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ABSTRACT
Objective Incorporating accurate life expectancy
predictions into clinical decision making could improve
quality and decrease costs, but few providers do this. We
sought to use predictive data mining and high
dimensional analytics of electronic health record (EHR)
data to develop a highly accurate and clinically
actionable 5 year life expectancy index.
Materials and methods We developed the index
using EHR data for 7463 patients ≥50 years old with
≥1 visit(s) in 2003 to a large, academic, multispecialty
group practice. We extracted 980 attributes from the
EHRs of the practices and affiliated hospitals. Correlation
feature selection with greedy stepwise search was used
to find the attribute subset with best average merit.
Rotation forest ensembling with alternating decision tree
as underlying classifier was used to predict 5 year
mortality. Model performance was compared with the
modified Charlson Comorbidity Index and the Walter life
expectancy method.
Results Within 5 years of the last visit in 2003, 838
(11%) patients had died. The final model included 24
attributes: two demographic (age, sex), 10 comorbidity
(eg, cardiovascular disease), one vital sign (mean
diastolic blood pressure), two medications (loop diuretic
use, digoxin use), six laboratory (eg, mean albumin), and
three healthcare utilization (eg, the number of
hospitalizations 1 year prior to the last visit in 2003).
The index showed very good discrimination (c-statistic
0.86) and outperformed comparators.
Conclusions The EHR based index successfully
distinguished adults ≥50 years old with life expectancy
>5 years from those with life expectancy ≤5 years.
This information could be used clinically to optimize
preventive service use (eg, cancer screening in the
elderly).

BACKGROUND AND SIGNIFICANCE
Accurate life expectancy prediction is essential for
clinical decision making—it helps physicians weigh
the benefits and risks of alternative care strategies
and identify the best option for each patient.
Failure to consider life expectancy leads to poor
quality care and wastes healthcare resources. For
example, patients with life expectancy <5 years
often receive cancer screening even though its
potential harms outweigh any benefits in this popu-
lation.1–6

Although incorporating accurate life expectancy
predictions into clinical decision making could
improve quality and decrease costs, few clinicians
actually do this—perhaps because existing life

expectancy indices are inaccurate and/or burden-
some. Indices can be inaccurate because they use
imperfect claims data.7 More accurate indices
often include additional clinical information (eg,
functional status) but its collection is burdensome
—providers do not routinely assess things like func-
tional status.8 9

Using comprehensive electronic health record
(EHR) data for life expectancy prediction could
address the limitations of existing indices. The
EHR contains rich clinical data traditionally absent
from claims (eg, vital signs, laboratory results) that
could improve accuracy without increasing provider
burden.10–13 However, analyzing the large amount
of information within a comprehensive EHR is
challenging.
Predictive data mining and high dimensional ana-

lytics can generate actionable insights based on
massive and high dimensional data, such as that
within a comprehensive EHR. For example, many
companies (eg, Amazon, Netflix, Google) use pre-
dictive mining and analytics to generate individua-
lized recommendations and personalized news on a
massive scale—improving both sales and customer
satisfaction.14–18 In healthcare, predictive data
mining has been explored as a means to improve
treatment of infections and cancer, identify adverse
drug events, measure quality of asthma care, and
predict cancer outcomes.19–24

OBJECTIVE
Our goals were to: (1) present a set of approaches
for predictive mining and analysis of high dimen-
sional EHR data, (2) develop a highly accurate non-
burdensome 5 year life expectancy index for outpa-
tients aged 50 years and older, and (3) compare the
new index with other better known prognostic
indices (a modified Charlson Comorbidity Index25

and a modified Walter Life Expectancy Index26).

METHODS
Patient population
EHR data were extracted for patients ≥50 years old
with ≥1 visit(s) to the Northwestern Medical
Faculty Foundation (NMFF) during 2003. NMFF
is an urban, academic, multispecialty group practice
with EpicCare EHR. Many NMFF patients receive
hospital care at Northwestern Memorial Hospital,
an urban academic hospital with Cerner EHR.

Ascertainment of 5 year survival
Outcome was death within 5 years of the last out-
patient encounter in 2003 (ie, the index visit).
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This outcome was selected because decisions about preventive
service use (eg, cancer screening, aggressive glucose control)
should include consideration of 5 year life expectancy.3 6 26

Vital status was determined using the National Center for
Health Statistics National Death Index (NDI) for the years
2003–2008. All patients were linked to the NDI using extracted
EHR data. The probabilistic scoring approach with NDI recom-
mended cut-off points was used to identify true matches.27

Predictive attributes
We extracted 980 distinct predictive attributes for 7463
patients. These attributes included all a priori plausible predic-
tors of mortality available within the EHR, including sociode-
mographic data, comorbidities, vital signs, laboratory results,
medications, and healthcare utilization (see online supplemen-
tary appendix).

Sociodemographic data
We extracted 11 sociodemographic attributes from Epic: age,
sex, marital status, race/ethnicity (white, black, Hispanic, Asian,
other, declined, or unknown), and socioeconomic status (zip
code matched Agency for Healthcare Research and Quality
Index of Socioeconomic Status and its components using 1990
census data).28 To protect patient privacy, all patients ≥90 years
old (n=53) were considered to be 90.

Comorbidities
We extracted 117 comorbidity attributes from Epic. International
Classification of Diseases-9 (ICD-9) codes, current procedural
terminology codes, or substance use statuses were grouped to
reflect specific comorbidity attributes (see online supplementary
etable 1). Codes were extracted from encounter diagnoses in the
year prior to the index visit, and the past medical history, past
surgical history, social history, and problem list as of the index
visit. Comorbidity attributes included individual diagnoses (eg,
coronary artery disease, cerebrovascular disease, peripheral arter-
ial disease (PAD)), groups of related diagnoses (eg, any cardiovas-
cular disease included coronary artery disease, cerebrovascular
disease, or PAD), and a count of the comorbidities identified. An
additional 26 attributes were counts of encounters in the year
prior to the index visit for which the primary diagnosis was a
comorbidity for which frequent exacerbations predict life expect-
ancy (eg, heart failure) or for which identification of an active (ie,
non-historical) diagnosis might be important (eg, cancer).

Vital signs
We extracted 20 vital sign attributes from Epic including the
mean, SD, median, high, and low heart rate, systolic blood pres-
sure, diastolic blood pressure, and pulse pressure recorded in
the year prior to the index visit.

Medications
We extracted 664 possible medication attributes from Epic.
Medications were classified into Veterans Administration Classes
using National Drug Classification Codes.29 Codes were
extracted from the medication list as of the index visit (binary
and count attributes for each medication class) or from medica-
tions ordered in the year prior to the index visit (count attri-
butes). Additional medication attributes included counts of
antihypertensive medications, diabetic medications, and antipla-
telet/anticoagulant medications and a count of total medications
prescribed (see online supplementary etable 2).

Laboratory results
We extracted 120 laboratory attributes from Epic, including
mean, median, SD, high, and low for 24 laboratory tests (eg,
creatinine, albumin) recorded in the year prior to the index visit
(see online supplementary etable 3).

Healthcare utilization
We extracted 44 healthcare utilization attributes from Cerner
and six from Epic. Utilization attributes extracted from Cerner
included discharge status (eg, to home, skilled nursing facility)
and counts of hospital admissions, emergency department visits,
and home health referrals either ≤1 or 1–2 years prior to the
index visit. Utilization attributes extracted from Epic included
counts of visits to a primary care provider, any general medicine
provider, and any NMFF provider either ≤1 or 1–2 years prior
to the index visit.

Feature selection
Feature selection aims to reduce the number of attributes while
retaining the predictive power of the original attribute set. We
analyzed our entire data set using Correlation Feature Selection
(CFS) to identify a subset of features highly correlated with the
outcome (dichotomous 5-year mortality) and weakly correlated
amongst themselves.30 CFS was used in conjunction with a
greedy stepwise search to find subsets with best average merit
(see online supplementary eMethods). CFS identified a subset of
52 features, which was manually reviewed to eliminate: (1) 12
features with low face validity (eg, milk of magnesia use highly
predictive of mortality—the two patients who received it both
died), (2) 5 redundant features (eg, PAD already included in
‘any cardiovascular disease’), and (3) 3 features with potentially
problematic reliability (eg, very low/high vital signs more suscep-
tible to random error because of manual data entry). Manual
reduction reduced the subset to 32 features. CFS was again
applied to identify a subset of 23 features, to which sex was
added for a final set of 24 features. Their relative predictive
power was assessed using the information gain metric, which
evaluates the worth of an attribute by measuring the informa-
tion gain with respect to the outcome status.

Comparison prognostic indices
We calculated a modified Charlson Comorbidity Index (CCI).7

We extracted demographic data and ICD-9 codes from Epic
past medical history, past surgical history, and problem list as of
the index visit and encounter diagnosis 1 year prior to the index
visit to calculate an outpatient CCI adjusted for age, sex, and
race/ethnicity (white, black, Hispanic, Asian, other, declined, or
unknown). Although this index typically applies only to hospita-
lized patients, investigators have previously used outpatient
Charlson listed diagnoses and inpatient diagnoses to compute
the score.25

We also calculated predicted life expectancy using a modified
Walter method.26 We used comorbid diagnosis counts as a sur-
rogate for provider classification into mortality risk groups (ie,
highest quartile of comorbid diagnoses is equivalent to the sick
group, lowest quartile is equivalent to the healthy group).31 Life
expectancy was calculated for each group using age–sex
matched life tables from 2003—the sick group is likely to live
only as long as 25% of their age–sex matched cohort, the
healthy group is likely to live as long as 75% of their age–sex
matched cohort, and the intermediate group is likely to live as
long as 50% of their age–sex matched cohort.
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Statistical analysis
We used the rotation forest ensembling technique with alternat-
ing decision tree as the underlying classifier to predict 5 year
mortality. The rotation forest ensembling technique is presented
her because it was superior to models generated using other
techniques (eg, logistic regression, support vector machines,
neural networks, naïve Bayes, random forest, and Bayesian net-
works) (see online supplementary eMethods) Tenfold cross val-
idation was used to evaluate the model in order to ensure that
the model was tested on data that it had not seen while training,
thus minimizing the chance of over fitting (see online supple-
mentary eMethods ).

The discriminatory power of the predictive models was assessed
using c statistics and binary classification metrics: sensitivity
(recall), specificity, positive predictive value (precision), negative
predictive value, the percentage of correct predictions, and the F
measure (the harmonic mean of precision and recall). We used risk
categories of <50% and ≥50% because this is equivalent to a
median life expectancy of 5 years—a life expectancy at which
point consideration of the benefits and risks of continued cancer
screening is particularly important. Reclassification tables and the

net reclassification improvement was used to compare the
Ensemble Index to the comparison indices.32

To analyze calibration, the mean predicted and the observed
risk of death within 5 years were compared across deciles of pre-
dicted risk. The Hosmer–Lemeshow χ2 test was used to deter-
mine if the difference between predicted and actual risks was
statistically significant. Because our large sample had a relatively
low incidence of death, we also compared predicted and
observed risk of death within 5 years across risk deciles (<10%,
10%≤×<20%, 20%≤×<30%, etc). Statistical analysis was per-
formed using R V.2.11.1, WEKAV.3.6.3, ROC Web-calculator,33

and STATA/SE V.10.1. All predictive modeling was done using
WEKA implementations of various techniques with default para-
meters, unless otherwise stated. This study was approved by the
institutional review board at Northwestern University.

RESULTS
Patient characteristics
We identified 7463 patients aged 50 years or greater with one
or more visits to NMFF in 2003. Selected characteristics are dis-
played in table 1. Mean age of the participants was 62 years.

Table 1 Selected characteristics of the study patients at the index visit in 2003

Full cohort (n=7463) Dead at 5 years (n=838) Alive at 5 years (n=6625)

Demographics
Age (years) (mean±SD) 62±10 70±11 61±9
Male sex (n (%)) 2993 (40) 397 (47) 2596 (39)
Race/ethnicity (n (%))

White 3838 (51) 411 (49) 3427 (52)
Black 1772 (24) 273 (33) 1499 (23)
Hispanic 359 (5) 40 (5) 319 (5)
Asian 230 (3) 14 (2) 216 (3)
Other 548 (7) 65 (8) 483 (7)
Unknown/declined 716 (1) 35 (4) 681(10)

Diagnoses (n (%))
Any vascular disease 1233 (17) 926 (14) 307 (37)
Heart failure 352 (5) 140 (17) 212 (3)

Hypertension 3880 (52) 534 (64) 3346 (51)
Tobacco use 841 (11) 141 (17) 700 (11)
Chronic kidney disease 248 (3) 106 (13) 142 (2)
Diabetes mellitus 1281 (17) 254 (30) 1027 (16)
Dementia 1128 (2) 58 (7) 60 (1)
HIV 15 (<1) 4 (<1) 11 (<1)
Anemia 633 (8) 167 (20) 466 (7)
Any cancer 1133 (15) 244 (29) 889 (13)
Any liver disease 181 (2) 43 (5) 138 (2)
Comorbidity count (mean±SD) 2.5±2.0 4.1±2.3 2.3±1.8

Vital signs (mean±SD)
Systolic blood pressure (mm Hg) 131±16 134±19 131±16
Diastolic blood pressure (mm Hg) 79±9 76±10 80±9

Laboratory results
Albumin (g/dl) 3.7±0.4 3.3±0.5 3.8±0.4
Creatinine (mg/dl) 1.1±0.8 1.5±1.6 1.0±0.6

Outpatient medications (n (%))
Digoxin prescription 197 (3) 81 (10) 116 (2)
Loop diuretic prescription 576 (8) 219 (26) 357 (5)

Healthcare utilization (mean±SD)
Primary care provider visits 0–1 years prior to index visit 1.2±1.8 1.1±2.3 1.2±1.7
Hospitalizations 0–1 years prior to index visit 0.3±1.6 1.0±1.6 0.2±0.6
Hospitalizations 1–2 years prior to index visit 0.2±0.7 0.7±1.3 0.1±0.5
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Forty per cent were men and 51% were white. The most
common diagnoses were hypertension (52%), any cardiovascu-
lar disease (17%), diabetes (17%), and cancer (15%).

Within 5 years of their index visit, 838 (11%) patients died
(table 1). These patients were older (mean age 70 vs 61 years),
more likely to be black (33% vs 23%), had more comorbid diag-
noses (4.1±2.3 vs 2.3±1.8), and were hospitalized more often
in the 2 years prior to their index visit. Patients who died had
lower albumin (3.3 vs 3.8) and a higher creatinine (1.5 vs 1.0).

Feature selection results
The final model included age, sex, 10 comorbidity attributes
(eg, cardiovascular disease, chronic kidney disease), mean dia-
stolic blood pressure, loop diuretic use, digoxin use, six labora-
tory attributes (eg, mean albumin, mean creatinine), number of
visits to primary care provider in the year prior to the index
visit, and number of hospitalizations 0–1 and 1–2 years prior to
the index visit. Those attributes with the greatest predictive
power (information gain) were age, comorbidity count, hospita-
lizations 1 year prior to the index visit, the highest blood urea
nitrogen in the year prior to the index visit, and the lowest
calcium in the year prior to the index visit (figure 1).

Ensemble Index results
Model discrimination was very good (c statistic 0.86, 95% CI
0.85 to 0.87). Using a predicted 5 year mortality ≥50% as a
cut-off, the sensitivity of the Ensemble Index for predicting 5
year mortality was 31%, specificity was 98%, and the F measure
was 41% (table 2). The difference between predicted and
observed mortality was <3% across all deciles of risk. The
Hosmer–Lemeshow statistic was 18.7 (p=0.02) for deciles of
risk and 12.2 (p=0.20) for risk deciles (table 3).

Comparison with other prognostic indices
Ensemble Index discrimination was significantly better than
both the modified Charlson Index (c statistic 0.81, 9% CI 0.79

to 0.83; p value for comparison <0.001) and the Walter
method (c statistic 0.78, 95% CI 0.77 to 0.80; p value for com-
parison <0.001) (table 2, figure 2). Using predicted 5 year mor-
tality ≥50% as a cut-off, the Ensemble Index outperformed
both the Charlson model and the Walter model on all perform-
ance measures except specificity (98% Ensemble vs 99%
Charlson) (table 2).

Compared with the modified Charlson Index, the Ensemble
Index reclassified 181 patients as high risk that ultimately died
within 5 years. Compared with the Walter method, the
Ensemble Index reclassified 144 patients as high risk that ultim-
ately died within 5 years. Net reclassification improvement for
the Ensemble Index over the modified Charlson Index was
16.8% (p<0.001) and over the modified Walter was 8.8%
(p<0.001) (table 2).

DISCUSSION
We developed an index that successfully distinguishes between
outpatients ≥50 years old with life expectancy<5 years from
those with a longer life expectancy. To address the limitations of
existing prognostic indices, we used predictive data mining and
high dimensional analysis to generate meaningful predictions
from the wealth of clinical data in a comprehensive EHR.

Our index is highly discriminative—the c statistic (0.86, 95%
CI 0.85 to 0.87) is similar to or better than the best models in
the existing literature.8 9 Our index is highly discriminative
without being burdensome—using existing EHR data eliminates
the need for providers to collect additional information (eg,
functional status or activities of daily living). Clinicians should
feel comfortable using this highly discriminative, well calibrated,
non-burdensome prognostic index in clinical decision making.

Ideally, patients with a life expectancy long enough to benefit
from service use should receive the service, while those with
limited life expectancies should be spared potentially harmful
services that are unlikely to improve outcomes. For example,
some cancer screening guidelines recommend against screening

Figure 1 Relative information gain of features included in the final Ensemble Index. We used multiple feature selection techniques and manual
review to arrive at the final set.
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patients with a life expectancy <5 years because the potential
harms of screening are immediate while the benefits are not rea-
lized until 5 years later.3 34 Our index could be used to optimize
cancer screening practices—differentiating those patients for
whom cancer screening is likely to improve outcomes (life
expectancy >5 years) from those in whom cancer screening is
unlikely to improve outcomes and may cause harm (life expect-
ancy <5 years). In our study, over half of all patients ≥75 years
old had a predicted 5 year mortality <50% and were likely to
benefit from continued screening, despite their advanced age.

For example, an 81-year-old woman with cardiovascular
disease, a mean diastolic blood pressure of 79 mm Hg, unre-
markable laboratory studies, and no hospitalizations has a pre-
dicted 5 year mortality <10% and is likely to benefit from
continued screening despite her advanced age. On the other
hand, approximately 5% of patients <75 years old had a pre-
dicted 5 year mortality of ≥50% and were likely to be harmed
by continued screening. For example, a 63-year-old woman
with cardiovascular disease, chronic kidney disease, diastolic
blood pressure 75 mm Hg, low albumin, high blood urea

Table 3 Calibration of the Ensemble Index: predicted and observed 5 year mortality by risk groups and each group’s contribution to the
Hosmer–Lemeshow statistic

n n≥75 years old
Observed 5 year
mortality (%)

Predicted 5 year
mortality (%)

Contribution to Hosmer–
Lemeshow statistic

Decile of risk* (5 year mortality predicted risk range)
1 (1.1–1.8%) 741 0 0.8 1.6 3.1
2 (1.9–2.2%) 723 0 1.4 2.0 1.5
3 (2.3–2.6%) 781 0 1.4 2.5 3.7
4 (2.7–3.0%) 790 0 2.0 2.8 1.9
5 (3.1–3.8%) 738 2 4.2 3.4 1.4
6 (3.9–5.3%) 733 22 4.8 4.5 0.1

7 (5.4–8.4%) 719 63 6.7 6.7 0.0
8 (8.5–15.3%) 749 189 14.0 11.3 5.6
9 (15.4–34.3%) 741 317 24.7 23.6 0.5
10 (34.4–94.2%) 748 374 52.5 54.4 1.0
Total 7463 967 11.2 11.3 18.7 (p=0.02)

5 year mortality predicted risk deciles
<10% 5471 145 3.3 3.6 1.3
10≤×<20% 738 232 18.2 14.0 9.3
20≤×<30% 372 165 24.2 24.4 0.0
30≤×<40% 264 98 30.7 34.6 1.1
40≤×<50% 210 100 44.3 44.8 0.0
50≤×<60% 164 75 55.5 54.8 0.0
60≤×<70% 121 65 63.7 64.6 0.0
70≤×<80% 80 53 68.8 74.7 0.4
80≤×<90% 36 28 77.8 84.4 0.1
≥90% 7 6 85.7 92.5 0.0
Total 7463 967 11.2 11.3 12.2 (p=0.20)

*Number of subjects in each decile of risk is not equivalent due to ties. Predicted risks were rounded to the first decimal place.

Table 2 Performance of the Ensemble Index, Charlson Comorbidity Index, and Walter life expectancy method for predicting 5 year survival, and
reclassifications by the Ensemble Index

Evaluation metric Walter life expectancy method Charlson Comorbidity Index Ensemble Index

C statistic (95% CI) 0.78(0.77 to 0.80)* 0.81 (0.79 to 0.83)* 0.86 (0.85 to 0.87)
Sensitivity (recall) (%) 22.8 13.1 30.7
Specificity (%) 96.8 98.5 97.7
Positive predictive value (precision) (%) 47.0 52.6 63.0
Negative predictive value (%) 90.8 90.0 91.8
F measure (%) 30.7 21.0 41.3
Correct predictions (%) 88.4 88.9 90.2
No of individuals reclassified by the Ensemble Index
Events moved to life expectancy <5 years 144 181 Reference
Events moved to life expectancy >5 years 78 34 Reference
Non-events moved to life expectancy <5 years 99 110 Reference
Non-events moved to life expectancy >5 years 163 59 Reference

Net reclassification improvement (%) 8.8† 16.8† –

*p<0.001 for comparison with Ensemble Index; †p<0.001.
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nitrogen, on a loop diuretic, and one hospitalization in the year
prior to her last visit has a predicted 5 year mortality of 67%
and is likely to experience only the harms of continued screen-
ing despite her relative youth. Although individual patients and
providers may value this predictive information differently,
making the information available could facilitate informed deci-
sion making and improve quality care.

Our index compares favorably with existing life expectancy
indices. In this study, the Ensemble Index outperformed both
the modified Charlson Index and the modified Walter life
expectancy method. In order to automate the Walter method,
we removed provider input. Although this may have marginally
worsened its predictive ability, this change is unlikely to explain
the poor discrimination of the method relative to the Ensemble
Index. Our index is more discriminative and less burdensome
than similar indices reported in the literature—Lee et al8 and
Schonberg et al9 used survey data (including functional status
measures) to predict 4 year (Lee) and 5 year (Schonberg) life
expectancy with c statistics of 0.84 and 0.75, respectively.

Limitations
Our index has limitations. First, our index lacks functional
status information. While our index’s c statistic was similar to
that of indices including functional status measures, adding this
information would likely have further improved discrimination
of the Ensemble Index. It is now possible to efficiently collect
and record this information in the EHR using tablet compu-
ters.35 Second, our index does not include rare conditions (eg,
amyotrophic lateral sclerosis) that influence life expectancy—
clinicians must exercise their own judgment when caring for
patients with these conditions. Third, the Hosmer–Lemeshow
statistic was statistically significant (18.69, p=0.02). Although
we believe that calibration and discrimination are equally
important for a mortality prediction model such as ours, the sig-
nificant Hosmer–Lemeshow statistic does not necessarily mean
that the index is not useful—even well calibrated models will
often have significant Hosmer–Lemeshow statistics when the
sample size is large.36 The absence of any systematic variation
between predicted and observed risk, and the difference in
observed and expected risk of less than 3% across all deciles
both suggest that the Ensemble Index was well calibrated.
Fourth, the index had low sensitivity (31%). Although this may

limit its potential impact, any increases in sensitivity would
result in undesirable decreases in specificity. Finally, our index
was developed using patient data from a single multispecialty
practice and its affiliated hospital. As such, the utility of our
index in other settings is unknown—it should be tested in other
populations, clinics, and EHRs to evaluate generalizability.

Healthcare organizations should also consider using predict-
ive data mining and high dimensional analytics on their own
data—generating life expectancy indices specific to their patient
population, provider EHR documentation practices, and avail-
able data. As EHR adoption increases, healthcare organizations
grow, genetic testing increases, and medical knowledge expands,
the availability of highly detailed, patient specific, potentially
predictive information will increase. For this information to
improve patient care it must be incorporated into clinical deci-
sion making, but this likely will be difficult for already burdened
providers. Predictive data mining and high dimensional analytics
use all available information to provide healthcare organizations
with actionable insights that can improve the quality of patient
care and decrease costs. Life expectancy indices developed using
this methodology are likely to be less expensive than more gen-
eralizable indices developed using prospectively collected survey
data (eg, Health and Retirement Study). Furthermore, indices
developed using data mining and analytics can be automated
and their predictions integrated into the EHR—driving clinical
decision support algorithms, providing prognostic information
at the point of care, or measuring the quality of care.

CONCLUSION
In summary, we successfully used predictive data mining and
high dimensional analysis of EHR data to develop an highly dis-
criminative, non-burdensome, 5 year life expectancy index for
outpatients aged 50 years old or older using computer intensive
analysis of EHR data. Our index had very good discrimination,
was well calibrated, and compared favorably to existing indices.
The new index could improve clinical decision making by opti-
mizing use of preventive services like cancer screening—target-
ing screening to those patients most likely to benefit.
Furthermore, similar application of our methodology could use
increasingly available EHR data to predict almost anything of
interest (eg, readmissions, total costs). These predictive models
could ultimately guide interventions (eg, quality measurement,
clinical decision support) that improve clinical decision making,
improve quality, and decrease costs.
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