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ABSTRACT

Objectives To present a system that uses knowledge
stored in a medical ontology to automate the
development of diagnostic decision support systems. To
illustrate its function through an example focused on the
development of a tool for diagnosing pneumonia.
Materials and methods We developed a system that
automates the creation of diagnostic decision-support
applications. It relies on a medical ontology to direct

the acquisition of clinic data from a clinical data warehouse
and uses an automated analytic system to apply a sequence
of machine learning algorithms that create applications for
diagnostic screening. We refer to this system as the
ontology-driven diagnostic modeling system (ODMS). We
tested this system using samples of patient data collected in
Salt Lake City emergency rooms and stored in
Intermountain Healthcare's enterprise data warehouse.
Results The system was used in the preliminary
development steps of a tool to identify patients with
pneumonia in the emergency department. This tool was
compared with a manually created diagnostic tool derived
from a curated dataset. The manually created tool is
currently in clinical use. The automatically created tool had
an area under the receiver operating characteristic curve of
0.920 (95% C1 0.916 to 0.924), compared with 0.944
(95% (1 0.942 to 0.947) for the manually created tool.
Discussion Initial testing of the ODMS demonstrates
promising accuracy for the highly automated results and
illustrates the route to model improvement.

Conclusions The use of medical knowledge, embedded
in ontologies, to direct the initial development of diagnostic
computing systems appears feasible.

INTRODUCTION

Modern medicine has attained a degree of com-
plexity that limits human ability to deliver care con-
sistently and effectively. At the same time, the
growth of electronic health records (EHRs) has
allowed clinicians increased access to the large
amounts of data collected during the care of each
patient. This combination has resulted in a degree
of information overload that challenges the clini-
cian’s ability to focus on relevant information, to
align this information with standards of clinical
practice, and to use this combination of clinical
data and medical knowledge to deliver care reflect-
ing the best available medical evidence. The result
echoes the observation of David Eddy' in 1990,
‘... all confirm what would be expected from
common sense: the complexity of modern medi-
cine exceeds the inherent limitations of the unaided
human mind.’

A side effect of the population of EHRs with
patient data is the creation of large data warehouses
containing accumulated clinical data that represent
the care of hundreds of thousands of patients.

Analysis of these massive data collections can
provide insight into the character of disease and
can indicate which among the available diagnostic
and therapeutic approaches is most likely to yield
desired outcomes. Moreover, this is exactly the
information needed to support the creation of
computer-based clinical decision support (CDS)
tools, which can change the information dynamic
at the bedside.

In order to use this information to develop CDS
applications, an organization must marshal the
resources necessary to extract data from a data
warehouse, analyze it, and construct from it deci-
sion support tools that can contribute to care. This
typically requires the collaboration of clinicians,
database analysts, statisticians/data miners, and soft-
ware developers. This large resource commitment
is a key impediment to the broad use of the data
stored in clinical data warehouses to develop deci-
sion support applications.

In this paper, we describe a data analysis environ-
ment that is part of an effort to address these chal-
lenges. This system is designed to demonstrate ways in
which ontologies coupled with specialized programs
for data analysis can reduce the resource requirements
needed to develop diagnostic CDS applications. We
called this environment ‘the ontology-driven diagnos-
tic modeling system’ (ODMS). Below, we provide a
brief description of the ODMS. We then give an
example of its intended use through the description
of a pilot project in which the system is used to
develop a diagnostic model for screening emergency
department patients and identify those patients with
pneumonia. We compare the system produced with
an older manually created system that is currently in
production.

MATERIALS AND METHODS

The ODMS is an experimental system whose goal
is to create an environment that combines a
medical ontology with an enterprise data ware-
house (EDW) to support the development of diag-
nostic modules for use in screening for disease and
other clinical conditions. The ODMS has five key
components:

1. An ontology designed to represent the class
hierarchies for essential medical concepts
(diseases/conditions, therapies, clinical obser-
vations, outcomes, and procedures) and to
capture the relationships between these
medical concepts.

2. Tools for extracting collections of concepts
from the ontologies that are relevant to a spe-
cific clinical question.

3. A mechanism for retrieving the data repre-
sented by these concepts from a data ware-
house. While many of these data are stored in
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the EDW as structured and coded data objects, some of
the data are present only in free-text, clinical documents.
For these, we demonstrate the use of natural language pro-
cessing (NLP) tools to extract the necessary data.

4. An ‘analytic workbench’ which processes the data
extracted from the EDW and constructs diagnostic screen-
ing models.

5. The EDW itself. To better support research and quality

initiatives, we are developing a specialized abstract of the
EDW designed to support queries focused on generally
recognized classes of medical data and expressed using
standard medical terminologies such as the International
Classification of Diseases (ICD-9), LOINC, Snomed, etc.
The ODMS takes advantage of this system, ‘the analytic
health repository’ (AHR).
Figure 1 provides an overview of the ODMS. Below we
describe these components in the context of the development of
a diagnostic screening system for pneumonia.

Developing a model to diagnose pneumonia
The behavior of the ODMS is driven by a clinically focused
disease ontology. This ontology has as its goal a model that cap-
tures (1) the relationships among diseases, (2) the relationships
between diseases and relevant observations, (3) the relationships
between diseases and typical therapeutic interventions, and
(4) the relationships between diseases and anticipated outcomes.
In order to provide value to researchers and clinicians, the
ontology is enriched with links from the concepts embedded in it
to data stored in Intermountain Healthcare’s EDW. In the case of
pneumonia, the necessary information includes the knowledge
necessary to identify patients with pneumonia, the knowledge
necessary to choose those clinical data elements that would be
useful in diagnosing pneumonia, and the knowledge necessary to
find these data in the EDW, Identifying a collection of patients
with pneumonia is accomplished using the ICD-9 codes assigned
to each patient after discharge. Figure 2 displays a fragment of

Disease
Ontology |

W

J

D)

the disease class hierarchy maintained within the ODMS. For this
component of the ontology, we have chosen to largely mirror the
structure of ICD-9. Under the general heading of pneumonias,
one finds different types of pneumonia with increasing specificity
at lower levels in the hierarchy. Concepts that match ICD-9 con-
cepts are labeled with appropriate ICD-9 codes.

As a result of this organization, the system can use taxonomic
explosion to help design the queries necessary to find groups of
patients with pneumonia. In order to search for these patients,
the system will traverse the hierarchy and bind all of the relevant
ICD codes into a query (expressed in structured query language
(SQL)), which will be run against a target population and return
a list of patients whose discharge diagnoses include one of the
aggregated codes. Other members of the target population are
collected into a list of ‘non-pneumonia’ patients.

The result is a group of disease and control patients (ie,
patients with and without pneumonia) whose stored, clinical
data can be used to construct a diagnostic system. The next step
is to extract these data. This activity is supervised by the ontol-
ogy. In addition to the class hierarchy of diseases described
above, the system contains class hierarchies for other medical
concepts including laboratory results, vital signs, and x-ray
results. Properties defined within the ontology connect diseases
to relevant concepts in these hierarchies (figure 3).

These connections can be exploited to generate queries that
bring back relevant clinical findings. Again, taxonomic explosion
can be used within the targeted findings hierarchies to build col-
lections of potentially useful clinical data. Once these queries
are constructed, they are used to extract data from the EDW/
AHR for both patients with and without pneumonia. This
dataset provides the substrate used by the analytic workbench to
generate diagnostic decision support systems.

Invoking the system
The process of building a diagnostic model begins with the def-
inition of the patient subpopulations from which the model will
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Figure 1 Overview of ontology-driven diagnostic modeling system (ODMS). The system can respond to queries that reference concepts in the

ontology. A typical query might reference the disease concept ‘pneumonia’ from within the disease ontology and then indicate that the ODMS was
to build one or more models designed to diagnose it. EDW, enterprise data warehouse.
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Figure 2 A fragment of the disease class hierarchy from the ontology-driven diagnostic modeling system ontology. The system can traverse the
ontology to collect the different kinds of pneumonia and can use the storage information (in this case International Classification of Diseases (ICD)
codes) to develop structured query language queries designed to identify the subset of the population whose discharge diagnosis was one of the
pneumonias.

be derived. They are derived from a larger population represent- relation file format (ARFF))® for input into the component of the

ing those patients who are the target population for the model. ODMS called the analytic workbench. Here it undergoes a semi-

In the case of our example—the diagnosis of pneumonia—the automated analysis to generate preliminary results. This semiauto-

population of interest is patients admitted to the emergency mated analysis is triggered by a user through interaction with an

departments in two hospitals in Salt Lake City. We represent initial form that allows the user to alter the default configuration

these ‘populations of interest’ in a class hierarchy of encounter of the analytic workbench (figure 4). The typical analysis for the

types, which allows us to specify increasingly restrictive encoun- system seeks to create a Bayesian network classifier using:

ter criteria as we move down the tree. 1. A supervised discretization algorithm for continuous

To identify criteria to separate patients into positive and negative variables*

disease subgroups, we can select a single node in the disease hier- 2. A simple feature-selection algorithm that automatically

archy and let taxonomic explosion identify the collection of concepts chooses the 15 variables with the highest x* value

from which to build the query (see figure 2) or we can create a com- 3. An algorithm to infer Bayesian network structure from

posite concept, a ‘Pneumonia-Definition,” which provides a logical data (tree-augmented naive Bayes (TAN)®)

combination of concepts from which to construct the query. An 4. Estimation of Bayesian network parameters using expect-

example would be ‘hasPrimaryDischargeDiagnosis some ((Influenza ation maximization®

or Pneumonia) and (not (Influenza with Other Manifestations)))’ 5. Tterative analysis using 10-fold cross-validation to effect-

(displayed in the syntax of Protégé, a system for authoring ively measure system accuracy.

ontologies?). This process generates a set of preliminary results, which can
be inspected by the user to determine whether further analysis

Extracting the data will be profitable. These preliminary results consist of:

Once we have defined the parent population and the criteria for 1. The list of concepts chosen from the ontology for inclu-

identifying diseased and non-diseased subpopulations, the ODMS sion in the query.

carries out its analysis. It queries the AHR to identify patient 2. The raw data file extracted by the system.

cohorts with and without the defined diseases. It then traverses 3. The diagnostic model generated.

relevant ontological properties to identify those findings that are 4. Accuracy statistics such as sensitivity, specificity, positive

associated with these diseases. The definitions for these findings and negative predictive value, and the area under the

are used to construct queries that return the necessary data. These receiver operating characteristics (ROC) curve

data are organized into a standard format (Weka’s attribute- 5. Various graphical representations of the results.
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system (ODMS) ontology. Oncologic properties are used to connect different

diseases to relevant disease manifestations. These manifestations are inspected by the ODMS and used to develop search strategies to extract
relevant clinical data from the enterprise data warehouse for analysis. Note that relevant concepts are identified using International Classification of

Diseases (ICD), LONIC, SNOMED, and a local coding system called PTXT.

A key challenge in modeling diagnoses such as pneumonia is a
requirement for data not typically found in structured form in the
EHR or EDW. These are the data that are captured as narrative
text. They include the many medical documents generated
through dictation and transcription, by the clinician typing into
the EHR or, more recently, through speech recognition tools that
convert dictated information directly into medical reports. For
pneumonia, a diagnostic system would be incomplete without the
results of the radiographic examinations of the chest. These results
are available only as dictated radiology reports.

To accommodate this type of data, we have integrated an NLP
component into the ODMS. The concepts necessary to trigger data
extraction from free-text reports are included in the ontology. When
these are referenced in the definition of disease findings, the ODMS
invokes the NLP component to acquire the essential information.

The NLP component used by the analytic workbench for
pneumonia was developed as a part of the earlier project whose
goal was to predict pneumonia in the emergency department’.
This simple system consists of a random forest classifier® trained
to classify individual sentences within a chest x-ray report.
A heuristic aggregates results across the sentences within the
report and returns simple output indicating the presence or
absence of support for pneumonia within the report. The
system was originally tested on 4009 chest x-ray reports that
had been adjudicated by a group of physicians. It demonstrated
a sensitivity of 0.95 and a specificity of 0.74.

Analyzing the data
Within the ODMS, the analytic workbench is the component
that receives data retrieved from the EDW/AHR and constructs

VS, vital signs.

relevant diagnostic screening models. Its output includes a
listing of pertinent clinical concepts extracted from the ontol-
ogy, the raw dataset retrieved from the data warehouse, a pre-
diction algorithm for the diagnostic screening model, and an
analysis of the model’s accuracy.

The analytic workbench is intended to support the group of
analytic activities required to produce and explore different pre-
liminary diagnostic models. It is designed to consume the
dataset extracted defined within the ontology. An ARFF file con-
taining relevant data elements for this diagnostic problem is
created, and the workbench uses this data file to construct and
test diagnostic models for the target disease.

Our approach to the construction of the analytic workbench
has been to combine components from various, readily available,
modeling systems whose functions can be integrated through
their application programming interfaces (APIs). The prototype
workbench includes tools from Weka 3.6.5° ' (a general-
purpose, open-source, data-mining toolkit) and Netica'" (a com-
mercially available, Bayesian network authoring and execution
application). Future versions will include components from R'?
(an open-source, statistical package). We intend to take advantage
of the high-quality graphical output provided by this package as
well as some of its statistical features, notably its built-in func-
tions for estimating area under the ROC curve and Cls.

The current version of the analytic workbench is focused on the
development of Bayesian network'*>™"* models displaying varying
degrees of sophistication. Other algorithms will be added as their
utility becomes apparent. We have chosen Bayesian networks as
the initial modeling paradigm for the analytic workbench based
on two factors: previous experience with pneumonia screening

Haug PJ, et al. / Am Med Inform Assoc 2013;20:e102—e110. doi:10.1136/amiajnl-2012-001376
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Figure 4 Initial screen for setting up analyses in the analytic workbench. The setup screen begins by displaying default settings and allows the
user to modify the settings. Shown are the typical settings for the initial development of the pneumonia and Bayesian network described here.

and the similarity of Bayesian networks to the structural compo-
nents in ontologies. In the late 1990s, a pneumonia diagnostic
system was developed and deployed at LDS Hospital in Salt Lake
City using Bayesian networks.'®'® This system proved surprisingly
accurate. However, its development was labor-intensive. Variable
selection, discretization of continuous variables, development of
the network structure, and analysis of system accuracy required
large amounts of manual effort.

A key goal for the initial version of the analytic workbench is
to determine whether modern tools for developing Bayesian
networks will noticeably reduce the effort required. In the inter-
val since the first pneumonia screening system, a variety of tools
to assist with the sequence of steps required for Bayesian model
construction have become available. These new tools exist in the
form of open-source and commercial data mining and statistical
analysis software such as those referenced above. The products
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selected have APIs that allow them to be embedded in systems
such as the analytic workbench. A goal of the work described
here is to test our ability to configure components from differ-
ent toolsets in various potentially advantageous ways.

The second reason for the choice of Bayesian networks is the
similarity in certain structural characteristics between these net-
works and ontologies. Bayesian networks are built around direc-
ted links reflecting mathematical relationships between variables.
Ontologies are built around directed links representing semantic
relationships between concepts. These relationships have
attracted the attention of researchers who are interested in
extending ontologies to reason in areas of uncertainty.”” ! We
hope in future experiments to determine the value of translating
the ontological connections into the directed links necessary for
the Bayesian models.

Returning the results of the analysis
In most cases, we expect the ODMS to be used as an automated
way to generate an exploratory analysis of a disease or diseases.
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The user interface allows specification of a number of para-
meters that modify the analytic process. However, while the
system supports a number of different analytic paths, we antici-
pate that its primary use will be to generate an initial analysis
and then to provide these results and the raw data collected by
the system to the user for further evaluation. Users are expected
to define the diagnostic conditions that they wish to examine,
accept (or potentially modify) the default settings provided for
the analysis, and use the results as a starting point for their own
further analysis of the dataset provided.

Because the goal of the system is to provide an initial look
at the accuracy of diagnostic predictive models derived from
clinical data, several charts useful for visualizing these models
are immediately available. Figure 5 demonstrates one of
these, the classic ROC curve used to explore the performance
of predictive models across a range of thresholds for the
output of the model. If the researcher has used the system to
generate more than one predictive model, the resulting ROC
curves can be displayed together for comparison. The

+ Add Job To Compare

Pneumonia Net - Test 2

ROC Area: 0.9290

ROC Curves Compared L

Click and drag in the plot area to zoom in

1 - Specificity

-® Pneumonia Net - Test 1 -#- Pneumonia Net - Test 2
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y-Axis Sensitivity ~| x-Axis 1 - Specificity 4

Figure 5 Graphics produced by the analytic workbench. Receiver operating characteristics (ROC) curves for two different models produced during
the study of a pneumonia diagnostic model are displayed. The area under the ROC curve is a good overall measure of the accuracy of a diagnostic

predictive model.
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workbench also calculates an area under the ROC curve for
each model.

Finally, the ODMS returns the model itself to the researcher.
The researcher can then choose to return to the system for
further analysis, take the data provided and continue the ana-
lysis on a different platform, or integrate the diagnostic model
provided into a clinical or research application.

Sample evaluation

As an initial demonstration of the ODMS, we chose to use it to
reproduce a tool for pneumonia diagnosis that had originally
been created manually for use in the emergency department.®
This manually constructed, pneumonia diagnostic system was
developed by researchers over an 8-week period through a
process that involved manual identification of candidate data
necessary for diagnosis, manual construction of SQL queries to
extract these data, manual review and cleansing of the research
dataset, use of Netica to develop a group of diagnostic Bayesian
networks, and manual comparison of these Bayesian models to
determine the diagnostic network with the best overall
performance.

The process began with construction of a dataset consisting of
91 candidate clinical features for a curated set of 2413 positive
pneumonia cases and 46 036 negative pneumonia cases seen in
emergency department patient encounters at LDS Hospital and
Intermountain Medical Center in Salt Lake City, Utah between
1 January 2008 and 1 January 2011. Since the diagnostic gold
standard for pneumonia is a chest radiograph compatible with
pneumonia, patient encounters without a chest radiograph were
excluded from this cohort. Pneumonia was defined by ICD-9
codes as compatible with a primary discharge diagnosis of pneu-
monia (480-487.1).

Features were defined iteratively through discussion with clini-
cians and analysis of data available in the EDW. Table 1 contains
a list of the features selected during this process. Data corre-
sponding to these features were collected from the EDW using
manually constructed SQL queries. These data were collected
into tabular structures and submitted to Weka for supervised
feature selection using Fayyad and Irani’s minimum description
length method.* Subsequently, the feature set was submitted to
Netica to develop a Bayesian network structure using the TAN®
mechanism. This Bayesian network was then trained using
Netica’s expectation maximization algorithms.® Accuracy statis-
tics are reported in table 2.

The model manually derived from this dataset was compared
with a model automatically derived by the ODMS. For this
experiment, we triggered the system using the ontology-based
definition of pneumonia described above. The ODMS automat-
ically extracted the data consistent with its ontological model,
executed a feature-selection algorithm, and constructed and
tested the diagnostic model. The process required approximately
22 h to extract the data and approximately 24 h to analyze it
and provide the appropriate model. No user interaction was
required during this process.

We chose to compare the two models by using accuracy statistics
generated through testing each model with its own dataset and then
with the dataset produced during the construction of the alternate
model. With this as the goal, we produced accuracy statistics for the
original manually developed predictor using the manually curated
data by applying 10-fold cross-validation. In this procedure, differ-
ent 10% subsamples of the data are set aside, a model is generated
using the remaining 90%, and the 109% test dataset is used to evalu-
ate this model. Similarly, we tested the ODMS-generated predictor
against the ODMS-generated data that were created during

Table 1 Features selected for the manually developed predictor
and the ODMS-generated predictor

Manually developed predictor
features

ODMS-generated predictor
features

Demographics

Age value

Vital signs

Diastolic BP
Mean pressure
Heart rate
Respiratory rate
Systolic BP
Temperature

Laboratory data

BUN
Chloride
Creatinine
Sodium
Spo,
WBC

Chest x-ray results

NLP finding

Nursing assessment

Abnormal breath sounds
Absent breath sounds
Absent cough

Clear breath sounds

Coarse breath sounds
Cough clears secretions
Cough doesn’t clear secretions
Crackles

Decreased breath sounds
Fine crackles

Frequent cough

Infrequent cough

Moderate cough
Non-productive cough
Abnormal breath sounds on expiration
Abnormal breath sounds on
inspiration

Productive cough

Rales breath sounds
Rhonchi breath sounds
Stridor breath sounds
Strong cough

Tubular breath sounds
Upper airway congestion
Weak cough

Wheezes

ED chief complaint

Demographics
Vital signs
Temperature
Heart rate
Respiratory rate
Laboratory data
Anion gap
BUN
Chloride
Spo,
Fio, percent
Sodium
WBC
Chest x-ray results
Single lobe infiltrate
Multi lobar infiltrates
Nursing assessment
Abdomen not distended
Abnormal abdominal exam
Abnormal breath sounds
Alert and oriented x3
Distended abdomen
Dull aching pain
Dyspneic
Firm abdomen
Frequent cough
Incisional pain
Moderate cough
No abnormal cough
No tenderness on palpation
Non-productive cough
Not oriented to place
Not oriented to time
Not oriented x3
Oriented x3

Pleuritic pain
Productive cough
Rales breath sounds
Sharp stabbing pain
Soft abdomen
Strong cough
Tender abdomen
Throbbing pain
Wheezes

ED chief complaint

BP, blood pressure; BUN, blood urea nitrogen; ED, emergency department; Fio,,
fractional inspired oxygen; NLP, natural language processing; ODMS, ontology-driven
diagnostic modeling system; Spo,, saturation of peripheral oxygen; WBC, white blood

cells.

predictor development, again applying 10-fold cross-validation. In
each case bootstrapping was used to determine Cls.*>

We then tested each of these diagnostic predictors using data
generated during the alternate system’s construction. The key
accuracy statistic used was the area under the ROC curve. The
results are described below.
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Table 2 Accuracy of the models developed manually and by the ODMS

Area under ROC curve

Manually developed predictor

ODMS-generated predictor

Manually curated data
ODMS-generated data

0.944 (95% Cl 0.942 to 0.947)
0.756 (95% Cl 0.747 to 0.766)

0.881 (95% Cl 0.875 to 0.887)
0.920 (95% Cl 0.916 to 0.924)

ODMS, ontology-driven diagnostic modeling system; ROC, receiver operating characteristics.

RESULTS

As mentioned above, the manual process produced a dataset of
91 candidate clinical features for a curated set of 2413 positive
pneumonia cases and 46 036 negative pneumonia cases.
Continuous data were discretized as necessary, and, after manual
review, 40 features were selected for inclusion in the diagnostic
model (table 1).

The ODMS automatically produced a set of 101 candidate
clinical features for an automatically extracted set of 4240 posi-
tive pneumonia cases and 310 235 negative pneumonia cases. In
the system’s initialization screen, we specified that the feature-
selection step should restrict the number of features used in the
model to 40 (table 1), the number used in the manually devel-
oped predictor.

We tested each diagnostic model with its own dataset using
10-fold cross-validation in which the model’s parameters were
retrained during each fold cycle. We then took each diagnostic
model (using its overall parameterization) and tested it with the
dataset generated during the creation of the other model.
The test statistic used was the area under the ROC curve and
the associated 95% Cls. Table 2 shows the resulting values.

Perhaps the most interesting statistic in this table is the accur-
acy of the pneumonia diagnostic system developed automatically
by the ODMS. This predictor represents a highly automated,
preliminary modeling effort. However, when applied to the
manually curated data, accuracy fell off significantly. This is not
necessarily surprising. The manually developed predictor was
created using a restricted subset of the entire emergency depart-
ment patient population. We trained only with those patients
who had a radiograph of the chest reported as a part of their
visit. This predictor has proven reasonable accuracy in that
patient subgroup, but fails to accommodate the different data
patterns seen in the much larger population of patients who do
not have a chest x-ray examination.

To illustrate a possible next step that a modeler might take,
we retrained the ODMS-generated predictor with a dataset con-
strained to more closely match the manually curated data. To
accomplish this, we retrieved the ODMS-generated data from
the ODMS and removed patients without x-ray examination of
the chest. The resulting dataset contained 2899 positive pneu-
monia cases and 78 798 negative pneumonia cases. We returned
this modified dataset to the ODMS and requested a new model.

The system then produced a model specific to emergency
department patients with chest imaging examinations. In a
10-fold cross-validation evaluation against the modified dataset,
it produced an area under the ROC curve of 0. 902 (95% CI
0.897 to 0.908). When tested directly against the manually
curated data, the area under the ROC curve was modestly
improved at 0.899 (95% CI 0.893 to 0.905).

This simple example illustrates the anticipated use of the
ODMS. A model developer will request an initial model and
then engage in a series of interactions with the ODMS to
improve the operating characteristics of this predictive model
for a population of interest.

DISCUSSION

The example above illustrates the workings of the ODMS. The
results, although preliminary, are encouraging. Although not
reported here, we have seen similar results in a system for early
diagnosis of sepsis, which is used in several of our institutions.

Note that the statistics above should not be interpreted as a
formal comparative evaluation. There is substantial overlap in
patients represented in the manually curated data and the
ODMS-generated data. However, the two datasets used were
somewhat different. The manually curated data were not only
limited to a set of patients who had a radiographic examination
of the chest, but the chest x-rays of a significant subset of these
patients were reviewed by a group of pulmonologists to confirm
the presence of pneumonia. The categories to which they were
assigned were altered if the reviewer disagreed.

These interventions could be expected to produce a less
‘noisy’ dataset, with fewer patients misidentified. It reduced the
reliance on ICD coding, a process that is known to introduce
error into research datasets.”> The ODMS-generated data were
not similarly reviewed. Not only did it include patients both
with and without radiographic chest examination, but none of
the chest radiographs were reviewed to confirm the diagnosis.
The results of the simple manipulation of the ODMS-generated
data by restricting them to patients with chest radiographs
demonstrated the types of interventions that modelers will use
to refine a diagnostic system if the initial, automatically gener-
ated results are promising.

CONCLUSION

The ODMS that we have described above is being used to
develop a group of diagnostic models that are destined to play a
part in healthcare in our facilities. Future success is dependent
on extending and enriching the clinical ontology that we are
developing. Our ability to drive these analyses using this
resource is dependent on its completeness and on our ability to
link it effectively to data sources in the EDW,

Development of the ontology has, so far, largely been a
manual process (although informed by terminologies such as
ICD-9); however, we are actively exploring approaches to
importing or automatically inferring key concept classes.
Existing structured terminologies, including Snomed-CT,
RxNorm, and others, hold promise as sources of large collec-
tions of relevant concepts.

We also foresee adding to the available analytic tools in the
analytic workbench. A variety of predictive modeling tools is
available and provides attractive alternatives to the Bayesian
models that have been our focus so far. In addition, we are com-
mitted to providing better tools for data visualization and for
visualizing the results of the analyses produced by the system.
Our goal is to make the system accessible to a range of clinical
researchers who need assistance in integrating a knowledge of
medicine with data-storage practices used in large EDWs.

The system we have described is focused on the discovery of
predictive diagnostic models. However, altering it to support
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research into questions of comparative effectiveness is entirely
feasible. The medical knowledge captured in the ontology could
be used to identify relevant study populations, therapeutic alter-
natives worthy of study, predisposing clinical factors, and signifi-
cant medical outcomes. This promises to be a fruitful area for
future research.

Finally, the ontology itself may someday be able to play a
more direct role in clinical care. Its use in research will test and
refine the relationships between diseases and supporting clinical
findings, diseases and therapies, and diseases and outcomes.
This information may find use at the bedside by supporting
novel tools for viewing the course and status of a patient’s
illness. We would hope that efforts to extend and validate this
resource will provide value for research now and someday for
the direct delivery of clinical care.
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