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Abstract
The prostate gland is the most common site of cancer and the second leading cause of cancer death
in American men. Recent emerging molecular biological technologies help us to know that
epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes
are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical
pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this
chapter, we updated current information on methylated genes associated with the development and
progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter
region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA
repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of
critical pathways in prostate cancer is discussed. These findings may provide new information of
the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of
prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into
clinical practice for therapeutic use.
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1. Introduction
Prostate cancer is the most common type of cancer and the second leading cause of cancer
mortality in the American men. One man in six will develop prostate cancer during his
lifetime, and one man in 34 will die of the disease (1). In 2010, it is estimated that 217,730
new cases will be diagnosed in the United States, and 32,050 men will die from the disease
(2). The low mortality rate and gradual decrease of incidence rates, from 2000 to 2006,
suggest that public awareness of early detection and advanced treatments of prostate cancer
has begun to affect prostate cancer outcomes. However, the probability of developing
prostate cancer sharply increases with age, e.g., ~30-fold increase among men over 40 years
of age, compared to men under 40 years old. The aging of the current population means that
the disease will become an even greater public health problem in the future.

There are substantial individual differences in the risk or progression of prostate cancer. In
some patients with prostate cancer, the disease progresses relatively slow. In these cases,
patients often die with prostate cancer rather than from prostate cancer. However, some
cases grow aggressively and metastasize through the bloodstream and lymphatic system to
other parts of the body. Currently, there are two important clinical challenges. The first
challenge is the early detection of prostate cancer. Digital rectal examination (DRE) and
serum prostate-specific antigen (PSA) are two main diagnostic tools. There is a considerable
overlap in PSA levels between patients with prostate cancer and patients with benign
prostatic hyperplasia (BPH). Approximately 25% of patients with prostate cancer show no
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elevation of serum PSA and must be diagnosed by other methods (3). Therefore, the
identification of biomarkers that can facilitate the diagnosis of prostate cancer at the early
stages could improve the current standard of treatments. The second challenge is to
determine which of prostate cancer’s clinical forms a patient is presenting with, i.e.,
aggressive vs. indolent. This is critically important information given the significant
morbidity associated with treatment interventions and could eventually help distinguish men
who need intensive treatment from those who may be better served by watchful waiting.
Currently, the level of PSA, clinical stage, and the grade of tumor (Gleason score) are used
to estimate prognosis and determine treatment modalities. To overcome limitations of PSA
and DRE, new biomarkers are demanded to improve the outcome of prostate cancer.

2. Role of DNA Methylation in the Promoter Regions in Prostate Cancer
Development and progression of prostate cancer are results of the accumulation of genetic
and epigenetic alterations. Although genetic changes are involved in the inactivation of
genes with important anticancer functions (e.g., tumor suppressor and DNA repair genes),
DNA methylation in a promoter region is an important epigenetic mechanism for the
downregulation (silencing) of expression of these genes. DNA methylation in the promoter
region of tumor suppressor genes appears to occur at early stages of carcinogenesis and
occurs with various frequencies. Therefore, epigenetic changes have the potential to be a
new generation of biomarkers. Several types of epigenetic changes have been reported for
prostate cancer including DNA hypermethylation, loss of imprinting, and altered histone
modification patterns.

CpG islands are CpG-rich areas of 200 bp to several kilobases in length, usually located near
the promoters of highly expressed genes, and are the sites of common methylation in human
tumors (4), including the prostate. A common molecular feature associated with
tumorigenesis is hypermethylation of cytosines 5′ to guanosines (CpG) within the
regulatory (promoter) region of suppressor gene genomic DNA (5–8). 5-methyl cytosine is
unstable and mutates to thymine and methylated CpG sites degrade to TpG/CpA. In tumors,
many CpG islands exhibit aberrant hypermethylation, resulting in gene silencing (Fig. 1).
Many tumor suppressor genes have been found to be silenced by promoter hypermethylation
in tumors.

It is firmly established that an increase of methylation across the promoter region affects
transcription of genes. However, how methylated genes are downregulated is not completely
known. Furthermore, the extent of methylation in the CpG islands required for gene
silencing is not clear except for a short list of genes (9–18). Yet, regardless of mechanism,
the observation of methylated promoter regions in silenced tumor suppressor genes in
prostate tumor tissues suggests that DNA methylation may indicate a significant association
with carcinogenesis and progression of prostate cancer.

3. Hypermethylated Genes in Prostate Tumor
The majority of previous publications in epigenetic research in prostate cancer focused on
DNA hypermethylation. Indeed, a gene silencing by DNA hypermethylation in the promoter
region is a more common event than a gene silencing by DNA mutations in carcinogenesis.
Numerous studies on various hypermethylated genes in different cancers suggest that this is
a key part of the carcinogenesis and progression of cancer.

Currently, over 40 genes have been investigated for their frequencies of hypermethylation
and for their potential role in prostate cancer (Table 1). Most data in Table 1 were obtained
from prostate tumor tissues. The functions of tumor suppressor genes in prostate cancer fall
into four major categories: tumor suppressor genes, tumor cell invasion/metastasis,
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metabolism, and DNA repair. Defected function of these genes by promoter
hypermethylation can contribute to carcinogenesis and progression of prostate cancer.

3.1. Tumor Suppressors Genes
3.1.1. Caveolin-1 (CAV1)—Caveolin-1 (CAV1) is known as a tumor suppressor gene and
involved in the vesicular transport, cholesterol balance, transformation, and tumorigenesis.
Recent studies reported the dual function of CAV1 both as a tumor suppressor gene and
metastasis-promoting gene (19, 20).

Cui et al. found that 91% (20/22) of cases showed differential hypermethylation in the
prostate tumor tissues when compared with adjacent normal tissues (20). Increased DNA
methylation of CAV1 was correlated with biochemical recurrence. Therefore, CAV1 plays a
role as a tumor suppressor gene which is silenced by hypermethylation in carcinogenesis in
prostate. A recent study supports that CAV1 is downregulated in prostate tumor due to
hypermethylation in the promoter region of CAV1 (21). However, Woodson et al. did not
observe CAV1 methylation in prostate tumor tissues (22). Karam et al. reported
overexpression of CAV1 as an established feature of prostate cancer and aggressive PSA
recurrence (23). Moreover, CAV1 is reported to upregulate fatty acid synthase (FASN), a
tumor promoter, in the progression of prostate cancer (24). These data suggest that the
methylation status of CAV1 may not be a reliable biomarker for prostate cancer.

3.1.2. Cyclin-Dependent Kinase Inhibitors—The tumor suppressor gene
CDKN2(p16) is one of the cyclin-dependent kinase inhibitors (CDKIs).
CDKN2A(p16INK4a) is a key protein in the signaling pathway, which can be damaged by a
variety of genetic and epigenetic changes including hypermethylation in prostate tumors.
Aberrant CDKI expression is observed in many tumor tissues including prostate (25–28).
The reported frequencies of CDKN2A promoter methylation are inconsistent in prostate
tumors, ranging from 0 to 77% (25–27, 29–36). Perhaps these inconsistent results are due to
different detection methods and/or different targets of methylated loci. For example, Gu et
al. identified DNA methylation at the Smal site for 21 of 30 samples and found only one
sample had an altered methylation pattern at the Smal site downstream of exon 1 of the
CDKN2A (32). Since Herman et al. first reported inactivation of CDKN/p16 by DNA
methylation in prostate tumors (33), other researchers have investigated the role of
hypermethylated CDKN2A in carcinogenesis and progression of prostate cancer (25–27,
29–35). Nguyen et al. observed methylation of p16INK4a only in exon 2. Although
methylation at exon 2 may not be functional, this exon 2 methylation may be a potential
biomarker for prostate tumor because of a high prevalence of methylation in tumor tissues
(27). These results were confirmed by other groups, who reported that methylation occurred
in the promoter region in 9%, 15% of tumors in exon 1 (26, 37), and 66% in exon 2 (26).
Jeronimo et al. found that the p16INK4a gene was frequently methylated in tumor tissues
(77%). However, the high frequency of methylation was also found in BPH (25). These data
suggested that p16INK4a methylation may be a potential biomarker for an early detection of
prostate cancer.

Another CDKI, the CDKN2A/p14ARF, generated from an alternative splicing process that
replaces the first exon of p16INK4a, has been known as a growth suppressor. Therefore,
epigenetic alterations of p14ARF may affect p16INK4a/RB1 pathways in the tumorigenesis
and progression of prostate cancer. The p14ARF promoter has been methylated in various
cancers, glioma (38), bladder (39), leukemia (40), head and neck (41), and prostate cancers
(25–27, 30, 31, 36, 37, 42). Based upon eight independent studies, frequencies of p14ARF

methylation in prostate cancer range from 0 to 37% (25–27, 30, 31, 36, 37, 42). With the
exception of two studies (27, 31), most studies reported low methylation frequencies that
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ranged from 0 to 6%. The p16INK4a and p14ARF are frequently comethylated, which may
deregulate the RB1 or p53 pathway (42). However, promoter methylation in p14ARF is rare
in prostate tumors. Therefore, methylation in p16INK4a rather than p14ARF may be the
predominant event in the INK4a/ARF loci in tumor tissues.

3.1.3. Cyclin A1 (CCNA1) and Cyclin D2 (CCND2)—The cell cycle is controlled by a
family of cyclin-dependent kinases (CDKs). Cyclin A1 (CCNA1) activates two different
CDKs and functions in both S phase and G2 (43, 44), while cyclin D2 (CCND2) is involved
in the regulation of transition from G1 to S (45). Abnormal expression of CCND2 may
disrupt the normal cell cycle, and therefore, it is considered as both an oncogene and tumor
suppressor gene. Aaltomaa et al. reported that expressions of CCNA1 and CCND2 were
interrelated in prostate cancer tissues (46, 47).

Shames et al. observed a higher frequency of hypermethylation of CCNA1 in both prostate
tumors and benign tissues (48). However, Wegiel et al. reported that levels of CCNA1
protein and mRNA expression were significantly higher in prostate tumors than in adjacent
benign tissues (47).

Aberrant expression of CCND2 by DNA methylation has been noted in prostate cancer (45,
49). The frequencies of methylation in CCND2 were significantly higher in prostate tumors
(32%) than in normal tissues (6%) (45). Studies observed a positive correlation between the
methylation in CCND2 and clinicopathological features such as Gleason score and
preoperative serum PSA (45, 50). Moreover, methylation status of CCND2 was significantly
associated with the risk for recurrence among prostate cancer patients who underwent a
prostatectomy treatment (51). Henrique et al. further reported that CCND2 methylation
levels were significantly higher in prostate tumors compared to tissues of high-grade
prostatic intraepithelial neoplasia (HGPIN), BPH, or normal prostate, whereas mRNA
expression levels followed the opposite trend (49). They found that high CCND2
methylation levels correlate with clinicopathological parameters of tumor aggressiveness.
Altogether, CCND2 promoter methylation, but not cyclin A1 gene, may be a useful prostate
cancer biomarker for the identification of the aggressive prostate cancer that may benefit
from different therapeutic modalities.

3.1.4. Death-Associated Protein Kinase—Death-associated protein kinase (DAPK) is
a serine/threonine kinase involved in apoptosis pathway (52). Overexpression of DAPK
induces apoptosis, whereas loss of its function leads to protection against apoptosis (53).
Therefore, DAPK may function as a suppressor of metastasis. A repressed expression of
DAPK by hypermethylation in the promoter region has been shown for various human
cancers (52, 54, 55). The methylation frequencies in prostate cancer range from 0% to 36%
in four independent studies (29, 30, 36, 56). In addition, Mishra et al. observed that
methylation level of DAPK in a prostate cancer cell line (LNCaP) is significantly higher
than one in a normal cell line (RWPE1) through global methylation analysis (57). However,
DAPK overexpression and repressed function in prostate tumors (58) suggest that DAPK
activity may be damaged at a posttranslational level in cancer cells (59). Based on its
unclear function and a persistently low frequency of methylation in both tumors and normal
tissues, DAPK needs to be further tested for a potential biomarker for prostate cancer.

3.1.5. Fragile Histidine Triad—Fragile histidine triad (FHIT) is known as a tumor
suppressor gene and frequently methylated in various cancers such as lung (60), leukemia
(61), ovarian (62), skin (63), cervical (64), gastric (65), renal (66), and prostate cancers (29,
67). Previous studies indicate that FHIT is a proapoptotic factor (68). Guo et al. (69)
reported that downregulation of FHIT protein in more than half of the prostate tumors is
determined by immunohistochemistry. However, these results were not confirmed by
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another study (70). Although there are indications for a potential role of FHIT methylation
in prostate cancer, previous studies show its limited value due to a persistently low
frequency of methylation in tumors and normal tissues (29, 57, 67).

3.1.6. Hypermethylated in Cancer 1—The tumor suppressor hypermethylated in cancer
1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid tumors (71–
73). Loss of heterozygosity (LOH) of the short arm of chromosome 17 (17p) is a frequent
genetic alteration in human cancers. Moreover, frequent LOH or DNA methylation changes
occur in a more telomeric region at 17p13.3. In the animal study, heterozygous HIC1+/−

mice developed spontaneous malignant tumors of different types (74, 75). These results
suggest that HIC1 may be involved in tumorigenesis. Three studies investigated methylation
in the promoter region of HIC1 in prostate tumors. Results of three studies indicated that
CpG island at the HIC1 was methylated in 89–100% of prostate tumors (30, 56, 76).
However, the methylation status of HIC1 in prostate tumors parallels the respective normal
tissue, although a high proportion of tumors are methylated. Therefore, DNA methylation
sites in HIC1 gene are not good candidates as prognostic markers for progression or early
detection of prostate cancer (30, 76).

3.1.7. Lipoprotein Lipase—Lipoprotein lipase gene (LPL) is common locus of the
somatic deletions in prostate tumors. Gallucci et al. reported LPL deletion in 76% of
prostate tumor determined by fluorescence in situ hybridization (FISH) (77). LPL deletion
was associated with higher stages, biochemical/clinical progression, and Gleason grade.
Only one published study evaluated methylation status in LPL using 56 prostate tumors and
matching normal tissue pairs. Kim et al. found that 21 samples out of 56 primary cancers
(38%) were methylated in the LPL promoter region, while methylation was not detected in
any normal tissues. In addition, the methylation status in LPL was positively associated with
the preoperative PSA levels (67). These data suggest that biallelic inactivation of LPL by
gene deletion and hypermethylation may affect progression of prostate cancer.

3.1.8. Paired-Like Homeodomain Transcription Factor 2 (PITX2)—Paired-like
homeodomain transcription factor 2 gene (PITX2) encodes a member of the RIEG/PITX
homeobox family, which is in the bicoid class of homeodomain proteins. The protein acts as
a transcription factor, and it is involved in the development of several major organs. PITX2
expression is induced by the Wnt pathway, and the protein mediates cell-type-specific
proliferation by inducing growth-regulating genes (78). Methylation in PITX2 was reported
as one of the best validated methylated genes for predicting distant recurrence outcome of
breast cancer by Maier et al. (79). These results were validated by an independent cohort and
confirmed by two additional studies. Harbeck et al. reported that PITX2 methylation can
predict outcome in node-negative, tamoxifen-treated breast cancer (80). PITX2 promoter
methylation is also a biomarker for disease recurrence, early distant metastasis, and poor
overall survival in breast cancer patients (81).

Recently, two cohort studies (N = 605 (82); N = 476 (83)) showed prostate cancer patients
with high PITX2 methylation had threefold higher chance of biochemical recurrence than
patients with low PITX2 methylation. They also showed the prognostic capability of PITX2
methylation status in patient strata defined by the Gleason score. These results were
supported by Vanaja et al. (84). Methylation profile of six genes including PITX2 was
significantly associated with prediction of biochemical, local, and systemic recurrence of
prostate cancer. Together, the data show the ability of PITX2 methylation status to provide
prognostic information beyond the traditional Gleason score. Therefore, the prognostic
potential of the PITX2 methylation may help to determine a personalized treatment.
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3.1.9. Prostaglandin-Endoperoxide Synthase 2—Prostaglandin-endoperoxide
synthase 2 (PTGS2) is a key regulator of inflammation and may play a role in prostate
carcinogenesis. The two PTGS isoforms, PTGS1 and PTGS2, differ in their expression
patterns. While PTGS1 is constitutively expressed in most tissues, PTGS2 is usually not
expressed and is induced by inflammation, hypoxia, and Wnt signaling (85). An elevated
expression of PTGS2 is frequently reported in different human cancer sites including
prostate. PTGS2 over expression and enzymatic activation can enhance the level of
antiapoptotic protein B-cell CLL/lymphoma 2 (BCL2) and matrix metalloproteinase (MMP)
family. Antiapoptotic and proproliferative and inflammatory functions of PTGS2 support its
role in tumorigenesis. However, other studies show that PTGS2 may not be expressed or
downregulated in prostate tumor. Bastian et al. observed PTGS2 gene is silenced in prostate
cancer by hypermethylation (86, 87). Range of methylation in PTGS2 promoter was 0–88%
of prostate tumor (30, 86, 88–90).

Methylation at the PTGS2 gene was significantly different in prostate tumor and in BPH.
These data indicated that methylation in PTGS2 could be a reliable biomarker which can
distinguish tumor from nontumor tissues (88). Moreover, the CpG island hypermethylation
at PTGS2 correlated with seminal vesicle infiltration, capsular penetration, pathologic T-
stage, and recurrence (89). However, there was no PTSG2 methylation in hormone-
refractory metastatic prostate cancer (87).

3.1.10. RAS Association Domain Family Protein 1 Isoform A—The RAS family of
proto-oncogenes plays a key role in signal transduction pathways involved in cellular
proliferation and survival, interacting with other regulatory circuits of cell growth and death.
Overexpression of RAS may cause reduction of growth factor dependency, resistance to
apoptosis, or other features of the tumor phenotype. However, RAS association domain
family protein 1 isoform A (RASSF1A), a tumor suppressor gene, was known to be
associated with the DNA repair proteins and with the apoptotic effect (91). Inactivation by
methylation of RASSF1A may deregulate the DNA repair pathway and cell-cycle control in
the tumor. Methylation in RASSF1A promoter gene was found in a large fraction of various
tumors including prostate (92). In prostate tumors, RASSF1A promoter methylation is a
common event, occurring in 21–99% of tumor tissues (25, 29– 31, 35, 36, 90– 96).
RASSF1A promoter methylation is also positively associated with aggressiveness of
prostate cancer (29, 92, 93). In addition, Aitchison et al. reported that there was over 50% of
methylation in normal epithelial cells and benign prostatic tissues as well as prostatic
intraepithelial neoplasms (96). These findings indicate that RASSF1A promoter methylation
may be associated with early event of carcinogenesis and progression.

3.1.11. Solute Carrier Family 5A8 (SLC5A8)—Solute carrier family 5 (iodide
transporter) (SLC5) is a solute-linked carrier gene family that contains 12 sodium-coupled
transporters for several chemicals (97). SLC5A8 is downregulated by methylation, obesity,
or chronic hypoxia, while it is up regulated by lactate, butylate, TNF (tumor necrosis factor)-
α, or nitric oxide (NO) (98). The potential function of SLC5A8 protein in normal prostate
tissues is likely to mediate concentrative uptake of butyrate and propionate, all of which are
inhibitors of histone deacetylases (HDACs). SLC5A8 can also transport a variety of
pharmacologically relevant monocarboxylates, e.g., various nonsteroidal anti-inflammatory
drugs such as ibuprofen and ketoprofen (99) especially transport pyruvate into epithelial
cells, and may explain a potential tumor suppressive role (100). SLC5A8 was identified as a
differentially methylated gene by restriction landmark genome scanning which provides a
global analysis of methylation events in colon cancer cell lines and lung tumor (101, 102).
Since then, increasing evidence suggests that gene silencing of SLC5A8 may contribute to
the carcinogenesis and progression of tumors. SLC5A8 promoter methylation and gene
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silencing were detected in lung, brain, thyroid, gastric, pancreatic, breast, and prostate
tumors (100, 102– 112).

We previously reported hypermethylation of SLC5A8 in prostate (111) and pancreatic
tumors (110), and its expression was restored by treatment with either 5-azacytidine or TSA
in cancer cell lines (111). Although these results hint a potential role of HDACs on SLC5A8
expression, aberrant methylation represents the principal mechanism for inactivating
SLC5A8 in prostate tumor.

3.1.12. Solute Carrier Family 18 (Vesicular Monoamine) Transporter 2—Solute
carrier family 18 (vesicular monoamine) transporter 2 (SLC18A2) transports monoamines,
such as dopamine, serotonin, and histamine, from the cytosol into vesicles for storage and/or
exocytotic release during neurotransmission or autocrine/paracrine factor release (113).
Although SLC18A2 is expressed in prostate tumors, biological function in normal and tumor
prostate tissues is unknown. However, several of the monoamines that are substrates for
SLC18A2-mediated transport have been shown to influence growth, proliferation,
migration, or apoptosis of prostate cancer cells in vitro and in vivo. Kristiansen et al.
reported that 50% of tumor tissues had silenced SLC18A2 expression, by performing
microarray analyses (114). A recent study confirmed that SLC18A2 is frequently
downregulated in tumor tissues by methylation, as compared with nonmalignant prostate
tissue samples. Level of expression of SLC18A2 is also negatively associated with risk for
biochemical recurrence after radical prostatectomy (115).

3.1.13. Tumor Necrosis Factor Receptor Superfamily, Member 10C and 10D
(TNFRSF10C and 10D)—The TNF receptor superfamily member 10C is one of several
TNF-related apoptosis-inducing ligand (TRAIL)-like decoy receptors. TNFRSF10C is
located on 8p21.3, which is a common prostate cancer susceptibility region (116, 117).
TNFRSF10C encodes for DCR1 and is involved in the inhibition of the apoptosis pathway.
TNFRSF10C lacks the intracellular death domain and appears unable to induce apoptosis.
The extracellular domains of TNFRSF10C compete with those of DR4 or DR5 for TRAIL
binding. Thus, TNFRSF10C inhibits apoptosis induction through DR4 and DR5 (118).
Previous studies reported that frequent loss of expression of TNFRSF10C by aberrant
methylation of promoter regions in human tumor tissues (118, 119) and low expression of
TNFRSF10C was associated with tumor recurrence (120). Hypermethylation of
TNFRSF10C promoter region had been reported in prostate tumor tissues, with a range from
0 to 78% (117, 118, 121, 122). A recent German study reported that TNFRSF10D, which
codes for DCR2, was also downregulated by methylation in tumors (120).

3.1.14. NK3 Homeobox 1 (NKX3.1) and NK2 Transcription Factor Related,
Locus 5 (NKX2.5)—The NKX3.1 is located on 8p21, which is a common prostate cancer
susceptibility region (123). This gene is an NK family homeodomain protein and a tumor
suppressor gene that is downregulated in the early phases of prostate cancer. Like its cardiac
homolog, NKX2.5, NKX3.1 acts synergistically with serum response factor (SRF) (124).

Loss of function of the NKX3.1 homeobox gene in the mouse prostate leads to deregulated
expression of oxidative damage response genes and increased levels of 8-oxy-dG, correlated
with the onset of PIN (125, 126). Downregulation of NKX3.1 was observed throughout
prostate cancer progression (125, 127, 128). In addition, downregulation of NKX3.1 is
frequently observed with overexpression of MYC, an oncogene, at the early stage of prostate
cancer (125). Asatiani et al. found hypermethylation at CpG sites −921, −903, and −47 of
NKX3.1 in tumors, as compared with adjacent normal cells (129). However, these data were
not supported by another study. Lind et al. reported that downregulation of NKX3.1
expression might not be caused by DNA methylation, but other epigenetic mechanisms
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(130). Chung et al. reported that NKX2.5 promoter was significantly highly methylated in
prostate tumor, as compared to normal tissues (131). These results were confirmed by
another group (132). We expect that further methylation information at their promoters will
be available.

3.1.15. Stratifin (SFN/14-3-3σ)—The p53-regulated gene 14-3-3σ is a putative tumor
suppressor gene involved in cell-cycle regulation and apoptosis following DNA damage. In
response to DNA damage, 14-3-3σ enforces a G2/M arrest by inhibiting the cyclin B1–cdc2
complex from entering the nucleus. This allows DNA repair before cell-cycle progression
(133). 14-3-3σ undergoes frequent epigenetic silencing in several types of cancer, including
prostate cancer, suggesting that the loss of 14-3-3σ expression may be causally involved in
tumor progression (134). However, there were similar high frequency of
14-3-3σmethylation in both of prostate cancer and BPH (133, 135). Thus, promoter
methylation at 14-3-3σ may not be a specific biomarker for prostate cancer.

3.2. Genes Involved in Metabolism
The specific causes of prostate cancer are not known, but multiple etiological factors,
including genetics, hormones, diet, infection, and environmental exposures, are thought to
play significant roles. Although the precise role of androgens and their receptors in
carcinogenesis and progression of prostate cancer has not been fully studied, previous
studies suggest that these processes are important (136, 137). The production of estrogens
from androgens is mediated by the aromatase enzyme, the aberrant expression of which
plays a critical role in the development of malignancy in a number of tissues (138).
Differences in the activities of these enzymes are determined to a large extent by genetic and
epigenetic changes in the genes encoding them.

3.2.1. Androgen Receptor—It had been known that androgens stimulate the growth of
prostate cells through the androgen receptor (AR) (139). There are two well-known AR
target genes, PSA and TMPRSS2–ETS fusion genes. The exact roles of PSA and
TMPRSS2–ETS in prostate cancer are not fully defined yet. While silencing of AR
expression leads to decrease growth and induce apoptosis in vitro (140–142), overexpression
of AR also induces growth inhibition and apoptosis (143). In addition to prostatectomy and
radiation therapy, androgen deprivation is one of the most effective treatments for prostate
cancer. However, many advanced prostate cancers turn into a castrate-resistant cases.
Prostate tumor cells in this stage grow aggressively without stimulation of androgens.
Androgen receptor is one of the most frequently overexpressed proteins in the castrate-
resistant cases (144). Jarrard et al. (145) reported a significant association between AR
promoter methylation and its expression in vitro using prostate cancer cell lines.

Several groups found AR promoter methylation in 8–39% of the prostate tumor tissues (56,
133, 146–149). Frequencies of AR promoter methylation are higher in castrate-resistant
cases than ones in primary prostate tumor tissues (146, 148). Until now, the biological
significance of AR silencing by promoter methylation in castrate-resistant prostate cancer is
not clear. Recently, Wang et al. reported that AR selectively upregulates M-phase cell-cycle
genes in castrate-resistant cells, including ubiquitin-conjugating enzyme E2C (UBE2C), a
gene that inactivates the M-phase checkpoint. They also found that epigenetic marks at the
UBE2C enhancer are present in castrate-resistant cells and direct AR-enhancer binding and
UBE2C activation (139). On the other hand, Schayek et al. found that progression to
metastatic stage in a cellular model of prostate cancer is associated with methylation of AR,
and AR suppresses the insulin-like growth factor-I receptor (IGF), therefore suggesting roles
of IGF for stimulating AR signal in castrate-resistant prostate cancer (149).
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3.2.2. Estrogen Receptors—Estrogens are effective against androgen-dependent
prostate cancer, but paradoxically, estrogens might also be involved in the causation of this
malignancy (150). The biological actions of estrogens are meditated by the estrogen receptor
(ER) (151). There are two ERs which are highly homologous DNA-binding domains but
different N-terminus and ligand-binding domains. Stimulation of ER a(Esr1) leads to
aberrant proliferation, inflammation, and premalignant pathology, whereas activation of
ERβ(Esr2) appears to have beneficial effects regarding cellular proliferation and a putative
protective role against carcinogenesis (138).

Both ERs, Esr1 and Esr2, are downregulated in prostate tumor tissues (152, 153). Promoter
methylation is the primary mechanism responsible for low expression of ERs (147, 154,
155). Esr1 expression is associated with a poor prognosis for hormonal therapy (156), and
its hypermethylation is correlated with cancer progression (157). The range of Esr1
methylation in prostate cancer is diverse from 19 to 95% (31, 147, 157, 158). Esr2 may
serve as a tumor suppressor gene because it protects against uncontrolled cell proliferation in
normal prostate cells (155). However, high expression of Esr2 in prostate tumors is
associated with increased risk for recurrence and distant metastasis (153, 159). Therefore,
Esr2 may have multiple roles in carcinogenesis and progression. The frequency of Esr2
promoter methylation ranges from 65 to 83% in prostate tumors (147, 160, 161). The extent
of ERs promoter methylation is significantly higher in prostate tumors than in the BPH
samples (158, 161). In addition, the percentage of methylated CpG sites in Esr2 promoter
increased progressively from 0.29% (normal) to 35% (grade 4/5 prostate cancer) (154).

3.2.3. Retinoic Acid Receptor β (RARβ)—Retinoic acid receptor β (RARβ) is known
as a tumor suppressor gene by interacting with retinoic acid. Expression of retinoic acid
receptor B (RARβ) is reported to be absent or downregulated in tumor tissues (162). The
RARβ2 promoter is aberrantly methylated in many cancers, including prostate cancer (163).
Several groups reported that frequencies of methylation of the RARβ2 promoter range from
40% to 84% of primary prostate cancers but rarely in normal prostate tissues or BPH
samples (29, 35, 56, 95, 121, 163–166). Moderate or high frequencies of RARβ promoter
methylation were also observed in urine or blood samples, respectively (31, 36, 87).
Therefore, RARβ2 gene methylation may be an ideal biomarker candidate for early
detection of prostate cancer (56, 163).

3.2.4. Glutathione S Transferase P1—Glutathione S transferase P1 (GSTP1) is
involved in the detoxifying process and elimination of potentially genotoxic foreign
compounds by conjugating glutathione into toxic chemicals. These processes protect
prostate cells from DNA adducts and carcinogenesis (167). Thus, defective GSTP1 activity
may increase DNA mutations and, therefore, may increase the prostate cancer risk (168).
Because of its consistently frequent hypermethylation in the promoter region in prostate
cancer, GSTP1 is perhaps one of the most studied genes in prostate cancer.

Lee et al. first reported a high frequency of GSTP1 hypermethylation in prostate tumor
tissues (169). Since then, numerous studies confirmed similar results consistently.
Methylation of the GSTP1 promoter region occurs in 26–100% of tumor tissues (25, 29–31,
35, 42, 56, 88, 90, 93, 95, 169–180). However, this methylation is rarely detected in normal
prostate or BPH tissues. GSTP1 methylation was also detected consistently with high
frequency in urine, blood, and ejaculates of prostate cancer patients, while either low or no
methylation was detected in the samples from healthy controls (31, 36, 87, 181–183).
Different frequencies of GSTP1 promoter hypermethylation between tumor and normal
prostate tissues make an ideal biomarker for prostate cancer. To increase the accuracy of
detection, some investigators used multiple gene panel approaches, had commonly chosen
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GSTP1, and studied its promoter hypermethylation as a biomarker for prostate cancer
incidence, progress, and recurrence or survival (31, 36, 165, 184).

3.2.5. Cellular Retinol-Binding Protein 1—Effects of retinoids on prostate gland or
prostate cell lines implicate retinoids in the regulation of prostate growth and suppression of
prostate cancer development (185). Retinoids exert their effects through a variety of binding
proteins including cellular retinol-binding protein (CRBP), retinol-binding proteins (RBP),
cellular retinoic-acid-binding protein (CRABP), and two classes of nuclear proteins, i.e.,
retinoic acid receptors (RARs) and retinoic acid X receptors (RXRs) (186). CRBP1 is
postulated to promote apoptosis via its upregulation of all trans-retinoic acid (ATRA)
synthesis. Therefore, loss of CRBP1 could disrupt a retinoic-acid-mediated apoptosis
pathway and hence support prostatic tumor progression (187). Low expression of CRBP1 by
promoter methylation has been associated with the malignant tumor tissues including
prostate (188, 189). CRBP1 promoter hypermethylation was selectively found in prostate
cancer tissue, rare in BPHs or normal prostate tissues (25, 189, 190). Low expression and
hypermethylation in CRBP1 occur frequently in prostate tumors. However, data indicated
that CRBP1 hypermethylation is not an early event in tumorigenesis (189).

3.2.6. Multidrug Resistance 1 (MDR1/ABCB1)—Multidrug resistance 1 (MDR1) is a
transmembrane calcium-dependent efflux pump to detoxify xenobiotics or induce multidrug
resistance with GSTs. It is reported to be inactivated in prostate cancer, and some reports
showed significantly high hypermethylation at MDR1 promoter compared to BPH (30, 87,
90, 122, 191). A recent global methylation study showed 6.2- and 13.7-fold higher
methylation at MDR1 in AR-positive (LNCaP) and AR-negative prostate cancer cells
(DU145 and PC3), respectively, compared to normal prostate epithelial cell lines (RWPE1)
(57). However, Cho et al. showed no significant differences in frequency of MDR1
methylation among normal (N = 20), PIN (N = 25), and prostate cancer tissues (N = 35),
while the prevalence of MDR1 methylation was as high as 100% (121). Recent multigene
methylation analyses showed that the frequency of methylation in MDR1 gene in prostate
cancer samples was 55.3 and 11.6% in BPH. Multigene methylation models, which contain
MDR1 and GSTs, may serve as a good biomarker for prostate cancer (192).

3.2.7. Endothelin B Receptor Gene (EDNRB)—Endothelin B receptor interacts with
endothelins to regulate several critical biological processes and may induce cell death by
apoptosis and inhibit tumor progression (193). Several studies reported that the EDNRB
promoter is hypermethylated in a high proportion of prostate tumors and that much less
frequency of methylation was found in normal tissues (30, 87, 194, 195). However, other
studies found that EDNRB methylation frequencies in prostate tumors and paired normal
were same, although a high proportion of tumors are methylated (88, 95, 196). Because a
high methylation is present in normal and tumor tissues, methylation in EDNRB cannot be
considered as a specific biomarker for prostate cancer.

3.2.8. EPH Receptor A7 (EPHA7)—Ephrins and EPHS are involved in embryonic
development and play a key role for the differentiation of the nervous and vascular systems
(197, 198). Their signaling pathway networks with the Wnt signaling pathway during
embryogenesis, tissue regeneration, and carcinogenesis (199). Recent expression microarray
data, which were profiling androgen-dependent and castrate-resistant cells, revealed that
EPHA7 is downregulated in castrate-resistant cells (200). Silencing of EPHA7 is reactivated
by 5-aza treatment (198). These data are supported by a significant correlation between
methylation and loss of expression of EPHA7 (201). A recent report showed higher
frequency of methylation of EPHA7 promoter region in prostate tumor tissues than
hyperplasias (42% vs. 19%) (198). A role of EPHA7 methylation in progression of prostate
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cancer was confirmed by a positive association between hypermethylation and Gleason
scores (198).

3.2.9. Tazarotene-Induced Gene 1—Tazarotene-induced gene 1 (TIG1) is frequently
silenced in prostate tumors (202). This gene, also known as retinoid-acid-receptor-
responsive 1 gene, was first identified as an RA-responsive gene (203). Several researchers
reported that TIG1 was methylated frequently in prostate tumors, but was not or barely low
methylated in normal tissues or BPH (88, 122, 164, 183, 204, 205). Zhang et al. further
found that the methylation of TIG1 and RARβ was positively correlated. Therefore, it is
possible that the methylation of the retinoid response gene TIG1 occurred in response to the
methylation and inactivation of RARβ. In addition, concordant hypermethylation of retinoid
signaling genes, e.g., RARβ or TIG1 (164), was observed.

Ellinger et al. analyzed the diagnostic and prognostic possibilities of methylation analysis in
serum DNA of prostate cancer patients. They found hypermethylation in TIG1 was more
frequent in prostate cancer patients (10%) than in BPH (0%) and healthy individuals (0%)
(88). Although the levels of hypermethylation frequency for specific genes are usually lower
in serum or urine DNA than those in prostate tissues (Table 1), use of non-invasive
biosamples may be worth it for the specific diagnosis of prostate cancer (87).

3.2.10. Aldehyde Dehydrogenase 1A2 and 1A3—Aldehyde dehydrogenases
(ALDHs) are a group of NAD(P)+-dependent enzymes involved in metabolism of wide
variety of aliphatic and aromatic aldehydes (206). ALDH1A2, known as retinaldehyde
dehydrogenases (RALDHs), and 1A3 are embryonically lethal in gene knockout mice and
involved in retinaldehyde oxidation into retinoic acid (RA), a compound with
prodifferentiation properties. Most prostate cancer patients show a decreased prostatic RA
concentration, and altered retinoid metabolism has been noted in prostate cancer (207, 208).
Kim et al. reported ALDH1A2 promoter region was hypermethylated in primary prostate
tumors, as compared with normal prostate specimens (209). Their results are supported by
Touma et al., who observed a lower expression of ALDH1A2 in all prostate tumor FFPE
sections relative to normal prostate tissue on the same sections. Therefore, ALDH1A2 is
suggested as a tentative tumor suppressor gene in prostate cancer, and its alteration is
suspected as an early event in prostate cancer. ALDH1A3 was reported to be androgen
responsive (210), and upregulation of ALDH1A3 can increase the oxidation of retinal to
RA. Shames et al. reported hypermethylation in the promoter region of ALDH1A3 in
prostate tumor (48). Recently, disulfiram, an inhibitor of ALDHs and demethylation agent,
showed inhibition of prostate cancer cell growth (211). Thus, promoter methylation at
ALDH1A2 or 1A3 is a suspected biomarker for prostate cancer diagnosis or prevention.

3.3. Tumor Cell Invasion/Metastasis
Metastasis is an extremely complicated process, which occurs through a series of sequential
steps that include the invasion, transport, adhesion at a distant site, and outgrowth into a
secondary organ. Although metastases are the cause of 90% of human cancer mortality, little
is known about the genetic and biochemical determinants of metastasis.

3.3.1. Adenomatous Polyposis Coli—The methylated adenomatous polyposis coli
(APC) gene causes familial adenomatous polyposis, which is an inherited disorder
characterized by extensive colon polyps and the development of colorectal cancer in early
adulthood. The APC is involved in the Wnt signal transduction pathway (212). The APC
complex is known to function as a gatekeeper in the cell, preventing the transcription of
gene products that promote cell proliferation and survival rather than differentiation and
apoptosis (213). Hypermethylation of APC implies silencing of this gatekeeper, making the
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cell vulnerable to further epigenetic and genetic changes and, thus, progression toward the
development of invasive cancer.

APC promoter methylation is common in various human tumors, especially colon (214).
Most studies found a prevalence of 14–100% in prostate cancer tissues but only 5–6% in
noncancerous tissues (25, 29–31, 35, 36, 50, 51, 86, 89, 90, 93, 121, 122, 166, 184, 192,
204, 215, 216). Recent studies found that methylation in APC is associated with progression
of prostate cancer (50, 51, 217). In two small cohorts of prostate cancer patients, a threefold
statistically significantly increased HR for promoter methylation in APC has been reported
among the patients who experienced PSA recurrence, metastasis, or death (50, 51). Richiardi
et al. found that hypermethylation in the promoter of the APC gene is involved in prostate
cancer progression using large survival analysis of two independent series of unselected
prostate cancer patients (217). Rogers et al. reported somewhat low methylation frequency
of APC in urine collected after DRE; however, overall, 100% of patients with biopsy-proven
prostate cancer had at least one gene methylation among APC, GSTP1, and EDNRB in urine
vs. 60% of those without evidence of prostate cancer on biopsy (195). A recent multiplex
urine assay study for prostate cancer diagnosis (184) showed that the sensitivities of APC
(52%) in the urine sediments were similar to those seen by other investigators, who
demonstrated a similar sensitivity for APC (36).

3.3.2. CD44 (CD44)—CD44 is a transmembrane glycoprotein that is involved in signal
transduction and cell–cell and cell–matrix interactions by serving as a receptor. It codes a
lipid raft protein like CAV1 or E-cadherin. Lipid rafts are also involved in angiogenesis and
local invasion (19). The CD44 expression in prostate tumor tissues is lower than ones in
adjacent normal tissues. This low expression is correlated with CD44 promoter methylation
(22, 178). Gao et al. reported that decreased CD44 expression is associated with Gleason
score and the distant metastatic progression of prostate cancer (218). Therefore, CD44 is
considered as a metastasis suppressor gene. Furthermore, CD44 expression and its promoter
methylation may correlate with not only tumorigenesis but also progression of prostate
cancer (219). However, there are inconsistent results for CD44 promoter methylation in
many reports (22, 28, 87, 95, 122, 178, 219, 220).

3.3.3. E-Cadherin (CDH1)—The E and one of the key proteins in the maintenance of cell
differentiation and the normal architecture of epithelial tissues (221). DNA methylation-
induced CDH1 silencing was observed in prostate tumor and was associated with
tumorigenesis, metastasis, and poor patient outcome (29). Treatment with the demethylating
agent 5-aza restored E-cadherin expression in the E-cadherin-negative prostate cancer cell
lines (222). The prevalence of methylation varies from 0 to 77% (22, 28–31, 35, 36, 45, 95,
122, 160, 178, 222, 223). The reason for the discrepancy among these studies may come
from technical issues, e.g., different CpG targets, detection methods, and samples, but also
tumor status issues. Li et al. reported that the overall methylation frequencies of E-cadherin
promoter were high in advanced stage samples (70%) and low in early stage (33%) prostate
tumors (222). In addition, a recent study reported that methylated and unmethylated E-
cadherin gene expression is dominant in primary prostate cancer and bone metastasis,
respectively (223). These data suggested that CDH1 methylation might be a useful
biomarker to assess progression of prostate cancer (222).

3.3.4. H-Cadherin (CDH13)—H-cadherin (CDH13) belongs to the cadherin family of cell
surface glycoproteins responsible for selective cell recognition and adhesion (224). Like
CDH1, previous reports suggested a role for CDH13 in cancer invasion and metastasis in
human cancers (29, 225, 226). Low expression by CDH13 methylation has frequently been
observed in various cancers (225), including prostate cancer (29, 45, 226). CDH13 was
known as a tumor suppressor gene because low expression of CDH13 resulted in significant
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inhibition of tumor growth (227). However, data from animal study suggested that CDH13
is not involved in the metastasis (228). Although the molecular and biological mechanisms
underlying the functions of CDH13 are unknown, several groups reported CDH13 promoter
methylation in prostate tumors (29, 226). However, Cho et al. reported that the frequency of
CDH13 promoter methylation in prostate cancer was not different from that in BPH tissues
(53.6 and 53.3%, respectively) (122).

3.3.5. S100 Calcium-Binding Protein A2 (S100A2) and A6 (S100A6)—Although
most S100 proteins are commonly upregulated in tumors and this is often associated with
tumor progression, S100A2 has been documented as a tumor suppressor in some cancers but
as an oncogene in others (229). In the case of prostate cancer, Rehman et al. reported that
S100A2 is downregulated (230). S100A2 methylation was seen in 94% of prostate tumor
and 100% of cases of metastatic cancer. However, S100A2 methylation was also seen in
75% of cases of nonmalignant tissues and in 100% of cases of BPH (25). One interesting
fact was age-related increase in S100A2 methylation levels. This age-related methylation of
S100A2 might be zone dependent because it was observed in a transition zone lesion, but
not in a lesion from the peripheral zone (25).

S100A6 is coexpressed with S100A2 in prostate tissue. S100A6 methylation was absent in
nonmalignant tissues and 100% in BPH tissues, whereas methylation was seen in 52% of
prostate tumors. Loss of S100A6 proteins is frequent in prostatic tumors (230).

3.3.6. Tissue Inhibitor of Metalloproteinase-2 and -3—MMPs are proteolytic
enzymes that degrade the extracellular matrix and the basement membrane. High
expressions of this enzyme have been associated with tumor growth, invasion, and tumor-
induced angiogenesis (231). These pathways are controlled by the balance between the
levels of the MMPs and tissue inhibitors of metalloproteinases (TIMPs) (232). Thus, TIMPs
are called angiogenesis inhibitors.

TIMP-2 is one of the frequently investigated members of this family because of its
involvement in cancer progression and metastasis in a variety of human cancers (233, 234).
Pulukuri et al. observed that 25 (60%) of 42 prostate tumors were methylated in comparison
with 5 (16%) of 32 normal prostate samples (235). These findings further supported that
majority of the prostate cancer tissues have weak or no expression of TIMP-2 when
compared with BPH or normal prostate tissues (235). However, these results were not
confirmed by a previous study (236). Ross et al. found that TIMP-2 was expressed in a
majority of prostate tumors and correlated with clinical stages and recurrence. TIMP-2
expression appears to have a tumor-promoting role in prostate cancer and warrants further
investigation (236). This was in contrary to the Pulukuri’s study which indicated antitumor
effects.

The roles of TIMP-3 in cancer progression were investigated by several groups. High
expression of TIMP-3 reduces metastasis, induces apoptosis, increases drug sensitivity, and
inhibits tumor growth (237–239). A low expression by promoter methylation of TIMP-3 has
been reported to be associated with poor outcomes (240). A recent global methylation study
showed 12.08- and 22.3fold higher methylation at TIMP-3 in AR-positive (LNCaP) and
AR-negative cells (DU145 or PC3), respectively, compared to normal prostate epithelial cell
lines (RWPE1) (57). The promoter region of TIMP-3 was found to be methylated in 97% of
prostate tumors (25). However, other studies reported low (0%) and 6% frequencies of
TIMP-3 methylation (30, 56), while additional two studies found TIMP-3 promoter
methylation in 37 and 41% of urine sediments from prostate cancer patients (31, 36). As a
diagnostic biomarker in urine DNA, value of TIMP-3 may be limited due to low frequency
of methylation in normal samples.
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3.3.7. SRC Family Tyrosine Kinase (FYN)—The SRC family of kinases (SFKs) is the
largest family of nonreceptor protein tyrosine kinases and is responsible for signal
transduction during differentiation, adhesion, and migration. Aberrant SRC/SFK activity has
been widely implicated in cancer development. Several lines of evidence indicate a role for
SFKs in the development of prostate cancer, e.g., SFK overexpression in prostate cancer cell
lines and tissues (241).

Posadas et al. reported overexpression of FYN, a member of SFK, in prostate cancer cell
lines and tissues than in normal tissues (242). Sorensen et al. reported frequent aberrant
methylation in the FYN promoter region in both prostate cancer cell lines and primary
prostate tumors. In addition, methylation-induced silencing was confirmed by Western blot
and RT-PCR results (243). Methylation at FYN promoter should be further investigated to
be evaluated as a biomarker of prostate cancer.

3.3.8. Neutral Endopeptidase 24.11—Neutral endopeptidase 24.11 (NEP), one of cell
surface peptidases, is expressed in prostate. This protein inactivates growth factors needed in
the growth of castrate-resistant prostate cancer (244). Therefore, loss of NEP activates
protein kinase B (Akt), which may accelerate prostate tumor growth (245). Several
investigators reported hypermethylation in NEP promoter in prostate tumor tissues (87, 244,
246). Usmani et al. observed that methylation of the NEP promoter was present only in
castrate-resistant prostate cancer cell lines not in androgen-dependent prostate cancer cell
lines. Reactivation of NEP by demethylating agent 5-aza-2′-deoxycytidine shows that
hypermethylation of NEP is associated with a loss of NEP expression in prostate tumor
(244). Further studies are needed to elucidate the impact of NEP promoter methylation on
the progression to castrate-resistant prostate cancer.

3.4. DNA Repair Genes
Although the specific causes of prostate cancer are not known, androgens, estrogens
abnormalities, inflammation, and DNA repair capacity have been implicated. DNA is
constantly damaged by endogenous oxygen free radicals and exogenous chemicals. DNA
mutations are estimated to spontaneously occur 20,000–40,000 times everyday (247, 248).
The DNA repair process is important to the survival of cell; therefore, different repair
pathways are available to reverse the different types of DNA damage. In fact, over 250 DNA
repair enzymes participate in this process (249, 250). Defects in these DNA repair pathways
may increase persistent mutations in daughter cell generations, genomic instability, and
ultimately prostate cancer risk.

3.4.1. Methylguanine-Methyltransferase—DNA repair genes can be classified into
several distinct pathways, including the direct reversal (DR) pathway. The only known
enzyme in the DR pathway is methylguanine-methyltransferase (MGMT). MGMT transfers
the alkyl group at the O6 position of guanine to a cysteine residue within its active site,
leading to the direct restoration of the natural chemical composition of DNA without the
need for genomic reconstruction. Therefore, defective MGMT activity is associated with an
increased mutation rate (251). Reports regarding MGMT methylation in prostate tumor
tissues have been inconsistent.

While three studies reported a low frequency of MGMT promoter hypermethylation (0–2%)
in prostate tumor tissues (29, 30, 56), others observed higher prevalence of
hypermethylation (19–76%) (25, 31, 36, 37, 42, 93, 252). Two other groups reported 15 and
19% MGMT hypermethylation frequencies in urine sediment samples from prostate cancer
patients, respectively (31, 36). These data suggest that MGMT promoter methylation can be
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a potential biomarker for early detection and surveillance of prostate cancer. However,
larger studies will be necessary to resolve these inconsistent results.

4. Conclusions
Although a few large-scale genome-wide analyses of epigenetic variations are currently
ongoing, most published studies are small scale with a retrospective design. Therefore,
meta-analysis or large studies should be performed to obtain the complete extent and pattern
of differential DNA methylation in the promoter region in the critical genes. Since
epigenetic changes are involved in carcinogenesis and progression of prostate cancer,
information of these epigenetic changes may provide clues for better diagnostic, prognostic,
and predictive modalities than existing ones. The ultimate goals of these epigenetic studies
are to improve patients’ outcomes and enhance quality of life.

A number of clinical trials and therapies are targeting methylated genes. Unlike DNA
somatic mutations, DNA methylations are reversible. Thus, hypermethylated tumor
suppressor genes can be reactivated with drugs. Several demethylating agents such as 5-
azacytidine (Vidaza) and 5-aza-2′-deoxycytidine (decitabine) have been approved as
treatments for the myelodysplastic syndrome (MDS) and leukemia (253–255). Some MDS
patients treated with 5-azacytidine showed a significant survival benefit (256). However, a
major limitation of these therapies is their nonspecific target approach, which may induce
unintended side effects. Therefore, not only tumor suppressor genes but also silenced
oncogenes can be reactivated. Future studies should focus on developing drugs that can
target specific genes.
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Fig. 1.
Role of DNA methylation in cancer: unmethylated and methylated CpG sites are indicated
by white and black circles, respectively. This figure shows a representative region of
genomic DNA in normal and tumor cell. The promoter regions in gene1, gene2, and tumor
suppressor gene are rarely methylated in normal cells and, therefore, expressed. Cytosines
5′ to guanosines (CpG) islands in promoter region of tumor suppressor gene are methylated,
and it results in gene silencing. Conversely, hypomethylation in the promoter region of
oncogene in tumor reactivates transcription.
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Table 1

Frequencies of methylated genes in prostate tumor and biosamples

Gene Common name Function Frequency References

ALDHla2 Aldehyde dehydrogenase 1
family, member A2

Tumor suppressor (synthesis of RA) 100% (7/7)a (208)

ALDHla3 Aldehyde dehydrogenase 1
family, member A3

Tumor suppressor (synthesis of RA) 21% (5/24) (48)

AFC Adenomatous polyposis coli Tumor suppressor 12% (2/17)b (194)

90% (66/73) (30)

14% (11/76)c (89)

92% (36/39)c (165)

57% (21/37) (92)

27% (27/101) (29)

100% (118/118) (25)

41% (182/447) (216)

79% (48/61) (203)

65% (117/179) (121)

3.0d (51)

83% (44/53)c (85)

73% (131/179) (121)

27% (21/79) (50)

82% (59/72) (203)

64% (109/170) (191)

83% (65/78) (88)

51% (48/95)b (36)

51% (58/113)b (183)

51% (18/35) (120)

48% (25/52)b (31)

78% (88/113) (35)

AR Androgen receptor Steroid hormonal response 29% (2/7)a (148)

13% (2/15) (145)

8% (3/38) (146)

25% (6/24) (147)

15% (16/109) (56)

39% (30/76)c (132)

CAV1 Caveolin-1 Tumor suppressor 91% (20/22) (20)

100% (4/4) (21)

0% (0/8) (22)

CCNA1 Cyclin A1 Tumor suppressor 79% (19/24) (48)
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Gene Common name Function Frequency References

CCND2 Cyclin D2 Tumor suppressor 25% (21/83) (50)

32% (32/101) (45)

99% (117/118) (49)

1.78d (51)

CD44 CD44 molecule Tumor invasion/metastasis (lipid-raft-associated) 78% (31/40) (219)

33% (30/90) (22)

3% (1/30)c,e (28)

68% (27/40) (218)

32% (36/111) (177)

72% (58/81) (94)

0% (0/18)c (86)

20% (2/8) (256)

22% (39/179) (121)

CDH1 E-cadherin Tumor invasion/metastasis (lipid-raft-associated) 31% (29/95)b (36)

0% (0/30)c,e (28)

54% (19/35) (221)

70% (14/20)a (222)

27% (27/101) (29)

0% (0/111) (177)

0% (0/73) (30)

4% (5/114) (35)

61% (49/81) (94)

30% (6/20) (159)

77% (40/52)b (31)

24% (22/90) (22)

69% (70/101) (45)

21% (38/179) (121)

CDH13 H-cadherin Tumor invasion/metastasis (lipid-raft-associated) 45% (68/151) (225)

31% (31/101) (29)

54% (96/179) (121)

CDKN2A (p16INK4a) Cyclin-dependent kinase
inhibitor 2A

Tumor suppressor 73% (8/11) (27)

3% (3/101) (29)

6% (4/73) (30)

77% (91/118) (25)

66% (21/32) (26)

13% (3/24) (34)

70% (21/30) (32)

4% (5/113) (35)
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Gene Common name Function Frequency References

37% (19/52)b (31)

15% (8/53) (37)

12% (11/95)b (36)

10% (3/30)c (28)

60% (3/5)a (33)

CRBP1 Cellular retinol-binding protein
1

Steroid hormonal response (control of retinoids) 81% (96/118) (25)

47% (17/36) (188)

34% (34/101) (189)

P14ARF Cyclin-dependent kinase
inhibitor 2A

Tumor suppressor 4% (2/53) (37)

6% (6/95)b (36)

37% (19/52)b (31)

4% (5/118) (25)

0% (0/73) (30)

3% (1/32) (42)

6% (1/16) (26)

22% (2/9) (27)

DAPK Death-associated protein kinase Tumor suppressor 36% (39/109) (56)

1% (1/101) (29)

0% (0/73) (30)

28% (27/95)b (36)

10.9–18.7f (57)

EDNRB Endothelin receptor type B Steroid hormonal response (cell adhesion) 49% (36/73) (30)

72% (58/81) (94)

70% (23/35) (193)

100% (80/80) (87)

50% (9/18)b (86)

83% (40/48) (195)

66% (8/12)b (194)

EPHA7 EPH receptor A7 Steroid hormonal response (cell differentiation,
apoptosis)

42% (20/48) (197)

Esr1 Estrogen receptor alpha Steroid hormonal response 90% (28/31) (157)

19% (14/73) (30)

95% (36/38) (146)

41% (64/156) (156)

Esr2 Estrogen receptor beta Steroid hormonal response 83% (19/23) (160)

65% (13/20) (159)
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Gene Common name Function Frequency References

79% (30/38) (146)

FHIT Fragile histidine triad gene Tumor suppressor 15% (15/101) (29)

65% (15/23) (67)

> 106 (57)

FyN SRC family tyrosine kinase Tumor invasion/metastasis (cell differentiation) 67% (12/18) (242)

GSTP1 Glutathione S transferase P1 Steroid hormonal response (metabolism) 58% (7/12) (175)

81% (68/84)c (179)

39% (31/80)b (179)

26% (20/76) (89)

86% (37/43) (164)

85% (89/105) (176)

36% (36/101) (29)

88% (96/109) (56)

84% (99/118) (177)

100% (18/18) (178)

95% (69/73) (30)

87% (32/37) (92)

79% (22/28)b (170)

71% (43/61) (169)

95% (112/118) (25)

75% (24/32) (42)

72% (58/81) (94)

79% (89/113) (35)

48% (25/52)b (31)

83% (79/95)b (36)

42% (71/168)c (87)

28% (5/18)c (86)

93% (74/80) (87)

100% (20/20) (168)

91% (52/57) (171)

75% (24/32) (172)

44% (4/9)g (180)

90% (18/20) (181)

94% (16/17) (173)

42% (71/168)c (182)

91% (63/69) (174)

HIC1 Hypermethylated in cancer 1 Tumor suppressor 99% (108/109) (56)

67% (52/78) (75)

Methods Mol Biol. Author manuscript; available in PMC 2013 July 18.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yang and Park Page 36

Gene Common name Function Frequency References

100% (73/73) (30)

LPL Lipoprotein lipase Tumor suppressor (metabolism of lipids) 38% (21/56) (67)

MDR1/ABCB1 Multidrug resistance 1, ATP-
binding cassette, subfamily B
(MDR/TAP), member 1

Steroid hormonal response 48% (36/76) (89)

83% (15/18)c (86)

55% (97/177) (190)

88% (64/73) (30)

100% (35/35) (120)

51% (91/179) (121)

MGMT O6-methylguanine DNA methyltransferaseDNA repair 26% (14/53) (37)

34% (21/62) (251)

2% (2/109) (56)

19% (22/118) (25)

25% (8/32) (42)

76% (28/37) (92)

0% (0/101) (29)

l% (1/73) (30)

19% (10/52)b (31)

15% (14/95)b (36)

NEP Neuroepithelial tyrosine kinase Tumor cell invasion/metastasis 17% (3/18)c (86)

14% (3/21) (243)

73% (16/22) (245)

NKX3.1 Tumor suppress (defense for oxidative damage) 83% (33/40) (128)

NKX2.5 Tumor suppress (defense for oxidative damage) 30% (6/20) (130)

PITX2 Paired-like homeodomain 2 Tumor suppress 3.4d (81)

2.99d (82)

100% (17/17) (83)

PTGS2 Prostaglandin-endoperoxide synthase 2Tumor suppressor 88% (64/73) (30)

11% (8/76) (89)

71% (38/53) (85)

68% (54/80) (87)

65% (51/78) (88)

0% (0/18)c (86)

RARβ Retinoic acid receptor beta Steroid hormonal response 79% (11/14) (162)

71% (25/35) (120)

91% (39/43) (164)
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Gene Common name Function Frequency References

79% (33/42)c (165)

53% (54/101) (29)

78% (85/109) (56)

84% (42/50) (163)

70% (79/113) (35)

35% (18/52)b (31)

40% (32/81) (94)

39% (7/18)c (86)

62% (59/95)b (36)

RASSF1A Ras association domain family 1 Tumor suppressor 21% (16/76) (89)

71% (37/52) (91)

99% (117/118) (25)

53% (54/101) (29)

96% (70/73) (30)

84% (31/37) (92)

74% (97/131) (93)

73% (38/52)b (31)

49% (40/81) (94)

78% (88/113) (35)

78% (74/95)b (36)

17% (3/18)c (86)

50% (7/14) (95)

S100A2 S100 calcium-binding protein
A2

Tumor cell invasion/metastasis 94% (32/34) (229)

99% (117/118) (25)

S100A6 S100 calcium-binding protein
A6

52% (14/27) (229)

SFN 14-3-3σ Tumor suppressor 87% (45/52)c (132)

99% (121/122) (134)

SLC5A8 Solute carrier family 5, member
8

Tumor suppressor 70% (7/10) (110)

SLC18A2 Vesicular monoamine
transporter 2

Tumor suppressor 88% (15/17) (114)

TIG1 Tazarotene-induced gene 1 Steroid hormonal response (chloroplast trigger
factor)

53% (26/50) (163)

55% (17/31) (204)

70% (43/61) (203)

10% (16/168)c (182)

96% (77/80) (87)
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Gene Common name Function Frequency References

42% (75/179) (121)

TIMP-2 Tissue inhibitor of
metalloproteinase-2

Tumor cell invasion/metastasis 60% (25/42) (234)

TIMP-3 Tissue inhibitor of
metalloproteinase-3

Tumor cell invasion/metastasis 41% (37/91)b (36)

37% (19/52)b (31)

6% (7/109) (56)

97% (114/118) (25)

0% (0/73) (30)

TNFRSFlOC/DcR1 TNF receptor superfamily,
member 10c

Tumor suppressor 65% (117/180) (121)

50% (25/50) (117)

78% (46/59) (116)

0% (0/35) (120)

TNFRSF1OD/DcR2 TNF receptor superfamily,
member 10D

Tumor suppressor 38% (5/8) (119)

a
Cell culture

b
Urine samples

c
Serum DNA

d
Hazard ratio

e
Bone marrow

f
Methylation fold compared to normal cells

g
Ejaculates
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