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Abstract

X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a
mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X
genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of
monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome
system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit
partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or
both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual
fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene
displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that
the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X
chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex
chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the
universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore,
the differentiation of sex chromosomes.
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Introduction

Vertebrates with heteromorphic sex chromosomes have either

male heterogamety like humans (XX female and XY male), or

female heterogamety like birds (ZZ male and ZW female).

Degeneration of the non-recombining Y or W chromosome,

central to the evolution of sex chromosomes, left genes on the X or

Z as a single copy in the heterogametic sex. This resulted in an

imbalance of X or Z gene dosage relative to the autosomes, and

between the sexes.

Different dosage compensation systems have arisen indepen-

dently in diverse organisms, suggesting that dosage compensation

is critical for the survival of species with differentiated sex

chromosomes. Ohno [1] hypothesized that degeneration of the

Y/W chromosome would result in under expression from the X/Z

in the heterogametic sex (equivalent to monosomy), which would

result in pressure to up regulate the single X/Z to restore parity

with the autosomes. Because the homogametic sex has two X/Z

chromosomes, over expression would result in doubled normal

expression (equivalent to tetrasomy), which would result in

pressure for global down regulation of the X/Z to again resort

parity with the autosome (reviewed in [2]). However, recent data

has questioned global over regulation of the X/Z [3,4], sparking

considerable debate [5–7] and suggestion that dosage compensa-

tion evolved in response to a subset of dosage sensitive genes [8].

In eutherian mammals one whole X is transcriptionally silenced

in the somatic cells of females, although many genes located on the

evolutionarily more recent region escape silencing [9]. X

inactivation (XCI) is established early in embryogenesis and is

somatically heritable. In eutherian mammals the silenced X is

chosen at random in a process governed by a large non-coding

RNA transcribed from a locus called XIST (X-inactive-specific

transcript) [10–12]. In all eutherian mammals, XIST is transcribed

from the X to be inactivated, which it coats in cis during early

development, although the timing and regulation of expression

varies between species [13]. After one X is chosen for inactivation,

a specific signature of epigenetic modifications is established [14],

which appears to be conserved in even the most distantly related

eutherians [15].

The increasing availability of genomic data now makes it

possible to study dosage compensation in non-traditional model

organisms such as marsupial and monotreme mammals. In

marsupials, XCI is imprinted, with the paternal X always being

the inactivated homologue [16]. X-inactivation in representative
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Australian marsupials is thought to be incomplete, tissue-specific

and gene-specific [17]. RNA-fluorescent in situ hybridization

(RNA-FISH) showed that within a population of fibroblasts cells

derived from female tammar wallaby there was a mixture of 1X-

active and 2X-active nuclei, the proportion of which was

characteristic of each locus [18]. A similar profile was obtained

for human and elephant X genes that escape inactivation [19].

However, it was shown (with RNA-FISH) in post-mortem tissue of

the South American grey short-tailed opossum that X-inactivation

is efficient [20], and RNA-sequencing revealed that X expression

levels are similar between the sexes [21].

The egg-laying monotreme mammals (platypus and echidna

species) have multiple sex chromosomes that share homology, not

with the therian X, but the bird Z [22,23]. Recent transcriptome

sequencing in platypus showed that compensation is achieved via

upregulation of X genes in males, and that global X-inactivation in

females is likely unnecessary [21]. However, as for marsupials and

escaper genes on the human X, RNA-FISH showed that within a

population of platypus fibroblast cells, there was a mixture of 1X-

active and 2X-active cells, each locus having a characteristic

frequency of inactivation [24].

Data on dosage compensation in birds are fragmentary and

contradictory. Real-time PCR showed equivalent expression of

most Z-borne genes in ZZ male and ZW female chick embryos

(that is, complete compensation) for most genes [25], but global

microarray analysis in chicken, and a small cDNA microarray in

zebra finch showed that male to female ratios were significantly

higher for Z genes than for autosomal genes [26]. A male: female

Z gene dosage of approximately 1.5 was demonstrated by

microarray [27] and RNA-sequencing [21] analyses in chicken,

and dosage ratios of 1.23 was observed in zebra finch [28] and

1.36 in crow [29]. The incomplete dosage compensation of Z-

linked genes, at least in chicken, was reported to be regulated

locally on a gene-by-gene basis, and is tissue and developmental

stage specific [30].

It is difficult to compare dosage compensation between birds

and mammals. However, recent comparative transcriptome

sequencing [21] indicated that genes on the single Z in female

chicken had equivalent expression levels to orthologous genes in

outgroup species, where the Z is autosomal (i.e. expression from

one Z equals expression from two proto-Zs), providing evidence

for global upregulation of the single Z in females. In male chicken

(with two Zs) the ZZ:proto-ZZ expression ratio was 1.13 to 1.56,

indicating that Z gene upregulation was not specific to females. A

similar pattern, although less clear, was observed for genes on

platypus X5. Less efficient upregulation in the homogametic sex

(i.e. ZZ/X5X5: ZW/X5Y5 expression ratio ,2) indicated that

upregulation was more efficient in the heterogametic sex, or that

there was a mechanism to partially reduce expression of Z/X5 in

the homogametic sex. Julien et al. [21] suggested that dosage

compensation only mildly affects the homogametic sex in platypus

and chicken and, as such, there was potentially no requirement for

the evolution of Z/X5 inactivation.

Here we use RNA-FISH to examined chicken and platypus

dosage compensation, which permits detection of transcription

from one or both alleles at specific loci in individual nuclei. We

found that genes on the chicken Z, as well as on the partially

homologous platypus Xs, were expressed from one (or both) alleles

in characteristic frequencies for different loci, just as on the

independently evolved therian X. Our results indicate that

silencing mechanisms were exapted multiple times in the

homogametic sex (likely in response to the upregulation of genes

on the Z/X in the heterogametic sex) resulting in transcriptional

inactivation on non-homologous Zs and Xs in distantly related

species.

Results

We examined transcription in individual fibroblasts, using

RNA-FISH. As probes, we chose bacterial artificial chromosome

(BAC) clones containing known genes on the Z chromosome in a

representative bird (chicken), and on the X chromosomes in a

representative monotreme (platypus). For both species there is a

genome assembly available [31,32].

Partial Inactivation of Z Genes in Chicken Cells
As controls, we chose ten BACs containing known autosomal

genes, including a BAC containing GAPDH, which was used as a

control in all experiments. In RNA-FISH experiments with each

of the ten autosomal BACs, we observed two signals in at least

97% of nuclei in both male and female fibroblast cells (Table S1

and Figure S1). Thus, autosomal genes are generally transcribed

from both alleles in cultured chicken fibroblasts.

We selected eleven Z-borne BACs, five of which contained a

single gene, and six contained two or more genes (Table S1). We

performed two-color RNA-FISH, with the autosomal control

(GAPDH) and each test gene (Z-borne and autosomal), on male

(ZZ) and female (ZW) fibroblasts (Table S1), and scored $100 cells

for each hybridization. To control for polyploidy and accessibility

of the probe into an individual nucleus, only nuclei with two

signals from the control BAC were scored for the test BAC.

The frequency with which expression of the single Z in ZW

females was detected as a single signal, controlled for the

hybridization efficiency of each Z probe. All Z BAC probes

displayed hybridization efficiencies of between 95–100% (Table

S1). Even at the lowest hybridization efficiency of 95% (p = 0.95;

q = 0.05), hybridization in ZZ male cells would produce few nuclei

with 0 (q2 = 0.25%) or 1 (2pq = 9.5%) signal (see Materials and

Methods).

For all probes hybridized to ZZ male nuclei, the cell population

consisted of a mixture of nuclei that were 1Z-active (one signal)

and 2Z-active (two signals) (Table S1). No locus was completely

1Z-active or completely 2Z-active. Instead, each Z locus was

inactivated in a characteristic frequency of cells, ranging from 15%

Author Summary

Dosage compensation is a mechanism that restores the
expression of X chromosome genes back to their original
level when Y homologues lose function. In placental and
marsupial mammals this is achieved by upregulating the
single X in males. The carry-through of overexpression to
females would result in functional tetraploidy, so there is
subsequent inactivation of one X chromosome in the
somatic cells of females, leaving males (XY) and females
(XX) with a single upregulated X. In contrast, genes on the
five platypus (a monotreme mammal) X chromosomes and
the chicken Z chromosome (which are orthologous but
independently evolved) are expressed globally at a higher
level in female platypus and male chicken respectively,
indicating partial dosage compensation. Here, for the first
time, we provide evidence for inactivation of genes on the
chicken Z chromosome in ZZ males, and on all five Xs in
female platypus. Our results suggest that the silencing of
genes on sex chromosomes has evolved independently in
birds and mammals, and is, therefore, a critical step in the
pathway to dosage compensate independently evolved
amniote sex chromosomes systems.

Gene Silencing on the Chicken Z Chromosome
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to 51% (Figure 1), that was significantly different (p,0.01 after

Bonferroni correction and estimating experimental error; see

Materials and Methods) from the number of 1-Z active nuclei

expected due to inefficient hybridization. This frequency was

reproducible between biological replicates for a subset of BACs, in

which RNA-FISH was repeated on fibroblasts from a second

individual (Table S1). The activity status of Z loci in a given

nucleus did not appear to be clonally inherited (i.e. if the mother

cell was 2Z-active both daughter cells should be 2Z-active; or

conversely if the mother cell was 1Z-active both daughter cells

should be 1Z-active); we observed daughter cells in our

preparations in which one was 1Z-active and the other 2Z-active

(Figure S2).

There was no obvious clustering of loci on the Z with

particularly high or particularly low frequencies of 1Z-active cells,

suggesting that the probability of transcriptional inhibition of a

gene is independent of its physical location. The frequency of 1Z-

active nuclei for the six BACs within the proposed dosage

compensation ‘valley’ (129B9, 110A9, 164N4, 87K13, 57B13, and

89C2) was not lower than the five BACs in the ‘peak’ (65D18,

30H20, 73F14, 112C1, and 163I20) regions of the Z chromosome

identified in chicken [28,33]. However, there did appear to be a

correlation of M:F expression ratio (calculated from data in [34];

see Materials and Methods) of Z-genes, with the proportion of 1Z-

active nuclei in males (R2 = 0.47, p = 0.03). If a gene was over

expressed in males compared to females, there was a greater

percentage of 1Z-active nuclei for that locus in males (Figure S3A).

From these initial RNA-FISH results it could not be determine

if transcriptional inhibition of different loci were on the same Z

chromosome, or on different Z chromosomes. Therefore we used

two-color RNA-FISH to examine transcription of two pairs of

neighbouring Z genes in female and male chicken nuclei:

SMARCA2/PTPRD (,2 Mb apart), and BNC2/MLLT3

(,1.5 Mb apart) (Table 1) (Figure 2). In ZW female nuclei, we

observed co-location (close proximity) of signals in 96% of nuclei

that expressed both genes. In male nuclei, for each cell in which

both loci were 1Z-active, we observed co-location of signals in

96% of nuclei (Figure 2A), indicating transcription from the same

Z chromosome. This is consistent with the presence of an active Z

(Za), and an inactive Z (Zi) on which genes are prone to silencing.

Two-color RNA-FISH experiments with the same gene pairs

also provided the opportunity to determine whether the silencing

of neighbouring genes on the Zi chromosome was coordinated. In

cells in which at least one of the neighbouring gene pairs was 2Z-

active, we observed (for both Z gene pairs) that the second locus

was simultaneously transcribed (i.e. both loci were 2Z-active in the

same nucleus; Figure 2B–C) at a frequency no greater than

expected by chance (see Materials and Methods; Table 2),

consistent with independent silencing of tightly linked genes on

Zi. The frequency of nuclei, in which both loci in a gene pair are

expected to be 2Z- active, was the product of 2Z-active frequencies

of each gene (from initial RNA-FISH results; Table S1).

Partial Inactivation of X Genes in Platypus Cells
A total of 40 platypus BACs were analyzed: 19 in X-specific

regions (two on X1, one on X2, two on X3, 14 on X5), nine in

pseudoautosomal regions (PAR), and 12 on autosomes. The

autosomal BAC bearing HPRT (on chromosome 6) was used as the

autosomal control in all experiments. Hybridization efficiencies for

each probe were assessed in male cells. These ranged from 94% to

100% (Table S2). At least 100 cells were scored for each

hybridization.

In RNA-FISH experiments with each of the 12 autosomal

BACs, we observed two signals in at least 95% of nuclei in both

male and female fibroblast cells (Table S2 and Figure S4). Thus

Figure 1. RNA-FISH activity maps of the platypus Xs and chicken Z chromosomes. Bars represent the percentage of homogametic nuclei
transcribing 2 (blue), 1 (red) or 0 (grey) alleles for each locus. Loci in pseudoautosomal regions (grey boxes) were tested in both male (indicated by a
circle) and female (indicated by a star). Green coloring on platypus Xs represents homology to the chicken Z [23]. Platypus X chromosomes are not to
scale (see Figure S5). Genes denoted by * were analysed in [24].
doi:10.1371/journal.pgen.1003635.g001

Gene Silencing on the Chicken Z Chromosome
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autosomal genes are generally transcribed from both alleles in

cultured platypus fibroblasts.

For all X specific loci we observed 1X-active female nuclei at a

significantly greater frequency (p,0.01 after Bonferroni correction

and estimating experimental error; see Materials and Methods)

than expected from inefficient hybridization. No loci were

completely 1X-active, or 2X-active in every nucleus, and

frequencies of 1X-active nuclei ranged from 25% to 62% for

different loci. There was no obvious clustering of genes on any X

with particularly high, or particularly low frequencies of 1X-active

nuclei (Figure 1). However, for loci that were expressed at a higher

level in females compared to males, there did appear to be a

correlation of F:M expression ratio (in cultured fibroblast

calculated from data in [21]; see Materials and Methods) of X-

genes with the proportion of 1X-active nuclei in females

(R2 = 0.54, p = 0.004). If a gene was over expressed in females

compared to males, there was a greater percentage of 1X-active

nuclei for that locus in females (Figure S3B).

The activity status of X loci in a given nucleus was not strictly

clonally inherited (i.e. if the mother cell is 26active both daughter

cell should be 26 active; or conversely if the mother cell is 16
active both daughter cell should be 16 active); we observed

daughter cells in which one was 1X-active and the other 2X-active

(Figure S2). We therefore conclude that genes on the platypus X

chromosomes are subject to inactivation in a proportion of nuclei

that is characteristic for each gene.

To determine if transcriptional inhibition of adjacent loci was

coordinated, we used two-color RNA-FISH to examine transcrip-

tion of three pairs of neighboring genes on platypus X5: MPDZ/

NFIB (,500 kb apart), HSD17B4/SEMA6A (,1.8 Mb apart) and

SEMA6A/SLC1A1 (,500 kb apart) (Table 1) (Figure 2A–C). As

expected, in male controls we observed co-location of signals in

100% of nuclei for each gene pair. In female nuclei in which both

loci were 1X-active, we also observed co-location of signals in

100% of nuclei for each gene pair tested (Figure 2A), consistent

with the presence of a single active X5 (X5a), and an X5 (X5i) on

which genes are prone to silencing.

Subsequently, we tested whether inactivation of adjacent loci

was synchronized on X5i for these same neighbouring gene pairs

by observing, in cells with one gene 2X-active, the frequency at

which the second gene was 2X-active. We observed 2X-active

nuclei at frequencies that were significantly (p,0.01) greater than

expected by chance (Table 2, Figure 2; see Materials and

Methods), indicating at least regional coordination of transcription

on X5i. It was not possible to assess coordinated transcription over

extended regions because FISH signals derived from X5a could

not be distinguished from signals derived from X5i (see Materials

and Methods).

Using RNA-FISH we also examined, in both male and female

fibroblasts, transcription from genes located in the PAR of

platypus sex chromosomes. We studied one locus in each of

PARs X2/Y2, X3/Y2, X3/Y3 and X4/Y3, two loci in X5/Y4, and

three loci in X1/Y1 (Figure S5). We expected to see nearly 100%

2X- active nuclei in both males and females, as for loci in the

human PAR1, and the autosomal controls. However, all nine

pseudoautosomal BACs tested were 16active in 27–42% of male

nuclei, and 16–47% of female nuclei, indicating significant

(p,0.01 after Bonferroni correction) PAR gene inactivation in

both sexes for seven of the nine loci tested (Table S2, Figure 1).

Importantly, two chicken autosomal BACs, orthologous to the

platypus PAR genes that are subject to partial silencing, were 2-

allele-active. Additionally, we demonstrated that four of the

partially inactivated chicken Z/platypus X5 loci tested here are

always 2 allele-active in human fibroblasts (Table S3), where they

are autosomal. Finally, two of the biallelically expressed autosomal

chicken BACs (Table S1), and four of the biallelically expressed

autosomal platypus BACs (Table S2), tested here contained genes

orthologous to X genes in human where they are subject to

silencing. These experiments demonstrate that inactivation was

dependent on the type of chromosome a locus was located on (i.e.

sex chromosome or autosome), rather than it being a phenomenon

unique to the loci examined here.

Discussion

Partial Sex Chromosome Inactivation
Using RNA-FISH, we demonstrate for the first time that Z

inactivation plays a role in chicken dosage compensation, and

confirmed that inactivation is also a feature of orthologous

platypus X loci, as was previously shown by Deakin et al. [24].

Our observations conflict with those of a previous study of five

chicken Z loci using RNA-FISH. Kuroda et al. [35] reported that

most male nuclei expressed both Z alleles in five different tissue

types (two Z loci were tested in liver, and one each in kidney,

spleen and retina), and suggested that there was no inactivation on

the chicken Z chromosome. The inconsistency in findings with this

study may be due to the different tissue types used, and different

inactivation profiles of chicken Z genes in other tissue types would

not be surprising. We used fibroblast cells because they are easily

collected and cultured from species that are difficult to sample, and

to be consistent with our previous studies of sex chromosome

silencing in mammals [18,19,24].

Additionally, Kuroda et al. [35] concluded that inactivation

does not occur on the chicken Z because the frequency of

detecting two signals of hybridization was similar for the

autosomal probe and the Z probes (70–80%). However, the

Table 1. RNA-FISH analysis of transcription from neighbouring loci in homogametic nuclei.

Gene Pair Distance apart (Mb) Number of nuclei scored
% nuclei with coordinate
transcription

Chicken Z

SMARCA2,PTPRD 2 98 96

BNC2, MLLT3 1.5 100 96

Platypus X5

MPDZ, NFIB 0.5 30 100

HSD17B4, SEMA6A 1.8 26 100

SLC1A1, SEMA6A 0.5 22 100

doi:10.1371/journal.pgen.1003635.t001

Gene Silencing on the Chicken Z Chromosome
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detection frequencies (1 or 2 signals observed) in male nuclei for

the autosomal and Z probes were low (which were 66–77%, and

were not co-hybridized). In this study we co-hybridized our

autosomal control and test genes using one cell type, and only cells

with two autosomal signals were scored for the test gene,

controlling for ploidy and probe accessibility into individual

nuclei. As a result we obtained much higher hybridization

efficiencies, providing for much simpler interpretation.

An exhaustive study of male-female expression ratios using

microarrays showed that different loci on the chicken Z are

compensated to different extents [26,30], and Julien et al. [21]

eloquently demonstrated that the Z/X5 is upregulated in the

Figure 2. Transcriptional activity of neighbouring chicken Z loci and platypus X5 loci in fibroblasts. Gene names are color coded to
correspond to signal color. A) In nuclei with only one allele active for both genes the signals co-locate in both sexes. B) Nuclei from the homogametic
sex in which both genes are 2Z/2X-active. C) Nuclei from the homogametic sex in which the active Z/X expresses both genes and the other
(inactivatable) Z/X expresses only one gene.
doi:10.1371/journal.pgen.1003635.g002

Gene Silencing on the Chicken Z Chromosome
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heterogametic sex in chicken/platypus. These studies assessed

transcription across whole cell populations, so could not distin-

guish between partial expression in all nuclei, and heterogeneity of

expression of different cells. In male chicken fibroblast nuclei, we

found for all loci a mixture of 1Z-active and 2Z active cells at

reproducible frequencies (15% to 51% 1Z-active, depending on

the locus). Therefore, we demonstrate that in the homogametic sex

there is partial inactivation of one Z allele.

As such, these results demonstrate that an integral step of the

partial bird dosage compensation system must include the

silencing of one Z allele in males, analogous to the inactivation

we observed here (and previously [24]) on the orthologous

(although independently evolved) platypus X5, and the indepen-

dently evolved therian mammal X chromosome. We also observe

that loci over expressed in the homogametic sex were more likely

to be 1Z/X-active, indicating that there is pressure to reduce

expression of these genes in the homogametic sex. We conclude

that partial inactivation on the Z in birds, and at least on four of

the five X chromosomes in platypus, is likely in response to Z/X

upregulation (perhaps of only several dosage sensitive genes)

carrying through to the homogametic sex. Because higher

transcript levels in the homogametic sex appear to correlate with

a greater percentage of 1Z/X-active nuclei, evolution to down

regulate the chicken Z (and platypus Xs) is conceivably an ongoing

process. Were everything in equilibrium 1Z/1X-activity should

correlate with a 1:1 transcript ratio between the sexes.

Distribution of Inactivation over the Sex Chromosome
We found no correlation between the extent of inactivation and

the location of the gene on the chicken Z (Figure 1), and did not

observe stronger inactivation of loci in the dosage compensation

valley, which was detected on the chicken Z chromosome using

microarrays [26,28,33], and is differentially methylated on the two

Z chromosomes in males [36]. The functional significance of this

dosage compensation valley is unclear because it is not conserved

in zebra finch [28]. Other studies of chicken concluded that the

dosage compensated valley region, concentrated in genes with low

male to female expression ratios, simply contains genes with a

strong female bias [30,37], although this interpretation has also

been challenged [38,39]. It is important to note that our data does

not necessarily conflict with original reports on the dosage

compensation valley region [33], in which it was suggested that

females up-regulate genes, rather than males down-regulating

genes.

We also observed no clustering of platypus X-borne genes with

very low or very high frequencies of 1X-active nuclei (Figure 1).

This implies that the probability of X inactivation is not correlated

with gene location, and provides no evidence for an X

chromosome inactivation center from which inactivation might

spread.

Coordinate Control of Sex Chromosome Activity
We observed that adjacent genes were always expressed from

the same Za chromosome in male chicken cells. This is consistent

with a hypothesis that all loci on one Z chromosome are active

(Za), and loci on the other Z (Zi) are prone to inactivation in a

proportion of cells. We found that the probabilities of expression of

adjacent loci on the Zi were not correlated, suggesting that escape

from inactivation of each locus on Zi is independently regulated.

In female platypus cells, our analysis of three platypus X5 pairs

showed co-location of signals for neighbouring loci (Table 2;

Figure 2A), consistent with coordinate activity on one X5 (X5a)

and inactivation of loci on the other X5 (X5i) in a proportion of

cells in females. Partial activity of genes on Xi is consistent with the

previous demonstration that both alleles were transcribed [24].

Unlike chicken, neighbouring genes on platypus X5 showed

concordant 2X-activity (Figure 2B), implying that the regulation of

transcription from X5i is at least under regional control.

We suggest, therefore, that in cells from male chickens there is

one active Za, and one partially inactive (‘‘inactivatable’’) Zi on

which loci have specific probabilities of being inactivated.

Likewise, we propose that in cells from female platypus, there is

one active Xa and one partially inactive (‘‘inactivatable’’) Xi on

which loci have specific probabilities of being inactivated. Without

allelic markers that would distinguish paternal and maternal Z/X

chromosomes, we cannot determine whether silencing is random

or imprinted. Allelic differences were used to demonstrate that

both alleles are expressed, apparently at equivalent levels, in

female platypus heterozygous for FBX010, GLIS3, and SHB [24].

These loci are all expressed from Xi in about half the cells, so the

approximately equal representation of the two alleles might favor a

random inactivation hypothesis; however peak intensity on

sequencing trace files is at best semi-quantitative, so this question

remains open.

Ancient Gene Silencing and the Evolution of XCI
Because platypus sex chromosomes share homology with the

chicken Z chromosome, our observation of inactivation in a

proportion of cells for genes on the sex chromosomes in the

homogametic sex of a representative bird (ZZ male chicken) and

monotreme (XX female platypus) could be interpreted as the

evolution of a silencing mechanism on an ancient bird-like Z in a

Table 2. Frequency of nuclei transcribing both alleles of neighbouring loci.

Gene Pair Number of nuclei scored Expected (%) Observed (%) p-value

Chicken Z

SMARCA2/PTPRD 216 45.6 45.67 0.201

BNC2/MLLT3 216 56.21 55.95 0.776

Platypus X5

MPDZ/NFIB 243 18.6 55.87 ,0.01

HSD17B4/SEMA6A 213 11.4 56.15 ,0.01

SLC1A1/SEMA6A 170 7.8 52.05 ,0.01

Expected frequencies of nuclei transcribing from both allelels of neighbouring loci were calculated from observed frequencies of 2Z-active (or 2X-active) nuclei (Table S1
and S2). For example, SMARCA2 was 2Z-active in 76% of nuclei and PTPRD was 2Z-active in 60% of nuclei. Therefore, it was expected that they should both be 2Z-active
in 0.76*0.6 (45.6%) of nuclei. P-values were calculated with a X2 test with 1 degree of freedom. Bonferroni correction was conducted.
doi:10.1371/journal.pgen.1003635.t002
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common reptile-mammal ancestor. However, it is uncertain

whether the bird Z/platypus X homology represents identity by

descent (reviewed in [40–42]), but under either scenario the sex

chromosome inactivation observed here is likely independently

evolved [43].

Similar patterns of 1X gene expression in a proportion of cells

have been observed in marsupials (tammar wallaby) [18] and

escaper genes on the X in eutherians (elephant, mouse and

human) [19]. The marsupial and eutherian X shares a large

conserved region, which is completely non-homologous with the

sex chromosomes of birds and monotremes. Thus, the probabi-

listic inactivation we observed in birds, monotremes and therian

mammals was independently exapted from an ancient toolkit of

mechanisms to turn off transcription of one allele. Indeed, this

partial silencing system shares characteristics with monoallelic

expression of some autosomal mammalian genes, such as

interleukins (IL2, IL4, IL5, IL10, IL13) [44–48].

We propose that probabilistic silencing of the Z or X

chromosome in the homogametic sex is an early step in the

evolution of sex chromosome inactivation. A major difference in

the inactivation systems is the extent of coordination. This is most

evident for X inactivation in eutherian mammals, which is

coordinately controlled by XIST, a locus that is absent outside

eutherians [49]. In both chicken and platypus, the co-expression of

neighbouring loci on the Za/X5a implies that the choice of which

Zi/Xi to inactivate is controlled at least at the regional level, and

possibly at the level of the whole chromosome, and in platypus (but

not chicken) the probability of expression of neighbouring loci on

X5i is at least regionally coordinated.

In eutherian mammals silencing was augmented by additional

molecular changes (including histone modification and DNA

methylation), into the stable and complex inactivation system

typical of most genes on the conserved region of the eutherian X

(XCR), which shows tight 1X-active expression observed at the

single cell, as well as the population level [9,19]. In contrast, the

evolutionarily younger X added region of the human X (XAR)

contains many escaper genes that show a probabilistic expression

pattern similar to that of birds and monotremes. The marsupial X,

though homologous to the eutherian XCR, displays a pattern of

expression similar to the eutherian XAR, monotreme Xs and bird

Z, suggesting that changes to the regulation of the eutherian XCR

occurred after the divergence of marsupials from eutherian

mammals 150 million years ago. This is consistent with the

different epigenetic profiles displayed by the marsupial X and the

eutherian XCR [15,20,50].

Inactivation of Pseudoautosomal Genes
PAR inactivation has intriguing implications for sex chromo-

some evolution. The accepted hypothesis for the evolution of sex

chromosomes and dosage compensation is that Y degeneration

resulted in loss of Y gene function, which in turn drove the

evolution of dosage compensation (resulting in XCI in therian

mammals) [1,51]. However, an alternate hypothesis is that the

spread of the XCI signal into undifferentiated X regions preceded,

and drove, degradation of homologous Y regions [52].

Genes in the human and mouse PAR are exempt from X-

inactivation because the Y copy complements the X [53]. We

therefore expected X and Y alleles of platypus PAR genes to be

active in all nuclei in both sexes, as they are for genes in the human

PAR1. Surprisingly, we observed a significantly lower frequency of

2X-active cells in both sexes for seven of the nine PAR loci. This

confirms the observation [24] that other PAR loci were 1-allele

active in platypus, and implies that inactivation of PAR genes

regularly occurs in platypus. This contrasts with the expression of

all autosome loci from both alleles in nearly all cells.

In females, inactivation of genes on the X PAR might be

achieved via spreading of inactivation from the X-specific regions,

as has been observed in the recently evolved human PAR 2

[54,55]. However, PAR inactivation in males cannot be the result

of XCI spreading, instead Y PARs could be inactivated by their

proximity to heterochromatin on the male-specific region of the Y.

It is possible that upregulation of the active X chromosomes in

platypus, which maintained parity with autosomal genes, also

resulted in upregulation of genes in the PARs. To mitigate this

there was selection for partial inactivation of Xi PAR genes in

females, and Y PAR genes in males.

In conclusion, our studies of dosage compensation on indepen-

dently evolved amniote sex chromosomes reveals common

patterns of inactivation. This suggests that repressive molecular

mechanisms were independently exapted to reduce the probability

of transcription from one Z or X chromosome in the homogametic

sex, in response to upregulation (perhaps of only a subset genes) in

the heterogametic sex.

Materials and Methods

Ethics Statement
The study was approved, and all samples were collected and

held under The Australian National University Animal Experi-

mentation Ethics Committee proposal numbers R.CG.11.06 and

R.CG.14.08.

Identification of BAC Gene Content
Genes were chosen based on three criteria: 1) Widespread

expression in other species to maximize the chance they were

expressed in platypus and chicken fibroblast cells. 2) A BAC was

preferentially chosen if it contained a single gene. 3) Loci were

selected that were distributed at roughly even intervals along

chicken Z and platypus X5. On some of the platypus X

chromosomes loci selection was limited by the paucity of anchored

BACs. BACs containing chicken and platypus genes were ordered

from CHORI BACPAC Resources Centre (http://bacpac.chori.

org/). Chicken BACs bearing genes of interest were chosen using

the UCSC genome browser BAC track (http://genome.ucsc.edu/

cgi-bin/hgGateway). Platypus BACs were from Veyrunes et al.

[23]. Additional platypus BACs were identified by blasting the

BAC end trace archive (http://www.ncbi.nlm.nih.gov/Traces/

trace.cgi).

Cell Culture and RNA-FISH on Chicken and Platypus
Interphase Nuclei

Chicken fibroblast cell lines were established from 8-day-old

chicks; metaphase spreads were karyotypically normal. Platypus

fibroblast cell lines were established from adult wild animals that

were karyotypically normal.

Platypus and chicken fibroblast cells were cultured at 32uC and

37uC respectively in 5.0% CO2 on gelatin-coated coverslips in 1:1

AmnioMax C100 medium (Invitrogen)/DMEM 10% FCS to a

density of 60 to 80%. RNA-FISH was carried out as previously

described [18]. Hybridization of the probe to homologous DNA

will not occur because there is no DNA denaturation step in the

RNA-FISH protocol.

RNA-FISH Scoring and Statistical Analysis
For chicken RNA-FISH experiments a BAC from chromosome

1, which contained the gene GAPDH (CH261-14L1), was used as

the autosomal control. For platypus RNA-FISH experiments a
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BAC from chromosome 6, which contained HPRT1

(OaBb_405M2; GenBank Accession No. AC148426), was the

autosomal control. Only diploid nuclei (two signals from the

autosomal BAC) were scored for the test gene (X/Z or

pseudoautosomal).

For each test gene, 1X- or 1Z-active nuclei were observed as

one signal, and 2X- or 2Z-active nuclei were observed as two

signals. Hybridization efficiencies (p) were obtained from results in

the heterogametic sex (in which one signal is expected in all

nuclei). These were used to calculate the expected frequency of

nuclei with two signals, one signal, and no signals in the

homogametic sex using the formula p2+2pq+q2 = 1; where p2 is

the expected frequency of nuclei with two signals, 2pq (q = 1–p) is

the frequency of nuclei with one signal, and q2 is the frequency

with no signal. P-values were calculated using a x2 test with two

degrees of freedom and Bonferroni correction was conducted.

For a more rigorous statistical analysis we removed no signal

cells from the dataset, and calculated experimental error using

missed hybridization events in our autosomal RNA-FISH

experiments. In chicken we conducted 16 autosomal RNA-FISH

experiments and scored a total of 1756 nuclei, each of which

should produce 2 signals, for a total of 3512 signals. We observed a

total of 12 nuclei with no signals and 16 nuclei with one signal,

which is equal to 40 missed hybridisations out of 3512 (1.14%).

Following a Poisson distribution, 95% confidence limits for 40

events gives a minimum of 28.58 and a maximum of 54.47. The

upper value of the 95% confidence limits represents 1.55%

experimental error (i.e. 54.47 out of 3512). For platypus, using

exactly the same approach (18 autosomal RNA-FISH experi-

ments, 1884 nuclei scored in total, 3768 expected signals, 69

missed hybridisations, upper 95% confidence interval of 87.32),

maximum experimental error was estimated at 2.32%. All

observed values were adjusted towards the expected values by

1.55% and 2.32% in chicken and platypus respectively. P-values

were recalculated using a x2 test with one degree of freedom.

Significance remained (after Bonferroni correction) for all BACs.

Taking into account an arbitrary conservative experimental error

of 10% (65%), and adjusting all the observed values by 5%

towards the expected values still results in significant p-values.

Transcript Abundance
Expression values were obtained for known genes on each BAC

in chicken and platypus (from [21,34]), and expression ratios

calculated. If a BAC carried more than one gene, expression data

from the gene that spanned the largest proportion of the BAC was

used (DMRT1/3 expression data was not included due to its

involvement in sex determination). For chicken expression data

was available for brain, cerebellum, heart, kidney and liver.

Because no data were available for cultured fibroblasts, an average

M:F expression ratio was taken across all tissues to best control for

tissue specific expression changes. For platypus, data were

available for cultured fibroblast cells, which was used to calculate

F:M expression ratios because the present study was conducted in

cultured fibroblasts.

These expression ratios were plotted against the percentage of

1Z/1X-active nuclei observed for the relevant BAC. If an RNA-

FISH experiment was repeated for a BAC, an average observed

percentage of 1Z/X activity was used. Scatterplots were drawn

(Figure S3), and R2 and p-values were calculated in Microsoft Excel.

Scoring Coordinated Transcription/Transcription
Inhibition of Adjacent Genes

RNA-FISH signals co-locate in the nucleus when closely linked

and transcribed from the same chromosome, whereas signals from

genes transcribed from different chromosomes (or distantly linked

on the same chromosome) are further apart. We only used pairs of

genes physically close enough to each other to give unmistakable

results.

To determine if the there was a single active Z (or X for

platypus), all nuclei that were 1Z (or 1X) active for both loci in a

pair were scored. Co-location of the two signals was interpreted as

a single active Z (or X) in that nucleus. The expected frequency of

nuclei that were 2Z (or 2X) active for both loci in a gene pair was

the product of individual 2Z (or 2X) frequencies of each gene

(from initial RNA-FISH results). To determine if inactivation of

neighbouring gene pairs was coordinated, this frequency was

compared to the observed frequency of nuclei that were 2Z (or 2X)

active for both loci. P-values were calculated using a x2 test with

one degree of freedom and Bonferroni correction was conducted.

Supporting Information

Figure S1 DAPI stained plane of female chicken fibroblasts

demonstrating high hybridization efficiency with the BAC

CH261-100P10 (gene CRIM1). Insets are high magnification

images of each nucleus to display the signals. Signals in a different

focal plane, and appear weak, are arrowed. A tetraploid nucleus is

denoted with 4n.

(TIF)

Figure S2 RNA-FISH experiments on daughter cells where one

is 1Z/X active, and the other is 2Z/2X-active. A) Expression of

BNC2 in male chicken daughter cells. B) Expression of SEMA6A in

female platypus daughter cells.

(TIF)

Figure S3 A) Chicken male: female transcript abundance ratio

plotted against percentage of nuclei in males with 1Z-activity. B)

Platypus female: male transcript abundance ratio plotted against

percentage of nuclei in females with 1X-activity.

(DOCX)

Figure S4 DAPI stained plane of female platypus fibroblasts

demonstrating high hybridization efficiency with the BAC

CH236-27K18 (gene IGF1R). Insets are high magnification images

of each nucleus to display the signals. Signals in a different focal

plane, and appear weak, are arrowed. A tetraploid nucleus is

denoted with 4n.

(TIF)

Figure S5 Sex chromosome system in a male platypus. PARs are

notated according to the sex chromosomes that bear them, in

order X1/Y1, X2/Y1, X2/Y2, X3/Y2, X3/Y3, X4/Y3, X4/Y4, X5/

Y4, X5/Y5. Pink represent homologous regions. Lines represent

loci analyzed in this study and in Deakin et al. [24].

(TIF)

Table S1 RNA-FISH data for chicken loci.

(DOC)

Table S2 RNA-FISH data for platypus loci.

(DOC)

Table S3 RNA-FISH dataset for human loci orthologous to

chicken Z/platypus X loci.

(DOCX)
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