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ABSTRACT
Background Early diagnosis of pneumonia and
discrimination between this disease and chronic
obstructive pulmonary disease (COPD) exacerbations
in patients with COPD are crucial for optimal clinical
management and treatment.
Objectives To examine the use of computerized
analysis of respiratory sounds, a hybrid system based
on principal component analysis (PCA) and probabilistic
neural networks (PNNs), to aid the detection of
coexisting pneumonia in patients with COPD.
Methods and materials A convenience sample
of 58 patients with COPD (25 patients hospitalized for
community-acquired pneumonia and 33 owing to acute
exacerbation of COPD) was studied. Auscultations were
performed by the patients themselves on their
suprasternal notch. Short-time Fourier transform analysis
was used to extract features from the recorded
respiratory sounds, PCA was selected for dimensionality
reduction and a PNN was trained as classifier. 10-Fold
cross-validation and receiver operating characteristic
curve analysis were used to estimate the system
performance.
Results Based on the cross-validation results, a
sensitivity and a specificity of 72% and 81.8%,
respectively, were achieved in validation data. The
operating point was selected to maximize the specificity
and sensitivity pair in the training set.
Discussion The results strongly suggest that electronic
self-auscultation at a single location (suprasternal notch)
can support diagnosis of pneumonia in patients with
COPD.
Conclusions A simple, cost-effective method has been
proposed to aid decision-making in areas with
no radiological facilities available and in
resource-constrained settings, and could have a great
diagnostic impact on telemedicine applications.

INTRODUCTION
Auscultation is a worthwhile tool for detection of a
patient’s respiratory pathology and is widely used
in clinical practice. With the advent of modern
advances in electronic stethoscopes and computer-
ized lung sounds analysis, the potential of such
technology for improved diagnosis of some respira-
tory diseases has become apparent. Chronic
obstructive pulmonary disease (COPD) and
community-acquired pneumonia (CAP) are among
these pathological conditions.
COPD is an important cause of morbidity, mor-

tality, and healthcare costs worldwide,1–3 whereas
acute exacerbation (AECOPD) is the main reason
for hospitalization of patients with COPD.
AECOPD is a major event in the natural disease
course characterized by a worsening of respiratory

symptoms. AECOPD is associated with significant
mortality, adversely affects a patient’s quality of
life, and is a huge socioeconomic burden.4

CAP is one of the most common infectious diseases
and has a broad spectrum of severity. Pneumonia is the
leading cause of death from infection in the USA.5

There is no ‘gold standard’ for the detection of pneu-
monia. Its most typical clinical findings include abnor-
mal sounds in the chest (crackles) and augmented
respiratory frequency. Chest radiography, when avail-
able, is usually done to confirm diagnosis. An increase
of C-reactive protein may be an aid to the diagnosis.6

However, the role played by C-reactive protein in diag-
nosis is less significant than that of clinical findings.
The most common comorbidity among patients

with high-severity CAP (aged >60) who require hos-
pitalization is COPD.7 8 One study has shown that
patients with COPD and CAP had a significantly
higher 30-day death rate than patients without
COPD, and that COPD was an independent risk
factor for mortality in patients with CAP.9 In the
same way, inpatient mortality from CAP in patients
with COPD was 11% higher than for patients with
non-pneumonic COPD exacerbation.10

Efforts should be therefore focused on discrimin-
ating between COPD exacerbations and pneumonia
and on early treatment of pneumonia. Some
authors have found that early antibiotic treatment
for pneumonia (<4 h) in older people can reduce
mortality and length of hospital stay.11 Although
there is some controversy on this topic, current
guidelines accept the relevance of antibiotic timing
in patients at a higher risk of death.12

It is widely accepted that a change in the charac-
teristics of normal respiratory sounds or the pres-
ence of adventitious sounds reflects a pathological
condition of the lungs. Different types of adventi-
tious sounds, which differ in their acoustic features
such as pitch, amplitude, duration, among other
features, commonly occur in several diseases.
Although respiratory sounds are reported by
patient’s self-assessment in 35% of AECOPD,13

little attention has been given to such a sign. The
course of exacerbations is characterized by increas-
ing airway obstruction and bronchial mucus pro-
duction.14 Respiratory sounds such as wheezes and
rhonchi are a manifestation of airway narrowing
and mucus secretion, respectively,15 and are the
pathophysiological hallmarks of AECOPD.
Crackles are adventitious explosive and discontinu-
ous sounds with frequencies in the spectrum of
200–2000 Hz16 that generally appear during the
inspiratory phase and usually reflect a pathological
process in pulmonary tissue or airways.17

Diminished breath sounds and crackles have
been traditionally associated with pneumonia,
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although little is known about quantification of the relation
between lung sounds alterations and CAP, especially in patients
with COPD. To overcome this situation, many acoustic studies
have examined recognition or automatic analysis of respiratory
sounds.18 Some authors have applied recognition methods to
differentiate automatically between normal and pathological
respiratory sounds. Researchers have designed methods for
automatic detection of wheezes19–21 and crackles22–24 and even
for distinguishing between different types of adventitious
sounds.25–27 Abnormal respiratory sounds have been also
correlated with some high-resolution CT lung findings.28

Efforts have therefore focused on the improvement of auto-
matic detection systems for certain adventitious sounds, to
provide rates directly related to the degree of airway obstruction
or severity of certain respiratory disorders. The weak points of
this strategy become more apparent in the case of AECOPD.
Lung sounds show interpersonal variations. The absence of
wheezes in some patients with significant airway obstruction is
well known, as well as the presence of adventitious sounds even
in the stable phase in patients with COPD.29 Additionally,
crackles are not always present in CAP. A prospective study
reported that 84% of patients diagnosed with pneumonia pre-
sented auscultation abnormalities, and crackles were detected in
only 20.6% patients.30

Methods based on the automatic classification of sounds have
not been generally adopted in clinical practice guidelines for
diagnosis of pneumonia in patients with COPD. Even though
the potential of electronic auscultation for improving detection
of pneumonia has been clearly stated,31 32 new approaches need
to be explored.

The diagnosis of pneumonia with the support of expert systems
has been generally reported over the past few years.33 34 The use
of neural networks for predicting CAP among patients with
respiratory complaints has been also proposed,35 as well as screen-
ing methods using chest radiography.36 These strategies are based
on clinical prediction rules and findings that include patient
history, blood test, radiography, and physical examination.

In this paper a new discrimination method to detect CAP in
patients with COPD using computerized analysis of respiratory
sounds is proposed. Short-time Fourier transform (STFT) ana-
lysis is used for features extraction, principal component ana-
lysis (PCA) for dimensionality reduction, and a probabilistic
neural network (PNN) as classifier. The system provides a
decision-making support tool to help to discriminate between
CAP and AECOPD in patients with COPD.

MATERIALS AND METHODS
Subjects and sound recordings
The population under study consisted of patients referred to the
University Hospital Puerta del Mar in Cádiz (Spain) because of an

increase in respiratory symptoms and a history of COPD. A con-
venience sample of 58 patients (53 men, five women) was studied.
No age limit was applied for patient enrollment. Inclusion criteria
were (a) patients with previous COPD diagnosis and FEV1/FVC
(forced expiratory volume in one second/forced vital capacity)
ratio <0.7 in a stable phase of the disease; (b) with cognitive and
motor ability to actively participate in the study. The local research
ethics committee approved the study and all patients provided
informed consent before enrollment.

Demographic and clinical data of the participants were collected
from the patient history or by personal interview. Clinical diagno-
sis of AECOPD was made when the patient presented with acute
worsening of dyspnea, cough, or sputum production, beyond
normal day-to-day variation sufficient to warrant a change in man-
agement. If chest radiograph shadowing, consistent with infection,
was detected, the patient was considered to have CAP. To support
the latest diagnosis, blood culture and sputum for culture tests
were obtained on hospital admission.12 Two senior specialists
studied each case and classified each patient.

Respiratory sounds were recorded by the patients themselves at
presentation, after their stay in the emergency unit. A tailored
portable sensor was used (figure 1). The device consisted of an
electret microphone with coupling chamber and had a flat
response between 50 and 18 000 Hz. Electronics were embedded
in a housing specially designed for elderly patients that minimized
movement artifacts. The sensor was placed over the trachea, on
the sternal notch, as a close relation between airflow and tracheal
respiratory sounds spectrum has been reported.37 38 The spectral
pattern of tracheal sounds has been shown to be stable with low
variability between subjects.39 Previous studies have pointed out
that lung tissues absorb high-frequency components, and therefore
the trachea might be the preferred location for obtaining add-
itional information.40 Additionally, the trachea offers, in compari-
son with the thorax, a better surface for accessibility and reduction
of noise interference caused by hair and clothes.

All recordings were made in bed, in a semirecumbent position
(elevation of head of bed of 45 degrees). After instructing the
patients to breathe in as deeply as possible, sounds were
recorded for 20 s. Recordings with voice and/or high environ-
mental noise were discarded. The sampling rate was 8000 Hz.

Feature extraction
In this work, tracheal sounds were recorded and processed to
quantify the spectral content of respiratory sounds. Most of the
energy of tracheal sounds is located in the band from 100 to
1200 Hz, although some abnormal sounds may present higher-
frequency components.40 To preserve respiratory information,
the sound signals were band-pass filtered after removing the DC
components by using an equi-ripple band pass (BP) finite
impulse response filter from 100 to 2000 Hz (80 dB of

Figure 1 Details of the tailored
sensor device. Air-coupled conical
chamber, membrane and microphone
are shown. A second microphone is
available for environmental noise
reduction.
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attenuation out of the BP). The objectives of this BP filtering
stage were to prevent aliasing and reduce the influence of heart,
noise and muscle sounds. To enhance noise suppression, the
signal from a second embedded microphone and the estimated
heart signal were used to adaptively filter the respiratory signal
by using a recursive least-squares adaptive filter.41

Respiratory sounds are non-stationary signals and conven-
tional methods of frequency analysis are not recommended. In
order to accurately characterize their spectral time-varying prop-
erties, it is necessary to use non-stationary signal analysis techni-
ques such as time–frequency distributions. In this study, STFT
was used for respiratory sounds analysis. Sound signals were
divided into 25% overlapping intervals of 64 ms. A Hamming
window was used. For each segment, STFT was first calculated
and the resulting power spectrum density (PSD) was normalized
to a scale from 0 to 1. The normalized PSD of each segment
was used as its probability density function and features based
on it, where calculated.

In the feature extraction stage, the information of each of the
recordings was summarized into a reduced set of measurements.
Statistical analysis was carried out to characterize the spectral
properties of the signal. PSD shape, the presence of predomin-
ant frequencies, spectral content in some specific frequency
bands, and entropy, among other features, were estimated to
provide a priori useful information for the purpose of this
study. Details of parameters are given in table 1. Evolution of
each spectral feature was captured by the average and SD of the
series. Therefore, the final dataset comprised 26 numerical-
continuous parameters. Features were then standardized such
that the resulting data had zero mean and unit variance.

Dimensionality reduction: PCA
Since the dataset was composed of a large number of related
variables, a high correlation between some of them was
expected. A statistical technique was needed to find patterns in
the resulting data. The commonly used dimensionality reduction
methods include linear, multidimensional scaling and non-linear
techniques.42 PCA was selected to identify significant correlation
among the features, and ultimately, to retain the most relevant
subset of parameters.43 PCA considers a smaller number of
linear combinations among the original variables. Linear combi-
nations of the 26 variables were used to define a set of 26 new
independent variables or components. The advantage of using
this well-known method is that the variance of most of the
information is stored in the first few components. Therefore,
dimensionality of the original dataset can be reduced with
minimal loss of information.

Classification
PNN is a type of feed-forward neural network designed for clas-
sification through the use of Bayes’ optimal decision rule.44

PNN is based on the radial basis function and combines some
of the best attributes of statistical pattern recognition and feed-
forward artificial neural networks. The network architecture
presents four layers and all the units are fully interconnected.

Performance evaluation
Cross-validation was used to generate a robust stable classifier
and to gauge its generalizability. Leave-one-out cross-validation
often works well for estimating generalization error for continu-
ous error functions, but it may perform poorly for discontinu-
ous error functions such as the number of misclassified cases. As
leave-one-out cross-validation is not usually the most convenient
estimator to use owing to its high variability,45 10-fold cross-
validation was used to estimate the performance of the classifier.

Receiver operating characteristic (ROC) curve analysis was
applied to evaluate the model. The ROC curve is a graphical
representation that shows the relation between the specificity
and sensitivity of the binary classifier. Performance was evalu-
ated according to regular ROC parameters such as the confusion
matrix, accuracy, sensitivity, specificity, predicted values and area
under the ROC curve (AUC).46 The key aspect of the algorithm
is the adoption of the n-fold stratified cross-validation
scheme. It allows stacking—generalizing the outputs of classi-
fiers trained in all folds into a single set and performing the
single ROC analysis on these outputs.47 The operating point
that maximized the sensitivity and specificity pair was selected.

RESULTS
Patient enrollment began in January 2010 and ended in July
2010. Table 2 summarizes the demographic and clinical features
of the participating subjects whose data were analyzed in this
study. In the sample of 58 patients with COPD, 25 were diag-
nosed by physicians as having a pneumonic exacerbation and 33
as having non-pneumonic exacerbations of COPD.

A sample of the results of the STFT analysis applied to the
respiratory signal acquired over the suprasternal notch for both
a non-pneumonic COPD exacerbation and a case of pneumonia
is shown in figure 2. In the latter, relevant spectral intensity
reaches about 1500 Hz, whereas for the patient diagnosed with
a non-pneumonic COPD exacerbation, the spectral intensity
remains below 500 Hz. These results are entirely consistent with
the findings previously reported.48

Table 1 Description of the features set. The dataset was
composed of 26 numerical-continuous parameters

ID Parameter Description

1 Mean frequency It summarizes the spectra by defining the spectral
centroid

2 Median frequency Frequency that divides the power spectrum into
two parts of equal area

3 Spectral crest factor
(SCF)

SCF quantifies the tonality of the signal by
providing an estimation of its irregularity in terms
of ‘flatness’. High values suggest the presence of a
dominant spectral component

4 Shannon entropy
5 Rényi entropy Quantifies irregularity in time frequency

distributions
6 Tsallis entropy
7 RP in the 50–200 Hz

band
The frequency band (50–200 Hz) is related to
vesicular sounds

8 RP in the 200–
400 Hz band

Low-frequency wheezes, rhonchi and coarse
crackles are located in this band

9 RP in the 400–
800 Hz band

This band contains fine crackles and
high-frequency wheezes

10 RP in the 800–
2000 Hz band

High-frequency noise mainly originated by airflow
turbulences in the trachea

11 Second-order
moment

Second-order spectral moment. Variance of the
power spectrum

12 Skewness Third-order spectral moment. Degree of asymmetry
13 Kurtosis Fourth-order spectral moment. Measure of whether

the data are peaked or flat relative to a normal
distribution

These indexes identified spectral characteristics and were calculated from short-time
Fourier transform analysis applied to the respiratory sound signals.
RP, relative power referred to (0, 2000 Hz).
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Quantification of spectral properties was performed through
the indexes described in the previous section. PCA was applied
to the dataset built from frequency features. The first seven
components explained 96% of the cumulative variability of the
input dataset. There was no factor beyond the seventh compo-
nent that accounted for >4% of the total variance. Factor
scores from the first seven PCA components (PC1…PC7) were
thus included as dependent variables in further statistical
analyses.

The confusion matrix calculated after the training and valid-
ation of the classifier is shown in table 3. The confusion matrix
contains information about actual and predicted results obtained
by a classification system. It summed the whole 10 test subsets
in 10-fold cross-validation. The element (i,j) of the matrix
represents the number of times that a class i subject was assigned
to class j.

Sensitivity and specificity are measures of the reliability of a
medical test. Sensitivity refers to the number of cases of a

Table 2 Clinical and demographic data of the study group

Data Total (n=58) Pneumonic exacerbations (PEs) (n=25) Non-pneumonic exacerbations (NPEs) (n=33)

Age (year) 73.9±8.21 74.5±7.71 73.4±8.64
Male gender, n (%) 53 (91.38) 23 (92.00) 30 (90.91)
BMI (kg/m2) 28.8±5.75 30.15±5.80 27.8±5.53
Smokers, n (%) 15 (25.86) 6 (24.00) 9 (27.27)
Ex-smokers, n (%) 43 (74.14) 19 (76.00) 24 (72.73)
COPD grade I, n (%) 1 (1.72) 1 (4.00) 0 (0.00)
COPD grade II, n (%) 11 (18.97) 6 (24.00) 5 (15.15)
COPD grade III, n (%) 18 (31.03) 10 (40.00) 8 (24.24)
COPD grade IV, n (%) 28 (48.28) 8 (32.00) 20 (60.61)
Leukocyte count 13±6.14 15.1±6.92 11.4±4.48
Neutrophils 10.3±5.73 12.8±6.44 8.4±3.73
% Neutrophils 77.4±13.72 82.7±14.59 73.4±15.42
CRP (mg/dl) 9.5±10.19 16±11.29 4.7±4.61

Values are given as mean±SD or number (%).
Leukocyte and neutrophils count expressed in thousands/mm3. COPD severity was classified according to the GOLD guidelines 2011.4

BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein.

Figure 2 Time–frequency plot of a
respiratory signal recorded from a
patient with a diagnosis of (A)
pneumonia and (B) non-pneumonic
chronic obstructive pulmonary disease
exacerbation. The high-frequency
components due to crackles can be
seen in (A) in comparison with (B), in
which most of the energy is
concentrated on the lower band of the
spectrum. Sound intensity (in decibels)
is shown on a color scale (available
online only).
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disease found by a particular test. Specificity refers to the accur-
acy with which a test diagnoses a particular disease without
giving false-positive results. A sensitivity of 72% and specificity
of 81.8% were achieved on validation data. The AUC is a par-
ticularly useful measure of the predictive accuracy of a model.
AUC for the validation patient set processed by the PNN was
0.76. The PNN proposed in this study gave an overall correct
classification rate of 77.6%. A positive predictive value is the
probability of a positive test given the presence of pneumonia,
and a negative predictive value is the probability of a negative
test given the absence of the disease (both indexes expressed as
percentages). The PNN produced a positive predictive value
and a negative predictive value of 75% and 79.4%, respectively.

Comparison of ROC curves calculated from cross-validation
for both the training set and the test set is shown in figure 3.
The selected threshold to minimize misclassification for training
data was 0.54.

DISCUSSION
Pneumonia is an important complication of COPD and little is
known about the clinical course and factors that predispose to
pneumonia in patients with COPD.49 Differentiating pneumonia
from AECOPD has important therapeutic and prognostic
implications.

Diagnosis of pneumonia is based on clinical findings and
usually includes chest radiography. The diagnostic accuracy of
physical findings is generally considered low. Clinical judgment
before chest x-ray or blood test reports has demonstrated mod-
erate sensitivity and specificity. Sensitivity values ranging from
45% to 90%, and specificity values from 47% to 93% have

been reported.50 However, high values of sensitivity and specifi-
city pairs have not been achieved.

Recent studies of the use of expert systems for the detection
of CAP were based on radiological findings. A ROC accuracy of
82.8% using multilayer neural networks has been reported.35

A complex alternative to chest radiography is a complete blood
test. Expert systems using PNN with inputs from the complete
blood test have been proposed with accuracies of 91.7% and
93.9%.33 34

However, the strategy proposed in this study does not
attempt to compete with rules based on image processing or
blood test. Some authors have concluded that ‘traditional chest
examination is not sufficiently accurate on its own to confirm or
exclude the diagnosis of pneumonia’, and have stated that the
main reasons for this low efficiency are that the clinical signs
and symptoms are not very sensitive and specific for diagnosis,
and that the teaching of respiratory semiology has deficiencies.

The reliability of eliciting physical signs in examination of
patients with acute respiratory comorbidities like COPD has to
be taken into account.51 The risk of complications and death
associated with CAP in patients with COPD and other acute
respiratory disorders requires a fast and efficient diagnosis and
early treatment.

Auscultation has been shown to be an important, non-invasive
and simple measure for the diagnosis of lung diseases that can
sometimes detect pathological processes before radiography.52

As individual clinical findings or combination of findings cannot
predict CAP with certainty, prediction rules have been recom-
mended to maximize the clinical utility of diagnostic tests. In
general, few studies have examined the sensitivity, specificity,
and predictive value of individual findings of history and phys-
ical examination in the diagnosis of CAP, especially in the case
of respiratory comorbidities. For the relation between the
finding of crackles and pneumonia, a positive likelihood ratio
ranging from 1.653 to 2.654 has been shown. An additional indi-
vidual finding associated with auscultation is the decrease in
normal respiratory sounds. It has been shown that decreased
breath sounds are significantly more likely to be present in
patients with pneumonia.55

The use of auscultation as a direct indicator for pneumonia
has been reported to have limited diagnosis efficacy. This limita-
tion is mainly attributed to interobserver variability, lack of
standardization, and other minor conditions such as the kind of
stethoscope, noisy rooms, and the experience of the examiner.
But computerized analysis improves most of these conditions by
reducing the influence of noisy environments and objectivizing
the measures.

It is well known that lung sounds spectra of patients with pneu-
monia have significantly higher frequency components than those
of healthy patients,48 which means that the presence or absence of
pneumonia shapes the respiratory sounds spectra. The basis of this
work is that detection of such changes could be useful to discrim-
inate between non-pneumonic and pneumonic patients with
COPD. The proposed method quantifies the spectral properties of
the signal (shape, predominant frequencies, spectral content in
some specific frequency bands, and entropy), condenses them
(PCA) and uses a machine learning algorithm such as PNN for
classification. The method achieved high overall performance
(72% sensitivity and 81.8% specificity). AUC was 0.90 for the
training set and 0.76 for the test set.

To the best of the authors’ knowledge, no published studies
have tested the diagnostic performance of computerized lung
sounds as a direct indicator for pneumonia. The protocol and
methods of an observational study on pediatric pneumonia

Figure 3 Receiver operating characteristic (ROC) curves. Continuous
line: ROC curve calculated using training data. Dashed line: ROC curve
calculated using test set. The area under the curve was 0.90 for the
training set and 0.76 for the test set. The operating point was selected
to maximize the specificity and sensitivity pair in the training set.

Table 3 Confusion matrix from 10-fold cross-validation

Predicted category

Training data Validation data

Actual category NPE Pneumonia NP Pneumonia

NPE 26 7 27 6
Pneumonia 4 21 7 18

NPE, non-pneumonic exacerbation; PE, pneumonic exacerbation.
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diagnosis in resource-poor settings has been recently reported.31

The authors of that study aim to develop a standardized method
for electronic auscultation (signal processing and machine learn-
ing) and to compare its usefulness for the detection of pneumo-
nia with standard approaches. But results are not yet available.

In comparison with standard diagnostic rules that avoid chest
x-ray examinations, the proposed method offers high perform-
ance. Studies on two of the most accepted decision rules
reported an AUC of 0.67 and 0.70 as a performance estimator
of the clinical prediction of CAP.53 56 Therefore, the results indi-
cate that the PCA–PNN network achieved a good overall per-
formance and gave promising results in classifying coexisting
pneumonia in patients with COPD.

In comparison with other network architectures, PNNs are
faster and relatively insensitive to outliers, often present in
sound recordings. Additionally, PNNs generate accurate pre-
dicted target probability scores. Cross-validation leads to pessim-
istic results since it uses smaller training sets to design the
classifier. The use of an unknown test set would provide a more
robust analysis of the sensitivity and specificity of the technique
and further work will be carried out. Furthermore, the next
objective is to test the method on a wider spectrum of patients,
without the limitation of a specific comorbidity.

The results suggest that computerized analysis of respiratory
sounds will be a useful screening tool for CAP diagnosis in
patients with COPD. One of the most important aspects of this
study is that auscultation at a single location (suprasternal
notch) can aid in the diagnosis of pneumonia in patients with
COPD. The method can assist the physician in the final decision
stage, by providing additional information that helps to minim-
ize misdiagnosis. This is especially useful in rural areas (far away
from clinics or radiological facilities) and in resource-
constrained settings where pneumonia can be detected more
readily by auscultation than by radiography because of the avail-
ability of the stethoscope.31

In addition, if detection of CAP based on the variation of
certain parameters extracted from respiratory sounds is possible,
then such parameters can be followed up by remote monitoring
of respiratory sounds. This approach may serve as the basis for
the establishment of personalized alert thresholds to determine
the presence of CAP with a high probability of success in
patients with severe respiratory comorbidities, which is one of
the goals of this study and the reason behind the described self-
auscultation procedure.57

CONCLUSION
In this study, a new hybrid system based on PCA and PNN to
aid the detection of coexisting pneumonia in patients with
COPD is proposed. PNN was chosen because of its simplicity,
robustness to noise, and non-linear decision boundaries. Based
on the cross-validation results, a sensitivity of 72% and a specifi-
city of 81.8% were achieved. Experimental results demonstrated
that the proposed PCA–PNN system applied to electronic aus-
cultation performed significantly well in discriminating CAP in
patients with COPD. The result is a simple, cost-effective tool
that can help in resource-constrained settings and that may have
a great diagnostic impact on telemedicine applications.
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