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ABSTRACT
Background Ethical concerns about randomly
assigning patients to suboptimal or placebo arms and
the paucity of willing participants for randomization into
control and experimental groups have renewed focus on
the use of historical controls in clinical trials. Although
databases of historical controls have been advocated, no
published reports have described the technical and
informatics issues involved in their creation.
Objective To create a historical controls database by
leveraging internal clinical trial data at Pfizer, focusing
on patients who received only placebo in randomized
controlled trials.
Methods We transformed disparate clinical data
sources by indexing, developing, and integrating clinical
data within internal databases and archives. We focused
primarily on trials mapped into a consistent standard
and trials in the pain therapeutic area as a pilot.
Results Of the more than 20 000 internal Pfizer clinical
trials, 2404 completed placebo controlled studies with a
parallel design were identified. Due to challenges with
informed consent and data standards used in older
clinical trials, studies completed before 2000 were
excluded, yielding 1134 studies from which placebo
subjects and associated clinical data were extracted.
Conclusions It is technically feasible to pool portions
of placebo populations through a stratification and
segmentation approach for a historical placebo group
database. A sufficiently large placebo controls database
would enable previous distribution calculations on
representative populations to supplement, not eliminate,
the placebo arm of future clinical trials. Creation of an
industry-wide placebo controls database, utilizing a
universal standard, beyond the borders of Pfizer would
add significant efficiencies to the clinical trial and drug
development process.

BACKGROUND AND INTRODUCTION
The limited availability of patient populations eli-
gible for and willing to participate in clinical trials,
coupled with increased attrition rates of novel ther-
apies during drug development, has motivated
pharmaceutical companies and regulatory agencies
to re-examine how investigational therapies are
evaluated and brought to the clinic. An illustrative
example of these challenges is the ongoing search
for novel treatment options for patients with amyo-
trophic lateral sclerosis. Despite more than 30 clin-
ical trials including almost 10 000 patients, many
of whom received either suboptimal comparators
or placebo, only one modestly effective treatment,
riluzole, for the treatment of amyotrophic lateral
sclerosis has been identified.1 In this context, and
other scenarios like it, an ethical dilemma is raised

for subsequent studies; whether to expose patients
again to either suboptimal comparator or placebo.
The ethical dilemmas posed by active control trials,
placebo controlled trials (either when a reasonable
treatment is available2 3 or even when no treatment
is available),3 4 and clinical equipoise have been
heavily debated.4–8 This ongoing debate suggests
both idealized ethical and scientific rigor for rando-
mized controlled trials (RCT) are difficult to satisfy
due to complexities of clinical trials.9 However, the
consensus from medical and research ethics litera-
ture indicates a focus to minimize harm in the clin-
ical trial process, either by minimizing exposure to
scientifically questionable comparator treatments or
minimizing exposure to placebo.9 The lack of effi-
ciency, coupled with ethical concerns about ran-
domly assigning thousands of patients to
suboptimal or placebo arms, has renewed focus on
the use of historical controls to optimize (not elim-
inate) concurrent placebo and active control arms,
which are essential components of RCT.
Clinical trials with historical control designs that

supplement, but do not do away with, concurrent
or placebo groups have been successfully utilized in
important ways. A meta-analysis of antieplictic
drugs (AED) demonstrated that patients randomly
assigned to (low-dose) suboptimal treatments in all
previous trials had similar outcomes thus allowing
for the creation of a pool of historical controls for
AED trials.10 A methodology utilizing these histor-
ical controls was recently approved by the US Food
and Drug Administration (FDA) to compare novel
AED in future trials.10 As a result, the first histor-
ical control design trial in epilepsy, which evaluated
lamotrigine XR for conversion to monotherapy,
was completed and published in 2012.11 Historical
controls have also been used in vaccine safety trials.
For example, historical controls matched for age at
vaccination, season, sex and geographical area were
used to monitor new onset of chronic illnesses
within 6 months of vaccination.12 Those studies,
and others in cancer, surgical interventions,
devices, and biomarker validation,13–16 demon-
strate that historical controls have a place in the
hierarchy of evidence-based investigation and that a
sufficiently large and flexible database of historical
controls would have a population representative
enough to calculate a previous distribution to
augment the placebo arm of future clinical trials.
Historical information is available in a variety of

forms (paper, electronic, images), from different
sources, and has been widely utilized in retrospect-
ive and meta-analyses.17–19 Innovative trial designs
using historical controls have the potential to be
used effectively in clinical trials if the historical
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control data are available in sufficient quantity and quality. The
practical and statistical concerns for prospective use, design, and
analysis of clinical trials such as summarizing historical control
information and power and sample size calculation in the design
and analysis of a new trial with historical control data have
recently been investigated and discussed elsewhere.20–23

The creation of a historical placebo database presents an
opportunity to preserve historical institutional information and
knowledge in a way that can be accessed, shared, and re-used
for the benefit of current and future research. There are many
potential benefits in creating a database of patients from the
comparator arms of past clinical trials including, but not limited
to, reduction in the number of new patients recruited into a
RCT, ensuring sufficient/accurate numbers are represented in
the placebo arm, and reduction of time and expense associated
with executing clinical trials. A large enough ‘ePlacebo’ database
has the capacity to produce requisite numbers of patients to
reach higher levels of statistical power for historical controls and
to match a host of parameters (eg, diagnostic criteria, inclusion/
exclusion criteria, stage or severity of disease, concomitant treat-
ments, methods of assessing outcomes, etc) to reduce heterogen-
eity for matched controls.24 Furthermore, a historical controls
database would help with challenges facing orphan or rare dis-
eases that have limited access to patients for random assignment
into both experimental and control groups. Approval of drugs
for rare diseases are, on average, based on a smaller number of
clinical studies, with lower numbers of study participants, and at
times with surrogate clinical endpoints. Therefore, careful post-
market monitoring of safety and efficacy is needed and
re-assessment of efficacy in RCT may be warranted in some
cases. A large historical controls database, with data collected
over a greater period of time, would provide an important
resource for orphan drug discovery.

The creation of such an ‘ePlacebo’ database, however, pre-
sents several informatics challenges, such as decisions to include
or exclude data sources and indexing data in a value-added and
accessible format. The major informatics challenge in creating a
harmonized database lies in combining data from disparate clin-
ical trials, particularly those from legacy sources in which differ-
ent data collection standards were used. Different trials collect
different data points, so a historical placebo database would
either need an expansive schema or a minimum dataset that
would be used as a subset of elements collected for clinical
trials. Here we describe our institutional experience at Pfizer
during the first phase of creating a ‘ePlacebo’ or historical
placebo control database.

METHODS
We set out to assess whether existing clinical trial data from dispar-
ate sources within Pfizer can be integrated in an efficient manner
to create a database of patients who have received only placebo
during clinical trials. All data were de-identified and informed
consent documents were reviewed to ensure data could be re-used
for research purposes. To identify placebo assets, data flow ana-
lyses were performed on patient data systems, drug distribution
systems, and patient-level datasets. A road map (figure 1) was
established for the ‘ePlacebo’ database, which included a search of
repositories for appropriate clinical trials in therapeutic and
disease areas, collection and separation of comparator arms from
trials, standardized representation of patients and data points, and
loading and integration of data to create an ‘ePlacebo’ database.

For the initial determination of placebo assets, we searched for
active data in several Pfizer systems including clinical reporting and
portfolio systems, patient data systems, and distribution systems.

Due to the multiple technical challenges involved, we did not
analyze data in archived sources. During this search, it was discov-
ered that patient level data would be required to determine which
study arm each patient was randomly assigned into, thereby enab-
ling a summary of patients at the study, disease area, and thera-
peutic area levels. The initial determination of placebo assets at
Pfizer was determined by searching protocol descriptions and drug
types that included the term ‘placebo’ and similar terms in study
authoritative sources (in this case, the corporate clinical trial regis-
try; CCTR). Once these studies were identified, we searched
patient databases, clinical trials repositories, and clinical data
reporting systems to determine if placebo arm patient level data
existed for these trials. Trial data within clinical data analysis and
reporting systems (CDARS) are stored in different legacy standards
and are stored at a submission level, making integration for a single
query highly complex, and in some cases unfeasible. There were
challenges associated with accessing and integrating these data, par-
ticularly when source data were backed up in legacy data standards.

We interrogated a number of systems that contained data of
interest, starting with an internal clinical trials information
repository, which is organized by drug project/product. This
repository stores multiple datasets in one location that are
mapped to a single data standard within the repository. For a
majority of the trials in this assessment, patient level data origi-
nated and were extracted from Oracle Clinical (OC).25 OC con-
tains raw data captured in response to the case report form
questions during the trial. However, this database does not
contain value-added data, such as associating treatment data
with laboratory and/or adverse event (AE) data, first and last
active dates of therapy for a subject, imputed AE dates, flagged
baseline laboratory values and other derived data. Therefore,
CDARS contains patient-level data in individual SAS26 datasets
in a UNIX environment with minimal metadata was also used to
enhance the ‘ePlacebo’ database.

Multiple datasets are stored for a protocol supporting various
deliverables in the lifecycle of a clinical trial. The diversity in
data standards make integration across multiple programs chal-
lenging. Careful consideration was given to selecting the target
data standard (in this case the Pfizer data standard; PDS). If
source data are directly from the clinical database or an archived
version of the clinical database the de-normalization, or joining
of data tables step, can be very complex or almost impossible to
perform. Due to the challenges of integrating data from old clin-
ical data standards and data accessibility for older trials, newer
studies were preferred over older studies due to a higher likeli-
hood of compliance with current PDS. Although mapping the
data was an option, due to resources, time, and upfront institu-
tional commitment and investment required, we performed all
analyses on data in the existing data standard. The selected PDS
meets the requirement of being able to reverse-engineer histor-
ical data and to de-normalize and transpose the data depending
on source structures. In addition to challenges of data standards,
review of legal informed consent documents before 2000 did
not allow for, or explicitly state, secondary use of data from
these trials. Furthermore, studies before 2000 were operation-
ally executed differently and thus had different data structures.
Retrieving older studies would require additional resources such
as space, un-archiving, and mapping data that are prohibitive in
the absence of a likelihood of success in joining data structures
and tables with newer studies. Therefore, based on these specific
challenges of data standard, operational differences in clinical
trial execution, and constraints of legal informed consent before
2000, all studies completed before 2000 were eliminated from
the scope of this analysis.
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Aggregation of data for specific queries required SAS routines
to crawl across hundreds of directory structures to acquire and
integrate data. Once placebo data assets were identified and inte-
grated into the ‘ePlacebo’ database, we sought to implement and
provide an example use case for this asset. We looked for thera-
peutic areas where there was a high number of patients with a
relatively few number of studies. The best candidates for analysis
were: neuroscience, cardiovascular and metabolic and endocrine
diseases, inflammation, and pain (figure 2). The ‘pain’ disease

area was chosen to assess the feasibility of clustering the data
because they contained a manageable amount of studies for the
pilot, and contained quality controlled data previously utilized
for other analyses.

RESULTS
We integrated, via SAS, placebo patient data across studies, com-
pounds, and drug programs to generate single datasets per clin-
ical domain. The specific data types collected in the ‘ePlacebo’

Figure 2 Basic characteristics of subjects in ePlacebo database. (A) Histogram of subject counts in ePlacebo database from randomized controlled
trials completed after 2000 for five therapeutic areas. (B–D) Counts of placebo subjects in pain by disease area (B) and snapshot of demographics
for pain placebo patients by age (C), and race (D) with given gender breakdowns. Chronic, severe chronic pain; CvMeD, cardiovascular metabolic;
Fibro, fibromyalgia; GenUr, genitourinary; Infl, inflammation; I. Pain, inflammatory pain; Neuro, neuroscience; Neurop, neuropathic pain; OA,
osteoarthritis; OAP, osteoarthritis pain.

Figure 1 Road map and data access methods for ePlacebo database. Methods, systems, and algorithms employed to extract data along with
decision algorithms and filters applied at each step are depicted. CCTR, corporate clinical trial registry; CDARS, clinical data analysis and reporting
system; Demog, demography; OC, Oracle Clinical; PDS, Pfizer data standard; TA, therapeutic area.
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database are listed in table 1. Instead of aiming to create a single
harmonized database of clinical data for all placebo subjects we
took a stratification and segmentation approach in which clinical
placebo clusters were developed. A cluster is defined as a pool
of patients for a disease area that is defined by a single dataset
for each of the major clinical data domains (demography, safety,
etc). Through this approach, patients can be pooled into
matched statistically significant groups, with enough power to
address clinical and scientific questions.

As detailed in table 2, we first identified all studies that
contain placebo data (4075 studies) and then identified all
placebo studies that were completed and that had a parallel
design (2404 studies). Due to the challenges of integrating data
from old clinical data standards (see Methods for details) and
constraints of legal informed consent before 2000, studies com-
pleted before 2000 were excluded, yielding 1134 studies avail-
able for analysis. In our data finding step it was uncovered that
several studies were created in CCTR but were not present in
OC. These studies were either planned but never initiated, ter-
minated early, or did not meet criteria of a clinical trial. As hier-
archically OC is the system of record for patient data at Pfizer,
table 2 only includes studies that were run in OC (692 studies).
These studies were then grouped by therapeutic area and
disease area (figure 2A, B). Moreover, as assessed by subjective
measures, therapeutic areas have similarities in inclusion/exclu-
sion criteria, and trials within a therapeutic area/disease area are
more likely to collect similar data, thus proving easier to align
across studies. However, more explicit and quantitative steps to
match inclusion/exclusion criteria for populations can be taken
in the future for a specific subset of the database to study
defined populations. Next, as a means to pilot the database and
attempt to identify a ‘pure/idealized’ placebo population we

asked whether we could apply filters for crossover design and
duration of the study. We identified 326 studies in which there
were no concomitant drugs (eg, aspirin) or a crossover design
(table 2). Of these, 203 studies were identified to have a dur-
ation greater than at least 2 weeks (table 2).

We next sought a mechanism to integrate these data sources
and focused on creating two datasets; an observations dataset
and a roll-up dataset. The observation dataset is composed of
three different sources and contains raw or subject level data,
including number of visits, therapeutic areas, laboratory values,
study ID, drug name, and other relevant clinical domain obser-
vations. The roll-up dataset, also composed of multiple sources,
is an aggregated dataset that consists of number of subjects
screened, randomly assigned, discontinued, completed, and
placebo subjects. The integration of these datasets was done in
an external staging area. We found these identified studies
included two data standards, a legacy standard and the current
PDS. For this phase of the ‘ePlacebo’ database, only PDS studies
(ie, completed in the past 11 years) were considered for the con-
solidated database and all studies with legacy standards were
excluded. Therefore, the first phase of the ‘ePlacebo’ database
contains studies that are placebo controlled, with a parallel
design, completed after the year 2000, and are in one data
standard, the PDS.

Applying subjective inclusion and exclusion filters and using
SAS, TOAD for Oracle, our own external data evaluation envir-
onment, and Tibco Spotfire27 28 we interrogated the ‘ePlacebo’
database to build a profile of historical placebo controls for the
pain therapeutic area (figure 2B–D). Demography, treatment,
and AE datasets were generated for the pain therapeutic area
using placebo patients from only included studies. In addition,
laboratory data were aggregated for placebo patients in Pfizer
clinical trials. Among patients in the pain cluster, 432 434
laboratory values were collected across multiple laboratory test
types. The most commonly collected values are indicated in
table 3. Utilizing this resource it was possible to isolate individ-
ual patient laboratory values across a therapeutic area and
rapidly plot distributions of the data (figure 3). Therefore, the
‘ePlacebo’ database is capable of quickly answering scientific and

Table 1 PDS clinical domains

Domain Description

ADVERSE (AE, SAE) Adverse events
CONDRUG Concomitant/previous medications
CONTRT Concomitant/previous treatment
DEMOG (CHILD,
ALLERGY)

Demography (childbearing potential, allergy)

ECG Electrocardiogram
EFFICACY Efficacy of treatment—there are separate efficacy

modules for each therapy area. Existing efficacy
modules exist for allergy and respiratory (A&R),
cardiovascular meds (CVMED, CVMED HYPO),
gastrointestinal (GI), genitourinary (GU), infectious
diseases (ID), inflammation, neuroscience,
ophthalmology, pain

FINAL Subject summary
LABS Laboratory
MEDHIST Medical history
PHYEXAM Physical examination
PK CONCENTRATION Pharmacokinetic concentration-time
PK PARAMETERS Pharmacokinetic parameters and satistics
PRIMARY DIAGNOSIS Primary diagnosis
SECONDARY
DIAGNOSIS

Secondary diagnosis

TREATMENT
(RANDOM)

Treatment/randomization

VITAL SIGNS Vital sgns

AE, adverse event; PDS, Pfizer data standard; PK, pharmacokinetic; SAE, serious
adverse event.

Table 2 Algorithm and identification of clinical trials for ePlacebo
database

Category
No of clinical
trials

Total studies in population (combined Pfizer, legacy Wyeth,
and legacy Pharmacia)

24 581

Total studies that have a status of ‘completed’ and where
placebo was administered

4075

No of above studies with a parallel design (placebo
+completed+parallel)

2406

No of above studies completed since 1999 (placebo
+completed+parallel+last 11 years)

1134

No of above studies in (OC) (placebo+completed+parallel
+last 11 years)

692

No of above studies with placebo arm AND without
concomitant drug (eg, aspirin) and crossover design (placebo
+completed+parallel+last 11 years+only OC studies+no drug
arm)

326

No of above studies with duration greater than 2 weeks
(placebo+completed+parallel+last 11 years+only OC studies
+no drug arm+ >2 weeks)

203

OC, Oracle Clinical.
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medical questions that are relevant to the design and analysis of
current and future clinical trials.

From our experience creating the ‘ePlacebo’ database, we esti-
mate a total of approximately 300 h and the effort of one full-
time equivalent data analyst with moderate to advanced pro-
gramming proficiency and one full time equivalent (FTE) infor-
matician to design, implement, and test a similar database. Once
created and tested, maintenance does not require significant
additional resources. We were able to execute this proof of
concept with a moderate level of effort because we restricted
our scope to clinical trials in which the data were already
mapped to a single standard. We expect an undertaking to

aggregate data across the industry would require significantly
more effort to map the disparate standards into a single,
industry-wide, data standard. Currently, efforts are underway at
Pfizer to map our clinical trial data to a CDISC29 format and
thus Pfizer would contribute or share these data in CDISC to a
forum with satisfactory legal and security provisions.

DISCUSSION
We have reported our experience transforming historical clinical
trial data from disparate sources to create a database of patients
who received placebo during Pfizer clinical trials, an ‘ePlacebo’
database. The intent of creating an ‘ePlacebo’ database is not to
replace or eliminate concurrent or placebo controls, but rather to
augment these control groups and drive efficiencies in the clinical
trial process. Going forward, clinical trial data from all future
Pfizer studies will be released to and collected in a single clinical
trials information repository that will allow seamless preserva-
tion, access, and integration of new data. The creation of a larger
industry-wide ‘ePlacebo’ database would require an agreed-upon
standard, such as CDISC,29 and a legal and consent framework
that would allow any given number of objective, subjective, or
consensus criteria to be applied to obtain idealized controls from
placebo studies thus improving clinical trial efficiencies. The
‘ePlacebo’ database has many potential uses as a research utility
including, but not limited to, studying the natural course of dis-
eases, developing safety models and detecting safety signals,
designing more efficient trials, and reducing the time and costs
associated with clinical trials.

During the creation of this ‘ePlacebo’ database, we identified
several nuances between and within systems when aggregating
and profiling clinical trials data from different sources. It was
our experience that systems such as OC function well for analy-
tics within a study and as a transactional system; however, chal-
lenges were encountered when pooling individual placebo
subjects from OC because it is not an ideal repository to
perform analyses across multiple studies. To perform multiple
study analyses, data from each study need to be pulled into a
staging area before such analyses can be performed. Ultimately
databases that contain datasets in a SAS format in a UNIX envir-
onment were utilized to pool placebo patients for the ‘ePlacebo’
database. When bringing together the actual clinical data,
CDARS was preferred over source clinical database systems (eg,
OC). Challenges were also encountered when comparing obser-
vations that were collected at different time durations and fre-
quencies, for example protocols require collecting information
such as laboratory values at different intervals; for example, col-
lection of values at 30-day and 90-day intervals within the same
clinical development program. Moreover, a gap analysis was

Figure 3 Scatter plot of laboratory
values from ePlacebo database. Scatter
plot depicts normal (green), greater
than 1.5 times upper normal limit
(blue), and greater than 3 times upper
normal limit (red) values. Subjects are
plotted on x-axis and normalized
laboratory values are plotted on y-axis.
Note multiple data points with same
value can appear as one data point.

Table 3 Common laboratory data collected in pain cluster

No of observations Laboratory test name

9741 CREATININE
9654 HEMOGLOBIN
9651 HEMATOCRIT
9649 PLATELETS
9434 ALANINE AMINOTRANSFERASE (ALT)
9430 BILIRUBIN (TOTAL)
9425 ALKALINE PHOSPHATASE
9380 WHITE BLOOD CELLS
8234 RED BLOOD CELLS
7856 PROTEIN (TOTAL)
7856 POTASSIUM
7855 SODIUM
7786 BLOOD UREA NITROGEN
7782 CALCIUM
7740 ALBUMIN
7547 CHLORIDE
7431 URIC ACID
7370 NEUTROPHILS (ABSOLUTE)
7227 CREATINE KINASE
7078 EOSINOPHILS (ABSOLUTE)
7078 MONOCYTES (ABSOLUTE)
7078 BASOPHILS (ABSOLUTE)
7062 LYMPHOCYTES (ABSOLUTE)
6709 ASPARTATE AMINOTRANSFERASE (AST)
5434 LYMPHOCYTES (%)

5434 MONOCYTES (%)
5434 EOSINOPHILS (%)
5434 NEUTROPHILS (%)
5434 BASOPHILS (%)
5299 GLUCOSE
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performed to determine what similarities or differences
(expected or unexpected) were present in the data gathered in
our ePlacebo database. This analysis revealed that full demo-
graphic information was captured in over 99% of subjects and
routine laboratory results (alanine aminotransferase, hemoglo-
bin) were collected in over 90% of subjects in the pain cluster.
However, it should be noted that differences in data captured
across therapeutic/disease areas were also uncovered, as to be
expected, due to differences in clinical trial design. Therefore,
this database is limited by the data points and domains captured,
and available, across therapeutic/disease areas. Thus, in cross
study analyses, a formal mechanism is required to equate these
observations to ensure that the interpretations of the data are
correct.

Although clinical trials can identify prominent safety signals,
incorporation of ‘ePlacebo’ data, by calculating a previous distri-
bution effect, would allow fewer patients to take placebo, more
patients to take test drugs, and help develop better safety and
efficacy models that are more informative to designers of future
clinical trials. The FDA already has clinical databases of
approved products for safety monitoring such as the AE report-
ing system that have been utilized in historical control studies
and in data-driven predictions of drug interactions.30 There are
limitations to self-reported or voluntary reporting databases and
these have been well documented.31 However, a large industry-
agency ‘ePlacebo’ database can help give context to safety obser-
vations by providing documented observations in a controlled
clinical setting, limiting uncertainties associated with underre-
porting, biases reporting trends, and the unknowns of the total
number of exposed subjects.

While historical controls are a valuable resource for research,
it is important that future studies incorporating historical con-
trols be consistent with the studies that make up the original
dataset for factors such as study design, evaluation criteria, and
analysis plan. There are several caveats that stipulate why histor-
ical control data should be approached and utilized with
caution.32 We acknowledge there are factors that an ‘ePlacebo’
database may not be able to overcome (eg, clinical reasons for
heterogeneity, extent of protocol implementation, etc) and
therefore do not advocate replacement of the placebo or concur-
rent control arm in clinical trials, rather point to the benefits of
inclusion of historical controls in a thoughtful, prospective, and
data leveraged manner, via a ‘ePlacebo’ database, which can
maximize clinical trial efficiencies. Therefore, evaluation of
potential sources and reasons for heterogeneity among RCT, to
be included in planned analyses, should be a requisite step for
future applications of the ‘ePlacebo’ database. The next phase
for the ‘ePlacebo’ database is to produce integrated (cross-
protocol) datasets for other clinical data domains (eg, efficacy),
run simulations for statistical handling of historical placebo
data, and test whether results of past clinical analysis can be
reproduced using historical control data. This would provide
the opportunity for a dialog with regulators for guidance about
the broader viability of this research tool.

A review of the FDA’s current policies and practices on
driving biomedical innovation indicates a major focus by the
agency is on harnessing the potential of data mining and infor-
mation sharing, while protecting patient privacy, to improve
products for patients.33 34 We believe an industry-wide
‘ePlacebo’ database would help further the agency’s innovation
agenda. Ideally hosted by a neutral third-party (eg, the Critical
Path Institute),35 this database should require questions in
advance of granting access, to prevent misuse, and approxi-
mately 10% turnover of the data per year by continuous

addition of new data. The challenges going forward for a large
public–private collaborative historical placebo control database
will be access to, and analysis of, data for compounds that have
failed in late development, a legal framework that protects
patient privacy, and a legal framework that promotes inter-
company cooperation. During creation of the ‘ePlacebo’ data-
base, review of informed consents from older clinical trials
excluded their inclusion in this analysis because informed
consent documents did not explicitly stipulate data re-use for
research other than that related to the original study. A legal
framework that will protect patient privacy, allow appropriate
downstream use of data, and third party data sharing provisions
in informed consent of clinical trials is essential to the successful
creation of a more expansive historical controls database.

CONCLUSION
The challenges of creating a harmonized, single standard, data-
base of clinical data for all placebo subjects can be mitigated
through a stratification and segmentation approach in which
comparable clinical placebo clusters are developed. This
‘ePlacebo’ database will allow access to and encourage data
re-use and enable researchers to ask and answer research ques-
tions in an intuitive manner. Our internal database provides a
starting point, but ultimately a shared repository of placebo
data, utilizing a universal standard such as CDISC, managed by
a third party, and with input from regulatory agencies, would
add value to the clinical trial and drug development process.
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