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ABSTRACT
Background and objective In 2008 we developed a
shared health research information network (SHRINE),
which for the first time enabled research queries across
the full patient populations of four Boston hospitals. It
uses a federated architecture, where each hospital
returns only the aggregate count of the number of
patients who match a query. This allows hospitals to
retain control over their local databases and comply with
federal and state privacy laws. However, because
patients may receive care from multiple hospitals, the
result of a federated query might differ from what the
result would be if the query were run against a single
central repository. This paper describes the situations
when this happens and presents a technique for
correcting these errors.
Methods We use a one-time process of identifying
which patients have data in multiple repositories by
comparing one-way hash values of patient
demographics. This enables us to partition the local
databases such that all patients within a given partition
have data at the same subset of hospitals. Federated
queries are then run separately on each partition
independently, and the combined results are presented
to the user.
Results Using theoretical bounds and simulated
hospital networks, we demonstrate that once the
partitions are made, SHRINE can produce more precise
estimates of the number of patients matching a query.
Conclusions Uncertainty in the overlap of patient
populations across hospitals limits the effectiveness of
SHRINE and other federated query tools. Our technique
reduces this uncertainty while retaining an aggregate
federated architecture.

BACKGROUND AND SIGNIFICANCE
Clinical data repositories are becoming increasingly
important tools for a variety of types of clinical
research, including clinical trial recruitment, epi-
demiology studies, pharmacovigilance monitoring,
and comparative effectiveness research. However,
scientists have traditionally only been able to access
clinical data collected by their own institutions.
Therefore, in 2008 we developed a Shared Health
Research Information Network (SHRINE), which
for the first time enabled research queries across
the full patient populations of four Boston hospi-
tals.1 SHRINE builds on other systems that use a
federated architecture instead of a large central
database.2–7 By keeping patient data within local
databases at each hospital, SHRINE can broadcast a
query across the network and reveal the number of
matching patients at each hospital without requir-
ing any single patient’s details to leave an institu-
tion. This minimizes hospitals’ concern about

sharing patient data and allows them to comply
with federal and state privacy laws, while at the
same time giving researchers access to the largest
possible patient population. SHRINE has been
cited in high-profile clinical studies and has tremen-
dous potential to transform clinical research.8–11

A significant limitation of SHRINE, as well as
any federated network returning aggregate counts,
is that the sum of the counts in the federated
system is not necessarily the same as what the result
would be if the query were run against a combined,
central database. This is because the patient popula-
tions of each hospital are not mutually exclusive.
Patients often receive care from multiple hospitals,
especially when those hospitals are geographically
close, such as the original four Boston hospitals in
SHRINE. As a result, some of the patients being
counted by one hospital can be the same patients
being counted by another. If those counts are
simply added, SHRINE will overestimate the total
number of patients in the network. In addition, no
single hospital might have the complete medical
record of a patient if that patient is also being
treated by another hospital. Therefore, local hos-
pital databases might be missing information about
their patients, which could result in SHRINE
underestimating the number of patients who match
a query compared to what would be found in a
combined, central database.
In this paper, we show how these problems can

be addressed by knowing which patients receive
care from more than one hospital. Several methods
have been developed to link patients records in dif-
ferent hospital databases that require sharing
patient data among the hospitals.12–15 However, in
2002 Grannis demonstrated a way of creating these
linkages using data that has been de-identified with
a one-way hash function.16 These data are combi-
nations of demographic variables, such as social
security number, name, year of birth, and gender.
With multiple variables included in the hash, the
specificity can approach 100%. The sensitivity can
then be increased by generating multiple hash
values for each patient using different combinations
of variables. If any single hash value matches
between patients at two hospitals, a linkage can be
created between those patient records. Each hos-
pital could send a one-time list of the hash values
for all of its patients to a trusted third party, which
will compare the values and generate a random
code for each distinct patient. We will demonstrate
that once this initial linkage is complete, SHRINE
can return more precise estimates of the number of
patients matching a query, while still sharing only
aggregate counts and not the individual patient
codes.
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MATERIALS AND METHODS
Partitioning patient populations according to their overlap
with other hospitals
We build on Grannis’ idea by proposing that the trusted third
party, in addition to returning to the hospitals the random codes
that have been assigned to their patients, also return the list of
all hospitals where those patients receive care. For example, if
patient P1 is in the databases of hospitals H1 and H3; patient P2
is in the databases of hospitals H1, H2, and H3; and patient P3
is only in the database of H3; then H1 will be returned the set
{(P1,{H1,H3}), (P2,{H1,H2,H3})}, H2 will be returned {(P2,
{H1,H2,H3})}, and H3 will be returned {(P1,{H1,H3}), (P2,
{H1,H2,H3}), (P3,{H3})}.

This can be done more succinctly by also generating a
random code for each possible list of hospitals. For h hospitals,
there are 2h−1 potential combinations. The empty set is not
counted because a patient has to be in at least one hospital’s
database. Theoretically, the number of combinations grows
exponentially as the number of hospitals in the network
increases; however, most of these combinations will be asso-
ciated with no patients. There are two reasons for this. First,
although there are many patients who receive care from two or
three hospitals, there will be essentially none who receive care
from, say, 100 different hospitals. Second, the number of combi-
nations of hospitals associated with at least one patient cannot
be any larger than the total number of patients. Since there are
a finite number of patients in the world (7 billion), and a much
smaller number in any one hospital network, this sets an upper
bound.

In the case where there is no overlap in patient populations
among the hospitals in the network, there will be h combina-
tions, with each containing a single hospital. In networks where
the hospitals are geographically distant, located in different
countries, or see different populations (eg, pediatrics vs adults),
the overlap may be very small, with the number of combinations
close to h. The lower bound is one combination, which occurs
either when there is a single hospital in the network or when
every patient exists in every hospital’s database.

Let c be the actual number of hospital combinations with at
least one patient. In the above example, there are c=3 combina-
tions represented by the set {(C1,{H1,H2}), (C2,{H1,H2,H3}),
(C3,{H3})}. If the trusted third party first returns this set to the
hospitals, then it can subsequently return hospital H1 the
patient set {(P1,C1),(P2,C2)}, return H2 the set {(P2,C2)}, and
return H3 the set {(P1,C1), (P2,C2),(P3,C3)}. This enables each
hospital to group its patient population into c partitions, with
some partitions within a given hospital having no patients.

Determining bounds on aggregate federated queries
without partitioning
Currently in SHRINE, a query returns a single aggregate count
from each hospital of the number of matching patients. The
process for determining the lower and upper bounds on the
actual number of patients in the network depends on the type
of query. In this section, we first describe how to do this
without any information about which patients exist in multiple
hospitals’ databases.

In a Type 1 query, hospitals do not have to exchange data about
a patient in order for that patient to be identified as a match in a
federated query. For example, in a search for patients with diabetes
OR hypertension, as long as one hospital has a record of one of
those diagnoses, then the patient will be counted in the aggregate
total from all hospitals. Compared to a single combined repository,

the federated network will find the same set of patients. The aggre-
gate total will never underestimate the actual number of patients,
but it will overestimate it if two hospitals include the same patient
in their individual aggregate counts.

For h hospitals returning counts n1 through nh, the upper
bound on the actual number of patients is sum(ni), where
1≤i≤h. This case occurs when there is no overlap in the patient
populations of the hospitals—the count from each hospital
represents a distinct population, and therefore the sum of those
counts equals the total number of patients. The lower bound is
max(ni) because the count from each individual hospital guaran-
tees that there are at least that number of matching patients in
the network, though it could be the case that the matching
patients at a single hospital represent the superset of the match-
ing patients at all other hospitals.

In a Type 2 query, individual hospitals can, with certainty,
identify some matching patients, but for other patients the
required data facts might be spread across multiple hospitals.
For example, in a search for patients with diabetes AND hyper-
tension, hospital H1 can confirm that patient P1 matches the
query if P1 has both diagnoses in H1’s database. However, if
patient P2’s diabetes diagnosis only exists in H1’s database and
P2’s hypertension diagnosis only exists in H2’s database, then
neither hospital will identify P2 as a match. Type 2 queries can
therefore underestimate the actual number of matching patients.
They can also overestimate the number of matching patients in
the same way as Type 1 queries. The lower bound is still max
(ni), but the upper bound is more difficult to calculate. Without
additional information beyond the aggregate count from each
hospital, the upper bound is infinite because it is impossible to
know how many patients were missed by the query. However,
an upper bound can be determined by splitting the Type 2
query into separate Type 1 queries. For example, one Type 1
query can be used to calculate an upper bound on the number
of patients in the network with diabetes, and another Type 1
query can be used to calculate an upper bound on the number
of patients in the network with hypertension. The actual
number of patients who have both diabetes and hypertension
cannot be greater than the smaller of the upper bounds of the
two Type 1 queries.

In a Type 3 query, individual hospitals cannot be certain that
any patient matches a query without additional information
from the other hospitals. For example, in a search for patients
with diabetes AND NOT hypertension, hospital H1’s database
contains P2’s diabetes diagnosis but has no record that P2 also
has hypertension—a fact that only H2 knows. As a result, the
patients that H1 identifies in its local search might be false
matches, and the actual count might be zero. Therefore, the
lower bound on the overall federated Type 3 query is zero.
Splitting the Type 3 query into separate Type 1 queries might
help. For example, if the lower bound on the number of
patients with diabetes in a network is 1000 and the upper
bound on the number of patients with hypertension is 800,
then there are at least 200 patients with diabetes and not hyper-
tension. The upper bound is calculated in the same way as a
Type 2 query—in this example, there can be no more than 1000
patients with diabetes and not hypertension, which would
happen if all the patients with hypertension were patients
without diabetes.

Determining bounds on aggregate federated queries with
partitioning
Partitioning removes the uncertainty around which hospitals
contain data about a patient. SHRINE can take advantage of
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this by splitting a query into c separate queries that each run
against a different partition, and then adding the results. In
other words, each hospital is asked for not one overall aggregate
count, but rather one aggregate count for each of the c parti-
tions. The SHRINE ‘aggregator’, which combines results from
each hospital, calculates the bounds for each partition. It then
returns the lower bound for the overall query as the sum of the
lower bounds for the partitions, and it returns the upper bound
for the overall query as the sum of the upper bounds for the
partitions. This works because the partitions represent mutually
exclusive patient populations. There is no risk of double count-
ing patients by adding the partition counts.

As an example, consider two hospitals, H1 and H2 with three
partitions: {(C1,{H1}), (C2,{H2}), (C3,{H1,H2})}. Suppose H1

has 1000 patients with diabetes and H2 has 800 patients with
diabetes. Without partitioning, the upper bound on the total
number of patients with diabetes is 1000+800=1800 patients.
However, because all 800 patients from H2 can also be at H1,
the lower bound is 1000. Suppose we know from partitioning
that 900 of H1’s patients are in C1 and the other 100 are in C3,
and 750 of H2’s patients are in C2 and the other 50 are in C3.
That tells us that most of the patients with diabetes in the
network have data at only one hospital. Specifically, the bounds
for C1, C2, and C3 are (900, 900), (750, 750), and (100, 150),
respectively, giving an overall bounds of (1750, 1800). There is
no change to the overall upper bounds. However, by knowing
how many patients exist at only one hospital, the overall lower
bounds can be increased. With partitioning, in this example the
range between the lower and upper bounds fell from 800 to 50,
and the number of patients guaranteed to be in the network
increased by 75%.

Note that with this method, it is possible to greatly improve
the bounds of a query without requiring hospitals to share any
information about which specific patients match the query. They
are still only returning aggregate counts. The initial process of
generating hash values from patient demographics is only used
to enable hospitals to partition their local databases. No central
master patient index is stored, and no data about individual
patients are returned to the user.

Estimating the exact number of patients who match a query
With partitioning, the exact number of matching patients can be
determined for the partitions that correspond to a single hos-
pital. However, only a range can still be determined for the
other partitions when only aggregate counts are available.
A more precise estimate is possible if we allow hospitals asso-
ciated with a given partition to share some information about
individual patients in that same partition. Note that within a
given partition, every patient receives care from every hospital
associated with that partition. Therefore, this data sharing will
not provide any hospital with information about patients the
hospital does not already treat.

We will start with Type 1 queries. Suppose there are three
hospitals, and one of the partitions is (C1,{H1,H2}). Now con-
sider an investigator from H3 who broadcasts a federated search
for patients with diabetes. In addition to their individual counts
for C1, hospitals H1 and H2 can work together to estimate the
actual number of matching patients in C1, and then return that
count to H3. Note that just because H1 and H2 have the same
patients in C1, that does not mean they have the same data
about those patients. Patient P1 could be treated at both H1 and
H2, but only H1 might have the diagnosis of diabetes in its data-
base. If H1 and H2 share with each other their lists of matching
patients, they can determine the exact number of patients in C1

with a diagnosis of diabetes, without the risk of double-counting
anyone.

This can be done in different ways depending on the policies
the hospitals want to adopt. For example, one hospital, H1, can
be designated as the aggregator. In this scenario, H2 sends its list
of patient codes to H1, and then H1 returns the number of dis-
tinct matching patients to H3. Another method would be that
H2 sends odd patient codes to H1, and H1 sends even patient
codes to H2. Each hospital calculates a partial count, which they
independently send to H3.

A problem with this technique is that some queries might
require hospitals to exchange very large numbers of patient
codes. There could be a practical limitation in terms of perform-
ance and bandwidth. An alternative is to use sampling. Suppose
H1 has 1000 matching patients in C1, and H2 has 600. H1

sends 10 randomly selected patient codes from its list of
matches to H2, and H2 sends 10 random matches to H1. Both
hospitals then tell the other which patients are also local
matches. For example, H2 returns the three codes it finds to H1,
and H1 returns four to H2. Next, H1 uses that information to
estimate that 30% of its 1000 matches (300) are also matches at
H2, while 70% (700) are unique to H1. Similarly, H2 estimates
that 40% of its 600 matches (240) are also matches with H1,
while 60% (360) are unique to H2. To resolve discrepancies,
they average their estimates, which in this case would be that
(300+240)/2=270 matching patients are at both H1 and H2.
Finally, the hospitals return the total estimate of 700+360
+270=1330 matching patients to H3. For this sampling tech-
nique to work, each hospital with matching patients in a parti-
tion will have to share data with all the other hospitals in the
partition. Thus, with h hospitals and a sample size of s patients,
up to h2s patient code exchanges will be required per partition.
Even with a small sample size, a large number of patient code
exchanges might be necessary to run an entire query.

In Type 1 queries, hospitals only have to share data about
patients who matched the query. In Type 2 or Type 3 queries, in
order to estimate the number of matching patients in a parti-
tion, hospitals will need to share data about patients who poten-
tially do not match the query. For example, in order for H1 and
H2 to determine how many patients in C1 have diabetes AND
hypertension, while running the query, they will each need to
share information with each other about all patients in C1 who
have either diabetes OR hypertension. That way they can iden-
tify patients with different diagnoses at different hospitals.

Special cases
Since small aggregate counts are potentially identifiable,
SHRINE includes an obfuscation algorithm that adds a small
random number to the actual count and returns any count less
than 10 as ‘<10’.17 With partitioning, it is possible that individ-
ual partitions either have fewer than 10 total patients, or they
are so small that obfuscation significantly affects the results.
Even if the overall total count (the sum of the counts from each
partition) presented to a user in SHRINE is large, hospitals
might not want to share small un-obfuscated counts
‘behind-the-scenes’ with the query aggregators. One approach is
to merge all small partitions into a single partition. This affects
how bounds are calculated for that partition because it is no
longer known exactly which hospitals have data about those
patients. However, it would prevent the patients from being
‘lost’ from the system.

A similar approach of merging partitions can be used when
the number of partitions is so large that it is affecting perform-
ance. In the extreme case, all partitions associated with more
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than one hospital can be merged into a single partition. This
leaves each hospital with exactly two partitions—the patients
who are treated only at that hospital, and the patients who are
also treated by at least one other hospital. For networks where
there is little overlap in patients between hospitals, this might be
the preferred partitioning method.

Unless hospitals repeat the initial step of using hash functions
to identify which patients exist at multiple hospitals, they will
soon face the problem of new patients entering the network.
A special partition will need to be created for these patients. As
with merged partitions, the lack of information about whether
these patients are also at other hospitals affects the bounds. The
more frequently hospitals update their partitions, the smaller
this special partition will be.

Simulations
Several parameters of a network determine how much benefit
partitioning provides: the number of hospitals; the probability
that a patient at one hospital is also in the database of another
(patient overlap); the prevalence of the medical concepts being
queried; and the probability that a data fact in one hospital (eg,
a patient’s diagnosis of diabetes) is also recorded in the database
of another hospital where that patient receives care (data fact
overlap). We demonstrate the effect of these parameters by gen-
erating a simulated hospital network consisting of one million
patients randomly distributed across five hospitals, with a 20%
patient overlap between any two hospitals, a concept with 1%
prevalence, and a 10% data fact overlap. Lower and upper
bounds of the number of patients returned by a Type 1 feder-
ated query with and without partitioning were calculated. An
estimate of the actual number of patients that match the query
was determined using the sampling technique described above
with a sample size of 10. Starting with this initial configuration,
each parameter was then modified, one at a time, generating a
new simulated network for each combination of parameters.
This process was repeated 10 times, and the mean values from
the different simulations were calculated. Note that in all simu-
lations, the total number of patients in the network was fixed.
Therefore, when the number of hospitals was increased, the
number of patients in any one hospital decreased; and when the
patient overlap increased, the number of patients in each hos-
pital also increased. The code used for the simulations is avail-
able on the i2b2 Community Wiki as a Related Project called
Federated Query Simulations (https://community.i2b2.org/wiki/
display/Federated).

RESULTS
Table 1 and figure 1 illustrate the upper and lower bounds, with
and without partitioning, of a federated aggregate query against
simulated hospital networks. Also shown is the estimate of the
exact number of patients using sampling. The actual number of
matching patients in each simulation is 10 000, except in figure
1C, where the concept prevalence is indicated.

Without partitioning, as the number of hospitals increases,
the upper bound increases and the lower bound decreases. In
other words, there becomes greater uncertainty of the actual
number of patients. As either the patient overlap or data fact
overlap increase, the lower bound increases. However, the
upper bound also increases proportionally at approximately the
same rate, resulting in a greater range between the two bounds.
Changing the concept prevalence has little effect on the bounds
relative to the actual number of patients.

In all simulations, partitioning has no effect on the upper
bounds. However, the lower bounds are at least as high with

partitioning as without, and in most cases several times higher.
The greatest benefits of partitioning occur with larger numbers
of hospitals and less patient overlap between hospitals. Without
partitioning, the lower bound is simply the largest count from
any single hospital. The potential of using SHRINE to demon-
strate that there enough patients in a multi-institution study to
conduct a trial is completely lost. All that can be determined is
which one location would be best for a single hospital study. In
the extreme case where there is no patient overlap, and patients
are evenly distributed across all h hospitals, the lower bound
underestimates the number of patients by a factor of h. In con-
trast, when there is no patient overlap, partitioning yields the
exact number of matching patients.

With a 20% patient overlap, which is closer to a real-world
scenario, the lower bound with five hospitals was 2210.4 (95%
CI 2202.2 to 2218.6) without partitioning and 7190.4 (95% CI
7167.4 to 7213.4) with partitioning, a 3.25-fold increase. The
upper bound was 10 813.9 (95% CI 10 796.7 to 10 831.1) in
both cases.

Note that with partitioning, the actual number of matching
patients, 10 000, is still 39.1% higher than the lower bound.
Figure 2 shows that exchanging individual patient codes
between hospitals creates a much better estimate. Even with a
sample size of just one patient per hospital pair per partition,
which corresponds to 160 total patient code exchanges, the
actual number of patients was within the 95% CI of the average
estimate of 9959.0 (95% CI 9826.7 to 10 091.4), and the SD of
the 10 estimates (ie, the accuracy) was only 2.1% of the actual
number of patients. Increasing the sample size narrows the CI
and improves the accuracy. The sinusoidal shape in figure 2B is
due to the fact that at some point the sample size becomes
larger than the number of patients in the partition. Figure 1
shows that a sample size of 10 (up to 1600 patient code
exchanges) resulted in a near exact estimate in every combin-
ation of simulation parameters tested.

The prevalence of the medical concept being queried and the
data fact overlap have a relatively minor effect on the ratio
between the lower bounds with or without partitioning.
Though, as the data fact overlap approaches 1, the lower bound
with partitioning approaches the actual number of matching
patients. When the data fact overlap is 0, the upper bound both
with and without partitioning is the same as the actual number
of matching patients.

DISCUSSION
When deciding between a central database and a federated
architecture for systems like SHRINE that return aggregate
counts, issues such as patient privacy, security, scalability, and
performance come to mind. However, what is often overlooked
is the fact that the sum of the counts returned by each hospital
in a federated search does not necessarily equal the count that
would be returned by a central database. If the overlap in the
patient populations of the hospitals is large, then users can
easily be misled by the results if they naively assume they can
simply add the individual hospital counts. Therefore, when cre-
ating a federated search tool that returns aggregate counts, the
bounds should always be presented, so that users can understand
how to interpret the results.

Unfortunately, the bounds might not be very helpful in esti-
mating the actual number of patients that match a query. The
purpose of creating SHRINE was to provide investigators with a
larger population of patients to study. However, adding more
hospitals to a network could have no effect on the lower
bounds, while at the same time increasing the uncertainty of
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Table 1 Results of federated queries of simulated hospital networks

Upper bound,
no partitions

Upper bound
with partitions

Estimate using
sampling

Lower bounds
with partitions

Lower bounds,
no partitions

Patient code
exchanges

Standard error
of estimate

Number of hospitals
1 10000.0 10000.0 10000.0 10000.0 10000.0 0.0 0.00
2 10204.1 10204.1 10000.0 9109.4 5140.6 20.0 29.37
3 10396.1 10396.1 9980.6 8360.5 3524.0 120.0 25.63
4 10583.6 10583.6 9958.2 7728.5 2696.7 480.0 36.58
5 10798.4 10798.4 9995.8 7218.6 2208.3 1493.1 18.78
6 10993.8 10993.8 9987.4 6795.2 1886.0 3520.6 10.85
7 11198.0 11198.0 10003.1 6459.1 1655.9 6586.9 17.16
8 11421.8 11421.8 10011.0 6267.3 1473.0 10321.8 13.43
9 11604.0 11604.0 10010.3 6125.0 1343.2 14782.3 5.69
10 11798.4 11798.3 10001.7 6116.0 1231.2 19338.2 3.76

Patient overlap
0 10000.0 10000.0 10000.0 10000.0 2051.7 0.0 0.00
0.1 10410.0 10410.0 9987.5 8487.7 2132.4 938.5 13.01
0.2 10803.7 10803.7 10005.2 7218.8 2211.6 1500.7 15.93
0.3 11218.0 11218.0 10015.5 6173.4 2295.2 1600.0 24.69
0.4 11615.6 11615.6 10037.6 5370.4 2383.5 1600.0 23.64
0.5 11999.9 11999.9 9994.1 4712.9 2460.1 1600.0 29.93
0.6 12411.7 12411.7 10031.7 4191.3 2546.6 1600.0 48.51
0.7 12817.5 12817.5 10047.7 3786.5 2619.0 1600.0 62.22
0.8 13218.7 13218.7 9964.4 3437.0 2689.7 1593.4 69.76
0.9 13600.6 13600.6 10007.4 3152.6 2788.8 1438.5 109.42
1 13999.7 13999.7 10005.3 2857.3 2857.3 200.0 242.34

Concept prevalence
1.00E-05 10.8 10.8 10.0 9.8 3.7 8.3 0.00
0.0001 109.2 109.2 100.0 86.0 26.7 93.1 0.00
0.001 1080.4 1080.4 1002.2 756.6 234.1 685.0 0.98
0.01 10812.4 10812.4 10016.0 7205.1 2218.2 1502.5 30.74
0.1 108008.9 108008.9 100105.1 70973.0 21757.0 1600.0 180.61
0.2 215995.9 215995.9 200228.2 141765.1 43429.0 1600.0 437.96
0.3 323976.4 323976.4 299408.1 212319.8 65081.9 1600.0 860.11
0.5 540102.6 540102.6 500994.3 353751.6 108317.2 1600.0 931.12
0.75 810014.8 809921.4 750978.3 530188.1 162422.4 1600.0 1056.48
1 1080088.3 1000000.0 987211.5 706634.7 216375.9 1600.0 1623.11

Data fact overlap
0 10000.0 10000.0 10000.0 6877.6 2054.4 1443.7 0.00
0.1 10797.5 10797.5 9992.7 7209.1 2208.8 1481.7 16.55
0.2 11606.8 11606.8 10000.2 7531.0 2383.0 1493.4 41.70
0.3 12403.7 12403.7 10050.9 7853.6 2542.8 1526.0 32.37
0.4 13182.4 13182.4 10003.8 8158.2 2696.1 1565.2 27.12
0.5 14059.4 14059.4 10051.7 8509.4 2866.8 1568.8 39.38
0.6 14775.1 14775.1 9956.7 8800.9 3007.7 1569.6 24.99
0.7 15568.8 15568.8 9994.0 9122.6 3175.7 1573.2 31.30
0.8 16363.4 16363.4 9997.6 9422.6 3328.9 1579.6 36.47
0.9 17262.9 17262.9 9991.0 9738.8 3504.7 1600.0 14.61
1 18015.8 18015.8 10000.0 10000.0 3677.1 1594.0 0.00

Sample size
1 10813.9 10813.9 9959.0 7190.4 2210.4 160.0 67.53
2 10793.6 10793.6 9983.0 7207.6 2221.4 316.8 29.20
3 10799.6 10799.6 10004.5 7211.7 2206.7 473.2 49.73
5 10792.7 10792.7 10019.9 7210.1 2221.5 788.4 21.68
10 10799.7 10799.7 10033.0 7201.4 2208.3 1482.8 15.42
20 10794.9 10794.9 9983.9 7209.7 2206.6 2643.1 14.37
50 10803.6 10803.6 10002.2 7206.1 2210.5 5085.5 5.50
100 10804.5 10804.5 10004.7 7194.4 2212.1 6791.9 3.73
500 10796.1 10796.1 10000.0 7212.4 2209.8 9274.4 0.00
1000000 10797.2 10797.2 10000.0 7198.9 2208.8 9286.0 0.00

Each value represents the mean of 10 simulations.
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query results. If investigators assume that there is no patient
overlap among the hospitals, then the upper bound can be
treated as the actual number of matching patients. This might be
valid in certain cases; however, in others, such as the SHRINE
network we created in Boston, where patients are routinely seen
by more than one hospital, that is a much more difficult
assumption to make.

Partitioning can increase the lower bounds of queries by
several fold, making SHRINE a much more useful tool. Except
for the initial process of identifying which patients receive care
from multiple hospitals, partitioning does not change the basic
technical architecture of SHRINE, where hospitals retain
control over their local databases and only have to return aggre-
gate counts. It might also be relatively easy to implement and
have little impact on performance. This is because, to date, the
local nodes in SHRINE networks have been implemented using
an open source software platform, Informatics for Integrating
Biology and the Bedside (i2b2).18 The i2b2 software already
includes the ability to partition query results by demographic
variables such as gender and race. i2b2 can consider the code
corresponding to the list of hospitals that treat a patient as just
another demographic variable.

Sampling dramatically reduces the uncertainty of federated
queries, and in most cases it gives a result almost the same as
the actual number of patients that match Type 1 queries. This is
true even when the number of patient code exchanges is small.
However, it makes the SHRINE architecture much more com-
plicated, and it requires hospitals to share clinical data about
individual patients. Privacy and policy concerns can be partially
reduced by the fact that data about individual patients only have
to be shared between hospitals that both treat the patient.
However, some institutions might consider that simply revealing
to one hospital that its patients are also treated at another hos-
pital is an unconsented information disclosure.

Once each hospital has determined which of its patients
match a Type 1 query, partitioning and sampling is just one way
of estimating the total number of distinct patients (ie, the car-
dinality) in these lists. Several probabilistic algorithms, such as
probabilistic counting, LogLog counting, and adaptive counting,

have been described in the literature and are frequently used in
applications such as database query optimization and network
traffic analysis.19–21 In this scenario, instead of sharing individ-
ual patient codes, these algorithms would share m new codes
from each hospital. These new codes are generated from hashes
of the patient codes such that the probability of a code having a
particular value can be used to estimate the number of distinct
patients. The average of the m estimates gives an overall esti-
mate with an accuracy on the order of 1/sqrt(m).

Probabilistic counting, which produces one of the best esti-
mates, has a 9.7% accuracy for m=64.19 With five hospitals,
this requires sharing 320 values. In contrast, partitioning with
sampling achieved 2.1% accuracy using only 160 patient code
exchanges (plus the overhead of each hospital sharing the aggre-
gate counts of the partitions). However, there are differences in
the amount of processing and bandwidth required by each algo-
rithm. Therefore, depending on the actual network, a probabil-
istic algorithm might perform better than partitioning and
sampling for a desired accuracy. Probabilistic algorithms also
have the benefit in that the shared codes are each derived from
information about multiple patients. So, the chance that one
hospital can learn something about a particular patient from
another hospital is very small. This might address privacy and
policy concerns about sampling individual patient codes and dis-
closing at which hospitals patients receive care.

A limitation in the simulations we ran is that the hospitals
were the same size, with patients and data facts randomly dis-
tributed among them. This is the worst-case scenario for lower
bound calculations since one hospital’s counts do not dominate
the others. Also, investigators often have a sense of what the
approximate patient overlap is between hospitals and can use
this to gauge where the actual number of patients lies between
the lower and upper bounds.

In this study, patients were partitioned according to the combi-
nations of hospitals where they receive care. While less ideal, there
are other ways to partition patients that do not require exchanging
data about individual patients. Consider a two-hospital network,
where H1 treats children and H2 treats mostly adult patients. The
knowledge that the hospitals treat different age groups can be used

Figure 1 Simulated hospital networks, varied by (A) number of hospitals, (B) patient overlap, (C) concept prevalence, and (D) data fact overlap.
Vertical bars on the estimate curves represent the 95% CIs. The CIs on the other curves are negligible in size. This figure is only reproduced in
colour in the online version.
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to form a type of partition. For example, we previously saw that if
H1 has 1000 patients with diabetes and H2 has 800, then the total
number of patients with diabetes has bounds of (1000, 1800)
without partitioning. We can divide this into the sum of two separ-
ate queries: (1) patients with diabetes who are younger than
18 years; and (2) patients with diabetes who are 18 years old or
older (including patients who began at H1 that have now transi-
tioned to H2). If H1 returned 600 and 400 for the two queries,
respectively, and H2 returned 100 and 700, then the bounds are
(600, 700) and (700, 1100) for the individual queries and (1300,
1800) for their sum.

CONCLUSION
SHRINE and other federated query tools have potential to
expand greatly the number of patients available for clinical
research. However, uncertainty in the overlap of patient popula-
tions across hospitals limits the effectiveness of these tools. In
this study we presented a technique that reduces this uncertainty
while retaining an aggregate federated architecture.
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Figure 2 Estimating the actual
number of matching patients in a
five-hospital network using sampling.
The actual number of patients is
10 000. Vertical bars represent the
95% CIs. (A) The estimated number of
patients using different sample sizes.
(B) The total number of patient code
exchanges.
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