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Abstract

The alveolar type Il epithelial cell, regarded historically as a key target cell in initial injury by silica, now appears to be
important in both defense from lung damage as well as elaboration of chemokines and cytokines. The molecular
basis for silica-induced epithelial cell injury is poorly understood. In this study we explored the activation of nuclear
factor Egr-1 and related signal pathway. Human Il alveolar epithelial line A549 cells were exposed to silica for
indicated time to assay the expression and activation of Egr-1 and upstream MAPKs. Immunofluorescence, western-
blot techniques, RT-PCR, Electrophoretic mobility shift assay (EMSA), transient transfection assay, kinase inhibitor
experiments were performed. It was found that the expression of Egr-1 at mRNA and protein level was significantly
increased in A549 cells after administration with silica and the activity of Egr-1 peaked by silica treatment for 60
minutes. Furthermore, phosphorylated-ERK1/2, P38 MAPKs (the upstream kinase of Egr-1) ballooned during
15-30minutes, 30-60minutes respectively after silica exposure in A549 cells. By administration of ERK1/2, P38
inhibitor, the expression and transcription of Egr-1 were both markedly decreased. But PKC inhibitor did not prevent
the increase of Egr-1. These results indicated Egr-1 played a critical role in silica-induced pulmonary fibrosis in an
ERK1/2, P38 MAPKs-dependent manner, which suggests Egr-1 is an essential regulator in silicosis, and underlines a
new molecular mechanism for fibrosis induced by silica.
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Introduction

Tissue fibrosis, the pathological hallmark of scleroderma/
systemic sclerosis, pulmonary fibrosis, glomerulosclerosis, and
other chronic diseases, is a major determinant of morbidity and
mortality [1]. Currently there are no effective therapies to arrest
or reverse the process of fibrosis. Furthermore, despite its
enormous clinical impact, the pathogenesis of this disease
remains poorly understood. Recently, growing studies
demonstrated Egr-1 played a key role in the pathogenesis of
fibrosis [2-5]. But how Egr-1 affects the process of pulmonary
fibrosis especially silicosis was seldom reported.

Silicosis is an inflammatory and fibrotic lung disease caused
by inhalation and deposition of silica dust. As known,
inflammation and fibrosis following silica inhalation has been
associated with persistent up-regulation many
“proinflammatory” factors such as TNF-alpha [6] and TGF-beta
[7]. Accumulating evidence proved that transcription of the
maijority of these proinflammatory factors is regulated by Egr-1
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[8]. Egr-1 is an 80-82 kDa-inducible zinc finger transcription
factor that has also been identified as nerve growth factor-
induced A, Krox-24, ZIF-268, ETR-103, and TIS-8, discovered
independently by a number of laboratories searching for factors
regulating cell growth and proliferation [9,10]. EGR-1 was
originally identified as one immediate early gene [11]. It
mediates its effects by regulating the transcription of a wide
array of downstream genes involved in inflammation [12],
matrix formation [13], apoptosis [14] and remodeling [15].
Increasing studies proved that Egr-1 played an important role
in inflammation and fibrogenic diseases [8,12,16—18]. Grotegut
et al [19] demonstrated Egr-1 induces epithelial-mesenchymal
transition (EMT), an important cellular response involved in
silicosis. So increasing evidence indicates Egr-1 is the key
regulator in the progression of silicosis. In this paper we focus
on the expression and activation of Egr-1 in A549 cells (a cell
model for lung epithelial cells) exposed to silica and related
signal pathway.
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The signal transduction pathways leading to Egr-1 activation
have been well-discussed in the last several years. In many
conditions Egr-1 is a downstream target of phosphorylated
MAPKs, which means that the activation of Egr-1 is dependent
on MAPKs phosphorylation [20,21]. In this report we explored
whether silica could induce the activation of Egr-1 in A549 cells
and mediated by MAPKs. We found that silica obviously
induced the expression and activation of Egr-1 and mainly
mediated by ERK1/2, P38 MAPKSs, but not by PKC. Our data
demonstrated there was a pathway silica-ERK1/2, P38 MAPKs
-Egr-1 in lung epithelial cells which might play a significant role
in the pathogenesis of silicosis.

Materials and Methods

Silica dioxide

The silica dioxide (Sigma, St. Louis, MO, USA) was prepared
by washing with HCL to remove contaminating Fe,O; according
to a method described previously [22]. Briefly, silica was boiled
in 1M HCL, washed several times in water and dried in an oven
at 110°C. Then particles were sterilized by heated at 160°C for
90 minutes.

Nuclear Translocation Analysis

A549 cells were grown on chamber-slides and subjected to
stimulation of silica dioxide (100ug/ml) followed by different
time point (0, 30, 60, 120, 240, 480minutes) in the resting state.
After being rinsed and fixed. All subsequent steps were
performed in a humidified chamber at room temperature. The
fixed cells were incubated with 10% serum/PBS for 20 minutes,
washed with 1% BSA/PBS, and then incubated with rabbit
polyclonal anti-Egr-1 antibody (2 pg/ml) (Santa Cruz
Biotechnology, Santa Cruz, CA) for 1 hour. After rinsed,
incubated with a fluorescent isothiocyanate (FITC)-labeled goat
anti-rabbit IgG (1:200 dilution; Sigma, St. Louis, MO, USA) in
the dark for 45 minutes and washed. The stained cells were
visualized with an x20 Fluor objective (Nikon, Japan) with
fluorescence illumination. Photographs were taken with the use
of Tmax 100 ASA film (Kodak, Japan).

Nuclear extracts

About 70-80% confluent cells were changed to RMIP1640
with 0.2% FCS for 24 hours, and then the cells were incubated
for 0, 30, 60, 120, 240 and 480 minutes in RMIP1640 with
0.2% FCS with 100 pg/ml silica dioxides. Cells were washed
with cold PBS, harvested by scraping, and pelleted. The cell
pellets were then resuspended in 5 pellet volumes of buffer A
(10 mM KCI, 20 mM HEPES, 1 mM MgCl,, 0.5 mM
dithiothreitol, and 0.5 mM phenylmethanesulfonyl fluoride),
incubated on ice for 10 minutes, and centrifuged for 10
minutes. The pellets were resuspended in buffer B (10 mM
HEPES, 400 mM NaCl, 0.1 mM EDTA, 1 mM MgCl,, 1 mM
dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, and 15%
glycerol) and incubated on ice for 30 minutes. Protein extracts
were cleared by centrifugation at 4°C for 15 minutes. The
supernatants containing nuclear protein were collected and
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stored at —-80°C in aliquots. Protein concentrations were
determined by protein assay (Bio-Rad, Hercules, CA ,USA).

Reverse Transcriptase Polymerase Chain Reaction (RT-
PCR) RNA Isolation

Cells were treated as previous experiments, and then were
pelleted and resuspended in 1 ml of Trizol (Life Technologies,
Grand Island, NY, USA), and RNA was purified following the
manufacturer’s instructions. RNA was treated with DNase |
(Clontech, Mountain View, CA, USA) to remove contaminant
genomic DNA for 1.5 hours in the presence of RNase inhibitor,
and the reaction was stopped using 10x termination mix (0.1 M
EDTA, pH 8, glycogen, 1 mg/ml). The enzyme was removed by
phenol-chloroform extraction, and RNA was precipitated with 2
volumes of ethanol and a 1/10 volume of sodium acetate, pH
5.2. RNA was resuspended in 20 pl of H,O containing the
RNase inhibitor and stored at -80°C. RT was performed with
an RT kit (Promega, Madison, WI, USA) following the
manufacturer’s instructions. cDNA was synthesized in 20yl
reaction mixtures using oligo(dT) and 1 pg of total RNA as the
template. PCR amplification was performed in 0.5 pl of cDNA

using gene-specific primers (Egr-1: F:
AGAAGGCGATGGGTGGAGACGA, R:
TGCGGATGTGGGTGGTAAGGT; B-actin F:
TCACCCACACTGTGCCCATCTAC, R:

GAGTACTTGCGCTCAGGAGGAG). For all PCRs, the
following conditions were used: a 10-minutes denaturing step
at 95°C; cycles of 1 minutes at 94°C, 45 s at 58°C, and 1
minutes at 72°C; and 10 minutes at 72°C. The PCR cycle
number was optimized for each gene to prevent saturation of
the reaction. PCR products were analyzed by 1.5% ethidium
bromide-agarose gel electrophoresis, then scanned and
quantitated for band intensities. The odds of the Egr-1 intensity
and B-actin represent relative content of Egr-1 mRNA.

Western-Blots Analysis

Ten micrograms of nuclear proteins or 20 micrograms of
proteins were separated by 10% SDS-polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes.
After the transfer, membranes were blocked at room
temperature for 2 h with 5% bovine serum albumin in TTBS
(10 mM Tris/HCI, pH 7.5; 150 mM NaCl, and 0.05% Tween 20)
and blotted with 0.5% bovine serum albumin in TTBS overnight
at 4°C and antibodies at concentrations as recommended by
the manufacturers. Antibodies were: Egr-1(1:200, Santa Cruz),
B-tublin(1:1000, Sigma) and phosphorylated and total MAPKs,
P38 (1:500, New England, Beverly, MA, USA). Levels of
proteins were detected with horseradish peroxidase-linked
secondary antibodies and ECL System (Cell Signaling,
Beverly, MA, USA). All Western blots were repeated at least
three times.

Cell immunochemistry and immunofluorescence
Analysis

A549 cells were grown on chamber-slides and subjected to
stimulation of silica dioxide (100ug/ml) followed by different
time point (0, 15, 30, 60, 120, 240minutes) in the resting state.
After being rinsed and fixed, all subsequent steps were
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performed in a humidified chamber at room temperature. The
fixed cells were incubated with 10% serum/PBS for 20 minutes,
washed with 1% BSA/PBS, and then incubated with antibody
phosphorylated MAPKs, P38 (1:200, New England, Beverly,
MA, USA) for 1 hour. After rinsed and incubated with second
antibody, then stained with DAB staining.

The fixed cells were incubated with 10% serum/PBS for 20
min, washed with 1% BSA/PBS, and then incubated with rabbit
polyclonal anti-Egr-1 antibody (2 pg/mL, Santa Cruz
Biotechnology, Inc) for 1 h. After the primary antibody was
removed, the cells were gently washed with 1% BSA/PBS,
incubated with a fluorescein isothiocyanate (FITC)-labeled goat
anti-rabbit 1gG (1:200 dilution, Sigma) in the dark for 45 min
and washed with PBS. Then they were mounted in gel on a
glass slide. The stained cells were visualized with an x20 Fluor
objective (Nikon) with fluorescence illumination. Photographs
were taken with the use of Kodak Tmax 100 ASA film.

Electrophoretic Mobility Shift Assays (EMSAs)

Electrophoretic mobility shift assay (EMSA) was performed
according to the manufacturer’s protocol (EMSA Kit, Panomics,
Redwood City, CA). To perform EMSA, binding reaction
mixtures contain 10ug protein of nuclear extract, 1 ug poly(dl-
dC),2.0 L of 5X Binding Buffer, 4.0 yL nuclease-free water,
mix above reagents and incubate at RT for 5 minutes. Add 1.0
ML of Egr-1 probe, and incubate samples at 15°C for 30
minutes in a thermal cycler, and then run the sample on non-
denature gel in 4°C, and then transfer and developed. All
EMSA experiments were repeated at least three times.

Transient transfection assay

The Egr-1-responsive promoter plasmid pEBS4 luc was
provided by G Thiel (University of Saarland, Germany). 1x10°
cells were seeded in 24 well plate,60-70% cells were confluent
and washed twice by media with no serum, transfected with
0.8ug Egr-1 reporter plasmids and 0.3ug 3-gal ,followed by 100
pg/ml silica for indicated times. At the end of the incubations,
cells were harvested, and the cell lysates, were assayed for
luciferase activities, as described [23]. Take 20 pl lysates(The
rest forBgal assay) adding with 100ul LARIl and pipetted for 10
times and assayed by luminometer quickly, got RLU (relative-
luciferase-unit) results. Calculate (RLU/ beta-gal activity) to
correct the luciferase values for transfection efficiency. All
experiments were performed in triplicate and repeated at least
twice. These results are means+SD of triplicate determinations.

Kinase Inhibitor Experiments

Confluent cells treated as above were pretreated with U0126
(30 uM), SB23058010uM), H7 (50uM ,1.5 hours prior )
respectively or combined for 60 minutes before silica was
added and stimulated for desired minutes by 100 pg/ml silica.
Thereafter, extracted RNA and nuclear protein were assayed
by RT-PCR and Western blots as above referred. In this
process, we replaced kinase inhibitor as negative control with
Dimethylsulfoxide (DMSO). U0126, SB230580 and H7 were
purchased from Calbiochem (EMD Biosciences, San Diego,
CA, USA).
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Statistics

All  experiments were performed 3 times. Statistical
comparisons were performed using a Student's t test for
unpaired samples and a one-way ANOVA for multiple
comparisons. Data from multiple experiments were averaged
and expressed as mean valuestSEM. Differences with p-
values < 0.05 were considered statistically significant.

Results

Silica treatment induced the expression and activation
of Egr-1 in lung epithelial cell line A549 cells

To understand the importance of Egr-1 in the pathogenesis
of silica-induced diseases, studies were undertaken to
determine whether silica can induce the expression and
activation of Egr-1 in A549 cell lines. Immunofluorescence
imaging of Egr-1 protein was performed after cells exposure to
silica (100ug/ml) for 0, 30, 60, 120, 240, 480 minutes (Figure
1A-F). In resting control (0 minute), there was only weak
expression of Egr-1 protein in the cytoplasm. The expression of
Egr-1 appeared in nuclear after 30-minute treatment with silica,
and Egr-1 protein became uniformly distributed in the nucleus
after 60-minute treatment and then slowly disappeared.

The expression of nuclear protein and mRNA of Egr-1
in A549 cells exposed to silica

The dynamic expression of Egr-1 nuclear protein was
detected by western-blots in A549 cells exposure to silica and
the similar results were obtained. Obvious increase of Egr-1
occurred from 30-minutes exposure, and peaked for 60-minute
exposure (twenty fold more Egr-1 nuclear protein than
untreated cells), followed by gradually decrease and return to
baseline after 480-minute exposure (Figure 2A). The
transcription of Egr-1 was detected by RT-PCR in A549 cell
line, and it peaked by silica treatment for 30 minutes after
exposure to silica, followed by gradual decrease and return to
baseline for 480-minute treatment(Figure 2B).

Silica increased Egr-1-DNA bining activity in A549 cells

We examined the Egr-1-DNA bining activity in silica-treated
A549 cells. The binding activity of Egr-1 in A549 cells
increased from 30-minute treatment and peaked for 60-minute
exposure, and then decreased after 120-minutetreatment
(Figure 3A), which suggested silica could induce Egr-1
activation in A549 cells. The combining activity decreased
obviously by competitor probe and antibody against Egr-1
created a supershift, which demonstrated the DNA binding
activity of Egr-1 was specific (data not shown).

As shown in Figure 3B, after transfection, the cells are
incubated with silica for 0-480 minutes, then harvested and cell
lysates were assayed for their luciferase activities. Luciferase
activities were normalized for transfection efficiency by dividing
the luciferase light units by beta-galactosidase activities. And
found the activities increased from 30-min incubation with
silica, peaked at 60 minutes, then slowly decreased, restored
to baseline till 480min.
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Egr-1 expression and localization in lung epithelial cell line A549.
alone), Egr-1 expression was detected but very weak and located in cytoplasm. (B) 30 minutes, the expression of Egr-1 was
increased and partly located in cytoplasm. (C) 60 minutes, robust expression of Egr-1 was located in the nuclear. (D) 120 minutes,
medium expression of Egr-1 was located in cytoplasm and nuclear. (E) 240 minutes, less expression of Egr-1 was located in

Figure 1. ) 0 minute (control cells, grown in medium

cytoplasm. (F) 480 minutes, Egr-1 expression almost restored to the level of control cells. Images were at x100 magnification.
doi: 10.1371/journal.pone.0068943.g001

Silica induced ERK1/2, P38 MAPKSs activation in A549
cells

We examined the expression of phosphorylated ERK1/2 and
P38 MAPKs in A549 cells treated by silica through
immunochemistry and western-blots. A549 cells were placed in
serum-free RPMI medium for 48 hours to reduce endogenous
levels of MAPKSs activity, and cells were treated with 100 pg/ml
silica for indicated times. The phosphorylation of MAPK p44
and p42 mainly located in cytoplasm in A549 cells unexposed
to silica and mainly located in nucleus after 30 minutes
exposure (Figure 4A1-2). Western-blot analysis of total cell
lysates showed that silica treatment led to the phosphorylation
of ERK1/2 peaked after 15-minute exposure, which returned to
basal level for 240-minute treatment (Figure 4B1). Further we
examined the expression and location of phosphorylated P38
in A549 cells treated with silica. And according with ERK1/2 it
was also found that the phosphorylation of P38 mainly located
in cytoplasm (picture not shown), and the expression of
phospho-P38 mainly located in nucleus (Figure 4A3) incubated
with 100 pg/ml silica, and peaked for 30-60minute treatment
(Figure 4B2). Recent studies have shown that the
phosphorylated MAPKs mediated the activation of Egr-1
[24—26]. Since the expression and DNA binding activity of
Egr-1 peaked after 60-minute treatment, and the ERK1/2 and
P38 activated after 15-30minutes exposure, a little earlier than
the activation of Egr-1, we proposed that the activation of Egr-1
in A549 cells exposure to silica might be mediated by MAPKs
pathway.
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Egr-1 expression and activation in epithelial cells
induced by silica is dependent on the phosphorylation
of MAPKSs signaling

The Egr-1 transcription factor is activated by a variety of
growth factors via the MAPKs pathway [27]. We next
determined whether silica-induced nuclear translocation and
activation of Egr-1 was dependent upon MAPKs. The
expression of Egr-1 mRNA and protein was inhibited by U0126
(an inhibitor of the ERK kinase) and SB230580an inhibitor of
the P38 kinase), which suggested that the action of silica on
Egr-1 was dependent on the ERK1/2, P38 pathway. We next
determined whether silica-induced nuclear translocation and
activation of Egr-1 was dependent upon MAPKs. A549 cells
were placed in serum-free medium for 48 h; And cells were
pretreated with the MEK1/2 inhibitor U0126 (30 uM) for
60 minutes to block upstream activation of MAPKs before
treatment with 100 pg/ml silica. Western-blot  for
phosphorylated MAPKs in cell lysates showed that this
concentration of U0126 completely blocked silica mediated
phosphorylation of MAPKs (data not shown); the endogenous
level of phosphorylated MAPKs was also reduced. It was
shown that the expression of Egr-1in nuclear protein decreased
obviously, but translocation still could be seen in the presence
of the MEK1/2 and P38 inhibitor (Figure 5A). While at mMRNA
level, MEK1/2 inhibitor U0126 and P38 inhibitor blocked the
transcription of Egr-1(Figure 5C). We also applied PKC
inhibitor H7 or combining H7 with U0126, and the expression of
Egr-1 nuclear protein wasn'’t affected by H7, which indicate
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Figure 2. Silica induced the expression of Egr-1 at levels of nuclear protein and mRNA. (a) The dynamic expression of Egr-1
nuclear protein in A549 cells, which were exposed to silica for indicated times, was determined by western-blot using anti-Egr-1
antibody. Obvious increase of Egr-1 occurred from 30 minutes of exposure, and peaked after exposure for 60 minutes followed by
gradually decrease and return to baseline by 480-minute treatment (2B). Silica induced the transcription of Egr-1 and mRNA level
was determined by RT-PCR. Significant differences in Egr-1 protein and mRNA expression are noted at P<0.01(**).

doi: 10.1371/journal.pone.0068943.9g002
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Figure 3. Silica increased the Egr-1 DNA binding activity in A549 cells. The binding activity of Egr-1 in A549 cells after
exposure to silica was determined by EMSA experiments, and the binding activity of Egr-1 peaked after 60-minute exposure. The
binding activity of Egr-1 to specific oligonucleotides probe increased from 30-minute treatment and peaked for 60-minute exposure,
then decreased. And as shown in 3B: the promoter activity increased from 30-min incubation with silica and peaked at 60-min,
recovered to the level of resting control till 480-min incubation. Significant differences in binding activity and luciferase activity are
noted at P<0.01(**).

doi: 10.1371/journal.pone.0068943.g003

PKC may not take part in this process. Taken together, these dependent on activation of the ERK1/2 and P38 MAPKs
data showed that Egr-1 activation by silica was mainly pathway.
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doi: 10.1371/journal.pone.0068943.g004
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P<0.01(**).

doi: 10.1371/journal.pone.0068943.g005
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Discussion

Crystalline silica has been shown to trigger pulmonary
inflammation and fibrosis both in vivo and in vitro [28,29], but
the underlying molecular mechanisms remain unclear. The
alveolar type Il epithelial cell, regarded historically as a key
target cell in initial injury by inhaled particles, now appears to
be important in both defense from lung damage as well as
elaboration of chemokines and cytokines [30,31]. The
molecular basis for silica-induced epithelial cell injury is poorly
understood. In the present study we focused on the
intracellular signaling pathways in lung epithelial cells after
crystalline silica exposure.

Egr-1 is an 80-82-kD inducible zinc finger transcription factor
that has also been identified as nerve growth factor—induced A,
Krox-24, ZIF-268, ETR-103, and TIS-8, discovered
independently by a lot of laboratories searching for factors
regulating cell growth and proliferation. Increasing studies
demonstrated Egr-1 played an important role in many
inflammation and fibrosis diseases [20,32,33], and highly
expressed in the lungs of smokers with chronic obstructive
pulmonary diseases (COPD) [34]. Our study has shown
elevated Egr-1 expression in silicosis in vivo (unpublished
data), which indicated Egr-1 might be one of the essential
factors during the pathogenesis of silicosis. According with
other studies, Egr-1 expression is elicited by a large number of
extracellular stimuli, typically in a rapid and transient manner.
In this study, we demonstrated Egr-1 mRNA and nuclear
protein were markedly induced in lung epithelial cells after
exposure to silica, and reached peaks at 30 minutes and 60
minutes respectively. Reynolds et al [34] found cigarette smoke
water extract could also induce the expression of Egr-1 in lung
epithelial cells, which upregulated the expression of
proinflammatory factors including TGF-alpha and IL-1beta. In
our study, the combined activity of egr-1 with GC rich sequence
also increased obviously which indicated silica could activate
the nuclear factor egr-1 and activated egr-1 may play an
important role when lung epithelial cells exposure to silica.

Egr-1 regulates many genes that are important for
fibrogenesis. These include the profibrotic cytokines, such as
TGFB, PDGF, CTCF, VEGF, FN, PAI-1 and TIMP-1 [15]. And
accumulating evidence suggests a critical role of Egr-1 in
fibrosis. Elevated egr-1 mRNA or protein has been widely
detected in fibrotic tissues, including fibrotic kidneys, lung
tissues from patients with emphysema [35]. In accord with their
study, our group(unpublished data) also found the augmented
expression of Egr-1 in lung tissues from silicosis of animal
model, and mainly located in pulmonary epithelial cells and
macrophages. As we all known, TGF@plays an essential role
during the pathogenesis of silicosis. We also found comparable
expression egr-1 and TGFBprotein in lung epithelial cells in rat
model of silicosis. A previous study similarly demonstrated
overexpression of Egr-1 associated with increased levels of
TGF-B and connective tissue growth factor in lung fibroblasts
from patients with chronic obstructive pulmonary diseases [36],
and other studies have shown that TGFB induces rapid but
transient expression of Egr-1 that results in stimulation of
collagen gene expression [37]. Emerging studies also reveal a
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novel function for Egr-1 as an important mediator of TGF-$-
induced responses [15]. Taken together, the activated Egr-1
might influence the progression of silicosis by TGFB. But
whether elevated TGF is also a potent inducer for Egr-1 in this
process, in other word whether there is an Egr-1 /TGFf
positive feedback loop need to be further explored. Many
studies found silica induced cell apoptosis [38,39], and recent
studies [40,41] demonstrated that Egr-1 took part in regulating
cell apoptosis, but whether activated Egr-1 plays an important
role in silicosis by affecting cell apoptosis need further study to
elucidate.

As many studies shown, depending on the stimulus and cell
type, various signal transduction pathways induce the
expression and activation of Egr-1, including pathways
mediated by the MAP-kinase ERK1/2, protein kinase C (PKC-),
RhoGTPase, or p38/c-Jun N-terminal kinase (JNK) [42]. Our
study found the expression of phosphorylated ERK1/2 and P38
reached peak at 15-30minutes when cells exposure to silica
and its activity also peaked, which is earlier than the egr-1
activation time. As our results shown, Egr-1 nuclear protein
reached peaks at 30minutes and 60minutes respectively, and
to explore whether the activation of Egr-1 depends on ERK1/2
and (or) P38 MAPKs, MAPKs inhibitor U0126 and SB230580
were used, and the expression of Egr-1 nuclear protein and
mRNA decreased obviously, which suggested the expression
and activation of Egr-1 in lung epithelial cells mainly mediated
by ERK1/2 and P38. A recent report demonstrated that
cigarette smoke and TGFB could stimulate the activation of
Egr-1 in an ERK1/2 manner in fibroblasts corroborating our
findings [33]. And we also found that the expression of Egr-1
nuclear protein obviously decreased but didn’t restore to
resting level by using MAPK inhibitor U0126 and SB230580,
which indicated other protein kinase pathway except p38 and
ERK1/2 may also involve in this process. Lyoda et al [24]
demonstrated lysophosphatidic acid induced Egr-1 protein
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