimize LacR-opening geometry. The
calculated values of ΔGDNA and other characteristics of the configurations are listed in
Table 1.5 As shown previously [4], the elastic contribution dominates the energies of the
preferred configurations, and the Eb loop with flexible LacR has the lowest total free energy.
Thus, the Eb loop is predicted to be the most likely arrangements of the DNA-LacR complex
in vitro.6

4The P1a and P1b loops resemble the “o” and “e” loops obtained by Balaeff et al. using an elastic rod model of DNA and later termed
O and U loops by the same authors [9]. The energies of the O3-O1 loops reported in those papers are lower than those found here due
to the choice of bending modulus in and [9], which would be appropriate for a chain with persistence length 300 Å but not DNA.
5The electrostatic energies listed in Table 1 differ slightly from those reported in [4] due to the relocation of charged sites from the
phosphorus positions in [4] to the origins of base pairs here.
6Looped structures resembling those seen in Ea and Eb appear during the course of molecular dynamics simulations of LacR opening
[46]. Direct comparison of the structures is not possible as the structures in [46] are dynamically evolving and subject to forcing and
hence not in equilibrium. Extended LacR-mediated loops have also been considered by Zhang et al. [47] The free energies of such
loops (described as SL loops in that paper) are, like ours, lower than those of the parallel and antiparallel forms (respectively termed
WA and LB loops) but also lower than the values reported here.
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Complexes with CAP
In principle, there is no steric hindrance preventing the simultaneous binding of CAP to its
DNA recognition site and LacR to the O3 site on the E. coli lac operon. Representative
configurations and free energies of the O3-O1 loops with bound CAP are reported,
respectively, in Figure 4 and Table 2. The free energies ΔGDNA of CAP-bound DNA loops
anchored to the V-shaped LacR structure exceed, by at least 5kT, those of the corresponding
CAP-free structures. The outer surface of CAP (i.e., the surface antipodal to the DNA
binding site) makes unfavorable steric contacts with LacR or DNA in some configurations
(A1c, A1d, A2d, P1c, and P1d) and the bending of the activator protein is ~180° out of phase
with the bending of the LacR-mediated loop in others (A2c and A2d). The Ed configuration
is much lower in free energy than all other configurations and minimizes ΔGDNA with a
value comparable to that of the Eb loop formed in the absence of CAP.

Exploration of the DNA sequence in the vicinity of the O3 site reveals an additional putative
LacR binding site 5 bp upstream of O3, GCGGGCAGTGAGCGCAA, which shares
structural similarities with the O1 site. As shown in Fig. 5, all but two of the unique
hydrogen-bonding contacts between protein and DNA atoms would be preserved if the LacR
were to associate with the modified sequence, here termed O3*, in the same way that it
binds the natural O1 operator in solution [10]. Although the putative binding site aligns
poorly against the nucleotides that comprise O1 (only 5 of 19 base pairs are identical), the
base-pair modifications at the key sites are conservative in the sense that the substitutions
preserve the positioning of key elements in DNA recognized by protein [48] e.g., the O4
hydrogen-bond acceptor on T is replaced by O6 on G and the N6 hydrogen-bond donor on A
is replaced by N4 on C in the six T.A→G.C modifications. Moreover, two thirds of the
close contacts of LacR and DNA (≤ 3.4 Å) are nonspecific in that they involve sugar and
base atoms.

Representative configurations of LacR-CAP-DNA loop topoisomers with LacR bound at the
putative O3* site are shown in Figure 6, and the computed free energies are given in Table
3. The free energies of all topoisomers are generally larger than those for the O3-O1 loops
without CAP, with the singular exception of the A2f loop, for which ΔGDNA equals 24.0 kT
at 10 mM monovalent salt. This number is lower than ΔGDNA for the open Ee loop, making
it the most likely CAP-bound O3*-O1 loop, and is even lower than the free energy of Ed, the
most optimal CAP-bound O3-O1 loop. Direct comparison of ΔGDNA for the A2f and Ed

loops, however, is precluded because GO3*, the binding energy of LacR to the O3* site, is
not known. The CAP-induced bend is naturally positioned near the locus of highest
curvature in the A2f loop, thereby absorbing the cost of bending DNA. The same happens,
but to a lesser degree, in the A2e, P2c, and Ee loops. The P1e and P1f loops resemble the U
and O CAP-bound loops reported by Balaeff et al. [9] in which LacR is bound 7 bp
upstream of the O3 site (a location different from O3*). The energies of the P1e and P1f

loops found here, with LacR bound at O3*, substantially exceed that of A2f, or, for that
matter, the P2c loop.

Discussion
The general procedure described here for computing equilibrium configurations of protein-
DNA assemblies and estimating their free energies takes into account the sequence-
dependence of DNA deformability and various types of constraints on such configurations,
including conformational changes induced by binding proteins, flexibility of protein-bound
DNA, restrictions on contacts between sequentially distant DNA segments, closure
constraints, electrostatic forces, and the constraint of fixed linking number. The advantage in
using a discrete, as opposed to a continuum, model for DNA is that the protein-induced
changes in intrinsic structure and deformability, found in high-resolution structures, are
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represented exactly. Although we employ a quadratic energy function for DNA deformation,
the formalism developed here can be easily extended to more general energy functions,
provided they remain additive; in that case only equations (13) and (14) would be affected.
The procedure is computationally efficient: a single configuration and its free energy can be
determined within a few minutes on a standard desktop PC computer (Dell Optiplex GX270,
with 3GHz Pentium 4, running Matlab 6). We have verified that the main conclusions
reported in this paper would be valid even if the DNA were assumed to be ideally elastic,
i.e., homogeneous, isotropic, intrinsically straight, and with no coupling. Such assumptions,
however, do not simplify the computation and hence there is no reason to make them here.

The application of this procedure to the analysis of DNA looping mediated by the Lac
repressor protein is an important first step for obtaining a dynamical picture of the
interactions of LacR, CAP, RNAP, and DNA that will add to current understanding of the
regulation of the lac operon in vivo. The proposed configuration of the LacR-CAP-DNA
loop, shown as A2f in Fig. 6, in which LacR binds to the alternative site O3*, agrees with
the experimental evidence [8] showing a 5-bp upstream shift of the LacR binding site upon
CAP binding. Although the O3* site has not yet been confirmed experimentally, it is likely
that if LacR binds to the sequence, it does so only in the presence of CAP. The strong CAP-
induced bending deformation of DNA contributes to the stability of the A2f loop by
mimicking the site of highest curvature. This looping mode also brings the DNA
surrounding the CAP recognition sequence into close contact with positively charged
residues on the sides of CAP (Lys26, Lys166, His199, and Lys201; possibly, Lys22 and
Lys44) that may provide additional stabilizing energy [49]. These sites appear to be
responsible for the CAP-induced bending of DNA observed in time-resolved fluorescence
measurements [44].

In addition, we find that the Ed loop (the extended form of the P1 loop), in which LacR is
bound to the O3 site, is energetically comparable to the optimum O3*-bound A2f loop. As is
clear from Fig. 2B, the O1 operator is oriented in the same direction on LacR in the A2 and
P1 (Ed) looping modes, but O3 is oriented differently. Thus, interconversion between the
A2f form and the open Ed configuration would entail reorientation of O3 with respect to
LacR, as well as the shift of binding site. Such configurational transitions may occur in
solution. Final determination of the likely configurations of LacR-mediated DNA loops in
the presence of CAP requires further experimental work.

In summary, we predict that the presence of CAP completely alters the distribution of LacR-
mediated loop types. The binding of CAP also appears to increase the apparent affinity of
LacR to DNA by lowering the loop-formation energy. In other words, the looped structure
induces a mechanical coupling that gives rise to a binding cooperativity between CAP and
LacR that cannot be accounted for by traditional mechanisms because these proteins are not
in direct contact. The structure and precise placement of CAP and other proteins on DNA
undoubtedly play important roles in determining both the configurations and the populations
of DNA loops formed in the cell and detected in gene expression studies. Our predictions
can be tested experimentally in several ways: (i) the presence of the A2f loop can be
detected by measuring the cutting enhancement of DNAse I in footprinting experiments, a
method we have described previously,[4] and (ii) the existence of the alternative binding site
can be tested by binding affinity experiments.
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Appendix
In the interest of making this paper self-contained we here review the parametrization ξ1 =
(θ1, θ2 θ3, ρ1, ρ2, ρ3) and the matrices Qij, Γij, and jΛkl used to describe DNA structure in
our computations. For simplicity, the superscript n denoting the base-pair number has been

omitted from these terms. If we let  be the matrix of coordinates of the frame

 with respect to the frame , then D = TBT, where T and B are defined as

with . Thus κ is the overall bending angle and θ1, θ2 describe the bending

direction. If we let  be the vector of components of the displacement vector

with respect to the frame , we can then define ρ = QTr where . (Incidentally, the
matrix  has the same form as B except sin κ and cos κ are replaced by sin(κ / 2) and
cos(κ / 2)). Finally,

where ζ =θ3 / 2 − γ, sin γ = θ1/κ, cos γ = θ2 / κ, and for each j the matrix jΛ is a skew
matrix with the following components:

Using the formulae of [32] one can show that the Jacobian J in (18)–(20) is given by:

Other parametrizations of the discrete DNA model have been proposed (see the review [50])
but only the one introduced in [18] and described here has the property that θ3 is
independent of θ1, θ2 in the following sense: consider a configuration in which the centers
xn and the normal vectors  all lie in a plane P, and the configuration can be described by

the set . Now suppose that the structure is deformed in such a way that
xn and  still lie in P and the angle between  and the plane P is held fixed. The

parametrization described above guarantees that the new configuration will have 
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identical to those of the old configuration. This property is important for separating the
twisting and bending energy contributions to the DNA energy and is not true for any other
parametrization defined in the literature.
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Fig. 1.
(A) Model of a base-pair step showing the vector rn = xn+1 − xn that connects the origins of

successive residues and the orthonormal frames  on the base
pairs. Each base is covalently bonded at the darkened corner to one of the two sugar-
phosphate chains. The minor-groove edges of base pairs are shaded in gray, and the
antiparallel 5′-3′ directions of the complementary strands are denoted by the arrows at the
edges.
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(B) Schematic representation of kinematical variables describing the relative orientation and
displacement of base pairs in a step. Images illustrate positive values of the designated
variables with respect to the leading strand, denoted in (A) by the arrow on the left.
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Fig. 2.
(A) Model of the structure of the tetrameric Lac repressor protein (LacR) in complex with
O1 and O3 operator segments, obtained by composition of available X-ray data (see
Methods). The black spheres on protein represent the Cα atoms of Gln 335 and those on
DNA the P atoms of the central base pairs. Color-coding denotes the protein monomers and
DNA chains in closest contact at the highlighted P atoms. The black circle marks the dimer
contact interface found in the crystal structure.
(B) DNA loop types. The color-coded arrows depict the 5′-3′ directions of the sequence
strand on LacR in the four possible orientations of DNA on the tetramer. The colors
correspond to those of the associated DNA and protein chains in part (A).
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(C) Schematic representation of LacR opening. The rigid domains I (residues 1–332 of
chains A and B and the DNA bound to these chains) and III (corresponding residues of
chains C and D and the bound DNA) are connected to domain II (residues 340–354 of
chains A, B, C, D) by two hinges. The axes of rotational symmetry of the three domains are
lI, lII, and lIII. Chains (A–D) correspond respectively to proteins shown in (A) in violet,
yellow, green, and red.
(D) Schematic representation of the closures of DNA strands used in the computation of
linking number. The top closure is appropriate for antiparallel loops and the bottom for
parallel and extended loops.
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Fig. 3.
Representative minimum-energy configurations of LacR-mediated O3-O1 loops with DNA
shown in aqua, LacR in red, and operator sites in blue. Geometric and energetic properties
of the loops are given in Table 1.

Swigon and Olson Page 22

Int J Non Linear Mech. Author manuscript; available in PMC 2013 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Representative minimum-energy configurations of LacR-mediated O3-O1 loops with bound
CAP shown in yellow and other components color-coded as in Figure 3. Geometric and
energetic properties of the loops are given in Table 2.
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Fig. 5.
Diagrams of comparative molecular interactions of the LacR headpiece with the O1, O3, and
O3* operators. Strand I is the leading strand of each recognition site, i.e., the sequences
listed in Table 1–Table 2 for O1 and O3 and in Table 3 for O3*, and Strand II is the
complement. The O1 interactions are as found in solution [10]; the O3 and O3* interactions
are putative. DNA base pairs in close contact (interatomic distances of 3.4 Å or less) with
protein residues in the O1 complex are denoted in gray (van der Waals’ interactions) and
aqua (hydrogen bonds) in the center of each diagram. The contacted atoms of the bases are
indicated on each side of the center column, together with the corresponding protein
residues on the outside. The base pair contacts in O3 and O3* that are identical to those in
O1 are highlighted in yellow, and the contacts that preserve hydrogen bonding are denoted
in orange. The bifurcated hydrogen bonding (at position 17) that accommodates all base-pair
combinations is shown in pink. Comparison of the three sites shows that most of the
hydrogen-bonding elements are conserved upon substitution of the O3 or O3* sequence—a
direct consequence of the isosteric character of the Watson-Crick base pairs, the pseudo-
symmetric positioning of hydrogen-bond donor atoms in the DNA minor groove [48], the
equivalent positioning of major-groove atoms in conservatively substituted (G↔T and
A↔C) bases [48], and the dual hydrogen-bonding (donor or acceptor) capabilities of
selected amino acids. The two potential hydrogen-bonding elements not conserved upon
substitution of the O3 or O3* sequences are outlined by boxes.
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Fig. 6.
Representative minimum-energy configurations of LacR-mediated O3*-O1 loops with
bound CAP and LacR positioned at the alternate O3* binding site. Geometric and energetic
properties of the loops are given in Table 3 and the molecular color-coding in Figure 3 and
Figure 4.
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