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Abstract
Optimally-Discriminative Voxel-Based Analysis (ODVBA) (Zhang and Davatzikos, 2011) is a
recently-developed and validated framework of voxel-based group analysis, which transcends
limitations of traditional Gaussian smoothing in forms of analysis such as the General Linear
Model (GLM). ODVBA estimates the optimal non-stationary and anisotropic filtering of the data
prior to statistical analyses to maximize the ability to detect group differences. In this paper, we
extensively evaluate ODVBA to three sets of previously published data from studies in
schizophrenia, mild cognitive impairment, and Alzheimer’s disease, and evaluate the regions of
structural difference identified by ODVBA versus standard Gaussian smoothing and other related
methods. The experimental results suggest that ODVBA is considerably more sensitive in
detecting group differences, presumably because of its ability to adapt the regional filtering to the
underlying extent and shape of a group difference, thereby maximizing the ability to detect such
difference. Although there is no gold standard in these clinical studies, ODVBA demonstrated
highest significance in group differences within the identified voxels. In terms of spatial extent of
detected area, agreement of anatomical boundary, and classification, it performed better than other
tested voxel-based methods and competitively with the cluster enhancing methods.

Keywords
Voxel-Based Morphometry; General Linear Model; Schizophrenia; Mild Cognitive Impairment;
Alzheimer’s Disease; ODVBA

1. Introduction
Voxel-Based Morphometry (VBM) (Ashburner et al., 2000, Good et al., 2001, Davatzikos et
al., 2001a), which analyzes the whole brain in an automated manner, has been developed to
characterize brain changes on structural Magnetic Resonance Imaging (MRI), without
defining labor-intensive and potentially-biased regions of interest (ROI). To date, VBM has
been widely applied in investigating different types of brain disorders, including
Schizophrenia, Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD).
However, in conventional VBM methods which implement the General Linear Model
(GLM) (Friston et al., 1995), integrating imaging signals from a region using Gaussian pre-
smoothing proves challenging due to difficulty in selecting the appropriate kernel size
(Jones et al., 2004, Zhang et al., 2008). If the kernel is too small for the task, statistical
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power is lost and large numbers of false negatives are bound to confound the analysis; if the
kernel is too large, the extensive smoothing will reduce both sensitivity and spatial
resolution, typically blurring unrelated structural regions and leading to false positive
conclusions about the origin of the structural abnormalities.

Most importantly, Gaussian smoothing will always lack the spatial adaptivity necessary to
optimally match image filtering with an underlying (unknown a priori) region of interest.
Some spatially adaptive methods have been developed to address this drawback. Davatzikos
et al. (Davatzikos et al., 2001b) developed a spatially adaptive filter whose shape changes
with the assistance of a pre-defined atlas (also known as ROIs). This method would be
effective if true group abnormalities coincide with these pre-defined anatomical boundaries,
but this is not always the case. More generally in image processing, full data-driven spatially
adaptive methods which do not require ROI’s have been pursued in various contexts. Perona
and Malik (Perona and Malik, 1990) developed the Anisotropic Diffusion scheme which
removes noise using gradient information while preserving object boundaries. This method
was subsequently extended (Gerig et al., 1992) into MRI applications. Polzehl and Spokoiny
(Polzehl and Spokoiny, 2000, 2006) proposed a local density estimation-based method for
adaptive weights smoothing, named Propagation-Separation (PS), which preserves spatial
extent and shapes of the activated regions in images having large homogeneous areas and
sharp discontinuities. This method has subsequently been applied to fMRI activation
detection (Tabelow et al., 2006). A wavelet-based denoising method was proposed by
Pizurica et al. (Pizurica et al., 2003) to adaptively preserve useful image features against the
degree of noise reduction by using a wavelet domain indicator of local spatial activity.
However, all the above methods work on each single subject separately; that is, they do not
take into account the population information, i.e., discriminative information, in a two-group
comparison analysis. Hence, the selected filter is adaptive to each subject’s morphological
or functional characteristics, but may not be optimal for the purpose of performing group
comparisons.

Optimally-Discriminative Voxel-Based Analysis (ODVBA) (Zhang and Davatzikos, 2011)
is a recently-developed framework of group analysis utilizing a new spatially adaptive
scheme in order to determine group differences with maximal sensitivity. A regional
discriminative analysis, with non-negativity constraints on the respective weight
coefficients, is conducted in a spatial neighborhood around each voxel to determine the
optimal coefficients that best highlight the difference between two groups in that
neighborhood. The components of the resultant discriminatory direction can be viewed as
weights of a local spatial filter, which is optimally designed to highlight group differences.
The weights determined for a given voxel from all the regional analyses it belongs to are
combined into a map representing statistically significant voxel-wise group differences,
using permutation tests. Adaptive smoothing is inherent in ODVBA, and is similar in
concept to the nonstationarity adjustment in smoothness (Hayasaka and Nichols, 2003,
Hayasaka et al, 2004, Salimi-Khorshidi et al, 2009) utilized in cluster-level statistical
inference studies. ODVBA has been evaluated (Zhang and Davatzikos, 2011) by using both
simulated and real data and has been found to precisely identify the shape and location of
group differences with high sensitivity and specificity.

In this paper, we apply ODVBA to three previously published studies in which the
traditional Gaussian smoothing plus GLM was used. In addition, we compare ODVBA to
not only GLM but also two other spatially adaptive smoothing methods: PS (Polzehl and
Spokoiny, 2000, 2006) and wavelet denosing (WL) (Pizurica et al., 2003), and two versions
of the newly-proposed cluster enhancing method, Threshold-Free Cluster Enhancement
(TFCE): the original GLM-based TFCE (G-TFCE) (Smith and Nichols, 2009), and an
ODVBA-based TFCE (O-TFCE). The three published studies used for this group
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comparison include 1) a sample of well-characterized patients with schizophrenia and
matched controls (Davatzikos et al., 2005). 2) Early-stage MCI patients and the normal
controls (Davatzikos et al., 2008), and 3) MCI patients who convert to AD and MCI patients
who remain stable(Misra et al., 2009).

2 Methods
2.1 Participants and Imaging protocol

The details on participants’ information and MRI acquisition can be found in (Davatzikos et
al., 2005, Davatzikos et al., 2008, Misra et al., 2009). Here, we only provide the basic
information of subjects.

Dataset1: Sixty-nine patients (46 men and 23 women) (Davatzikos et al., 2005) with
schizophrenia and seventy-nine controls (41 men 38 women) were involved in the
study.

Dataset2: Thirty older adults (Davatzikos et al., 2008) including 15 subjects with MCI
and 15 normal controls were examined in the current study.

Dataset3: One hundred subjects with MCI were randomly selected from the data used
in (Misra et al., 2009). 50 of these subjects had undergone conversion to AD. The
remaining 50 are non-converters.

2.2 Image processing
A standard image pre-processing protocol described in (Goldszal et al., 1998) was used in
all three parent studies. The result was a RAVENS map, reflecting regional volumetrics
(Goldszal et al., 1998; Davatzikos et al., 2001; Shen and Davatzikos, 2002), akin to what
was typically used in the “modulated” VBM analysis (Davatzkos et al., 2001a, Good et al.,
2001, Ashburner et al., 2003). RAVENS maps quantify the regional distribution of gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF), since one RAVENS map is
formed for each tissue type. In this paper, we investigate group differences of GM RAVENS
maps.

2.3 Statistical analysis using ODVBA
Group comparisons were performed via voxel-based statistical analysis of RAVENS maps
by using ODVBA (Zhang and Davatzikos, 2011). The main premise of ODVBA is that it
uses a machine learning paradigm to effectively apply a form of matched filtering, to
optimally detect a group difference. Since the shape of the target region of group difference
is not known, regional discriminative analyses are used to identify voxels displaying the
most significant differences. In addition to potentially improving sensitivity of detection of a
structural or functional signal, this approach was shown in both the simulated data and the
real world data (Zhang and Davatzikos 2011) to better delineate the region of abnormality,
in contrast with conventional smoothing approaches that blur through boundaries and dilute
the signal from regions of interest with signal from regions that do not display a group
difference.

ODVBA works in three stages:

1. Regional nonnegative discriminative projection: regional discriminative
analysis, restricted by appropriate nonnegativity constraints on the coefficients
which various voxels have in the discriminating vector, is applied to a spatial
neighborhood around each voxel. Specifically, the goal of the regional analysis is
not simply to find the coefficients which can distinguish the two groups, but also
requires those coefficients relate to the underlying group difference, instead of
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merely providing some features that happen to separate two groups well. The
analysis can result in obtaining parts-based representation of local volumes
(neighborhood), as only the elements which make large contributions for
discrimination will be highlighted. The left part of Figure 1 illustrates the idea. In
neighborhood I, only area within underlying structural changes is highlighted with
high values of weights. In neighborhood II, no voxels are assigned high weights
since no targeting regions are involved in that neighborhood.

In particular, for each given voxel x in the volume X (the neighborhood defined by
||x − xi|| < ζ), ODVBA gets a k dimensional subvolume vector: θ⃗ = [x, x1, ···,
xk−1]T, where x1, ···, xk−1 are the k − 1 neighbors of x, and then it constructs a
learning set Θ = [θ⃗1, ···, θ⃗N]T from N subjects of two different groups. ODVBA
expects to find a nonnegative vector w to describe the contributions of elements in
θ⃗ for classification. Hence, the objective function formulated with nonnegative
quadratic programming is defined as follows:

(1)

where, A = γSW − SB +((|λmin| + τ)I); ; Ci
means the ith group; m⃗i = 1/Ni Σθ⃗ ∈Ci θ⃗; Ni denotes the number of samples in Ci; γ
is the tuning parameter; SB = (m ⃗1 − m⃗2)(m⃗1 − m⃗2 )T; |λmin| is the absolute of the
smallest eigenvalue of γSW − SB ; 0 < τ ≪ 1 acts as the regularization parameter; I
is the identity matrix; e⃗ is the vector with all ones; μ is the balance parameter. w⃗ is
estimated by multiplicative updates (Zhang and Davatzikos, 2011) which
iteratively minimize the objective function:

(2)

where i =1, ···, k; A+ and A− are two nonnegative matrices, defined as follows: A+
ij

= Aij, if Aij > 0; otherwise 0. A−
ij = |Aij|, if Aij < 0; otherwise 0.

2. Determining each voxel’s statistic: Since each voxel belongs to a large number of
neighborhoods, each centered on one of its neighboring voxels, the group
difference at each voxel is determined by summing up contributions from all
neighborhoods to which it participates. As shown in the middle part of Figure 1, the
voxel xa and voxel xb have their own participating neighborhoods respectively.
Because the coefficients obtained from the first stage are nonnegative, the possible
cancelations between negative and positive loadings are avoided.

Specifically, the statistical value of x is defined by summing up contributions from
all neighborhoods to which it participates:

(3)

where, w⃗ℕ denotes the coefficients corresponding to voxels in neighborhood ℕ, Δ
={ℕ|x ∈ ℕ}, (w⃗ℕ)i denotes that x is the ith element in ℕ, and δℕ denotes the
discrimination degree (Zhang and Davatzikos 2011).
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3. Permutation tests: Permutation tests (Holmes et al., 1996, Nichols et al., 2002) are
used to obtain the statistical significance (p values) of the resulting ODVBA maps,
assuming that the null hypothesis is that there is no difference between the two
groups. We randomly assign group labels to each subject, and then recalculate the
statistic as described in Equation 3 for each voxel for Np times. Let S0 denote the
statistic value obtained under the initial class labels, and Si, i =1, ···, Np, denote the
ones obtained by relabeling. The p value for the given voxel (illustrated in the right
part of Figure 1) is the proportion of the permutation distribution ( S0, ···, SNP)
greater than or equal to S0.

The parameters mentioned above are set as same as those used on the real data in
the paper (Zhang and Davatzikos, 2011): ζ =15, μ =1, γ =10−5, τ =10−5. However
we increased the number of permutations to Np =5000 for all three studies in this
paper. As described in (Zhang and Davatzikos, 2011), an important character of
ODVBA is that it has stable performance with varying smoothing kernel size. Here,
we evaluate this point by studying the number of detected significant voxels versus
different kernel size (the parameter ζ). The significant voxels were defined as those
with the unadjusted p value below a specified threshold. The results shown in
Figure 2 further verified the stability of ODVBA, especially in contrast to GLM in
which Gaussian smoothing is employed. More discussions on evaluation of other
methods in Figure 2 can be found in Section 2.4.

2.4 Statistical analysis using the comparative methods
Other than ODVBA, we have also implemented five alternative methods for comparison
purpose. They are described as follows.

1. GLM: As reported in the three previously-published studies, the conventional
Voxel based Morphometry method -- Gaussian smoothing with 8mm full width at
half maximum (FWHM) kernel plus GLM, (Ashburner et al., 2000, Davatzikos et
al., 2001a) was re-implemented in this paper. The performances of GLM with
different FWHM values are also demonstrated in Figure 2. Obviously, they are
sensitive to the kernel sizes.

2. PS: The Propagation-Separation (PS) approach (Polzehl and Spokoiny, 2000, 2006)
targets to adaptive weights smoothing based on local nonparametric estimation.
This is achieved in an iterative process by extending regions of local homogeneity
until the obtained structural information agrees with the previous iteration step. We
use the freely available software: http://cran.r-project.org/web/packages/aws/ which
is implemented in the R environment. In this software, one important parameter is
ladjust which can adjust adaptivity of the method and another important one is
hmax which specifies the spatial extent of the smoothness. We performed the grid
search for ladjust and hmax according to the methods’ performance on group
analysis. We finally use ladjust=1 and hmax=5 because 1) PS achieved stable
performance around those values and 2) these values are suggested by the user
manual of the software package. We demonstrated the numbers of significant voxel
detected by PS with varying smoothing kernel sizes, i.e., hmax in Figure 2. The
results provided evidence on the adaptivity of PS since the method demonstrated
less sensitive to the size of kernel, compared with Gaussian filter used byGLM.

3. WL: Wavelet (WL) denoising (Pizurica et al., 2003) achieve the spatial adaptivity
by using a local spatial activity indicator that is computed from a squared window.
We use its publicly available software: http://telin.ugent.be/~sanja/Sanja_files/
Software/MRIprogram.zip which is designed by the paper author for MRI
applications. The important parameters include the window size (WS) and the
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multiplication factor (MF) which specifies the signal of interest. We use WS=5 and
MF=2, which are the default values in the software package. As well as ODVBA,
GLM, and PS, in Figure 2 we reported the performance of WL with varying spatial
extents of smooth kernel, i.e., the parameter of WS in the software. The results also
reveal the stability of WL with different kernel sizes.

4. G-TFCE: Threshold-Free Cluster Enhancement (TFCE) is a newly-proposed
method to enhance cluster-like structures in the map of t values in group analysis,
without having to define an initial cluster-forming threshold. In the original
method, Gaussian smoothing was conducted to reduce the noise, prior to GLM
which produces the group contrasts for the TFCE analysis. We name it as G-TFCE.
G-TFCE was implemented using the randomise tool in FMRIB Software Library
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). As suggested in (Smith and Nichols, 2009), a
small amount of Gaussian smoothing with 4mm FWHM kernel, was conducted in
G-TFCE.

5. O-TFCE: Our spatially adaptive smoothing method, ODVBA, was employed to
replace Gaussian smoothing, and the TFCE scores are calculated based on the
statistic image of ODVBA. We thereby name it O-TFCE.

2.5 Correction and interpretation
In this paper, the p-values obtained by all involved methods are then corrected by the FDR
procedure (Nichols et al., 2003, Genovese et al., 2002), which is commonly used in
neuroimaging applications to adjust for statistical error emanating from multiple
comparisons. The corrected significance maps are partitioned and analyzed according to the
automated anatomical labeling (AAL) (Tzourio-Mazoyer et. al., 2002) from Wake Forest
University (WFU) Pickatlas package (Maldjian et. al., 2003, 2004). On each anatomical
region, we calculated the cluster size, the t statistic (based on means of RAVENS values on
the detected area per region), and the Talairach coordinate of the cluster’s center. Finally, we
used the significant voxels showing the group differences as the input features for cross-
validation classification.

3 Results
In this section, we first introduce the results of ODVBA on the three datasets, and then
compare ODVBA’s results to that of the comparative methods.

3.1. Findings of ODVBA
Dataset1: A widespread pattern of significant GM loss (FDR corrected p<0.01, spatial
extent threshold >50) was detected in the comparison between 69 schizophrenia patients
and 79 normal controls. They are mainly in 1) frontal area bilaterally including the
orbitofrontal cortex, the middle frontal gyrus, the supplementary motor area, the
superior frontal gyrus-medial part, the precentral gyrus, the inferior frontal gyrus, and
the superior frontal gyrus; 2) temporal area bilaterally including the middle, inferior,
and superior temporal gyrus, and the fusiform gyrus; 3) parietal area bilaterally, e.g., the
postcentral gyrus, the precuneus, and the inferior parietal gyrus; 4) limbic system
bilaterally, e.g., the median cingulate, the anterior cingulate, and the hippocampus, and
5) sub-lobar, e.g., bilateral insular cortex. The full list of regions and the associate
statistical information are presented in Table 1, and the representative slices in the
sagittal view are shown Figure 3. According to the results shown in Table 1, the left
middle temporal gyrus, the right orbitofrontal cortex, and the right middle temporal
gyrus demonstrate the three largest regions of atrophy based on their significant voxel
numbers.
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Dataset2: MCI subjects presented significant GM atrophy (FDR corrected p<0.05,
spatial extent threshold >50) compared to the normal controls mainly in 1) parietal lobe
bilaterally including the precuneus, the superior parietal gyrus, the postcentral gyrus,
and the inferior parietal gyrus; 2) frontal lobe including the bilateral middle frontal
gyrus, the left inferior frontal gyrus, and the left superior frontal gyrus; 3) limbic lobe,
e.g., the left hippocampus, the left parahippocampal gyrus, and the left amygdala; 4)
temporal lobe including the left middle, inferior, and superior temporal gyrus, and the
left fusiform gyrus; 5) left insular cortex. For detail, see Table 2 and Figure 4. The left
middle frontal gyrus, the left precuneus, and the right precuneus demonstrate the largest
regions of atrophy based on their significant voxel numbers.

Dataset3: The comparison between baseline data of MCI-to-AD converters and non-
converters revealed significant low (FDR corrected p<0.05, spatial extent threshold
>50) GM value of converters in (Table 3 and Figure 5) 1) temporal lobe bilaterally
including the superior, middle and inferior temporal gyrus, the temporal pole, and the
fusiform gyrus; 2) limbic lobe bilaterally including the parahippocampal gyrus, the
hippocampus, and the amygdala; 3) frontal area, e.g., the bilateral orbitofrontal cortex,
the bilateral straight gyrus, the right rolandic operculum, and the right precentral gyrus;
4) parietal lobe including the bilateral precuneus, the bilateral angular, the right
postcentreal gyrus, and the right supramarginal gyrus; and 5) some sub-lobar regions
bilaterally including the insular cortex, the putamen, and the heschl gyrus. The top three
largest regions are the right middle temporal gyrus, the left middle temporal gyrus, and
the right superior temporal gyrus.

3.2. Comparative results
We focus on the comparisons between results of the involved methods as follows:

1. Spatial extent of the group difference: The spatial maps of GLM, PS, WL, G-
TFCE and O-TFCE are shown together in Figures 6, 7, and 8 for three datasets
respectively (The results are demonstrated using the same slices with those of
ODVBA in Figures 3, 4, and 5. However in Figures 6, 7, and 8, the images are
smaller because of space limitation). The numbers of detected significant voxels in
each anatomical region obtained from these methods are listed in part of Tables 4,
5, and 6. Note that, for the group analysis between the MCI patients and the normal
controls in the Dataset2, GLM, PS, and WL did not produce significant results after
FDR correction. We display the total number of significant voxels in a vector for
all above methods as well as ODVBA as horizontal bars for three different datasets
in Figure 9. According to the results demonstrated from the above tables and
figures, it is concluded that ODVBA is generally more sensitive than GLM since it
detects more and larger areas of differences. PS and WL produced smaller
significant areas than either GLM or ODVBA. The two cluster enhancing methods,
i.e., G-TFCE and O-TFCE, produced larger significant areas than the voxel-based
statistical methods, and O-TFCE shows stronger statistical power than G-TFCE.

We highlight the regions which are detected by ODVBA but not by GLM as
follows. For the schizophrenia data of Dataset1, ODVBA detected more regions,
e.g., the left precentral gyrus, the left paracentral lobule, the left hippocampus, the
left superior occipital gyrus, the left middle occipital gyrus, the left supramarginal
gyrus, and the right angular gyrus, than GLM. For the group comparison between
MCI-to-AD converters and non-converters in Dataset3, ODVBA detected the right
precentral gyrus, the right inferior frontal gyrus, the left olfactory cortex, the right
lingual gyrus, the left cuneus, the left superior occipital gyrus, the left inferior
occipital gyrus, the left superior parietal gyrus, the left angular gyrus, the left
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inferior parietal gyrus, and the bilateral putamen, none of which were reported by
GLM.

2. Significance of the group difference: Based on the detected voxels, we first
calculated the means of the GM RAVENS values per region for all subjects in each
dataset, since these means reflect the tissue density of the selected area. We
subsequently computed the t values, reflecting the significance of group differences
based on these means. We list the t values of GLM, PS, WL, G-TFCE and O-TFCE
in part of Tables 4–6, as well as ODVBA whose values have been demonstrated in
Tables 1–3. We also demonstrate the average t values of anatomical regions in a
vector as horizontal bars for all the methods in Figure 10. According to the results
collected as above, ODVBA offers the highest t values for the detected area (in
each anatomical region), revealing it may have better capability to control false
positive errors than other methods, whereas GLM produces the lowest t values. t
values of G-TFCE are generally lower than O-TFCE, further suggesting that
Gaussian smoothing is inferior to our proposed spatially adaptive method.

3. Spatial agreement between detected regions and underlying tissue boundaries:
For comparison of the tested methods by visual inspection, in Figure 11 we focus
on a small section of the detected regions near the hippocampus. We see that GLM
blurs volumetric measurements from the hippocampus with such measurements
from the fusiform gyrus. However, ODVBA delineates a more precise area of
significant atrophy, which agrees with GM boundaries, as it should in this
experiment that evaluated GM RAVENS maps. Although PS and WL are capable
of detecting tissue boundaries, this detection is weak, demonstrating low statistical
power. We can also see the G-TFCE (with small Gaussian smoothing) and O-TFCE
do not blur volumetric measurements as in GLM, while demonstrating enhanced
statistical power.

Furthermore, since we know the underlying anatomy of tissues, we use the metrics
of True Positive Rate (TPR) and False Positive Rate (FPR) for evaluation. Here,
TPR is the number of significant voxels inside the GM segmentation divided by the
total number of voxels in GM. FPR is calculated as the number of significant
voxels outside the GM segmentation divided by the total number of voxels in the
whole brain volume other than GM. A series of TPR/FPR are produced to build the
receiver operating characteristics (ROC) curve, as demonstrated in Figure 12, by
varying the significance levels. It is clear that GLM offers a globally worse result
than other methods since for any FPR, the corresponding TPR is lower. It is worth
noting that PS and WL showed the superior performances on specificity over the
other methods in Figure 12(a) in virtue of their spatially adaptive smoothing.

4. Classification accuracy based on detected regions: The significant regions
obtained by the six different methods are used as the feature input to classify
subjects of the three datasets. Specifically, we first utilized the linear feature
transformation method, Principal Component Analysis (PCA) (Jolliffe, 2005), to
remove the abundant information in the original features (whose corresponding
PCA eigenvalues are zeros), and then employed linear Support Vector Machine
(SVM) (Chang and Lin, 2011)as the classifier. The classification was achieved
within a Five-fold cross-validation framework. That is, the whole dataset is
randomly partitioned into 5 subsets. Of the 5 subsets, a single subset is retained as
“testing data” to report the performance, while the remaining 4 subsets are used as
“training data” to create the model. In particular, in each fold, ODVBA and the
comparative methods are implemented to locate the significant group differences
only according to the training data. That means the testing data are not involved in
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creating the statistical model. Moreover, we conducted the nested cross-validation
within the training data for parameter selection, e.g., parameter C in linear SVM.
Table 7 lists the average accuracies over cross-validation of six methods. ODVBA
achieved a slightly better performance than the other voxel-based methods.
However, ODVBA did not perform better than the cluster enhancement methods,
G-TFCE and O-TFCE. It is worth noting that the accuracy rates of O-TFCE are
higher than G -TFCE, thereby highlighting the synergistic value of ODVBA and
TFCE. We also conducted the paired-differences t test (Dietterich 1998) based on
the five-fold cross-validated accuracy rates. For Dataset1 and Dataset3, we set
GLM as the baseline method, that is, we performed the significance test between
the GLM and each of the other methods. For Dataset2, we set ODVBA as the
baseline method, because only the results of ODVBA, G-TFCE and O-TFCE are
available. The results (shown in Table 7) of the significant test basically agree with
the average accuracies, indicating a moderate difference between ODVBA and
GLM and a stronger improvement in O-TFCE. To further compare the robustness
of the six methods, the ROC curves of all methods are demonstrated in Figure 13.
The associated area under an ROC curve (AUC) measures are calculated and listed
in part of Table 7. ODVBA and O-TFCE generally had higher values than the other
methods with respect to their AUC measures.

4 Discussions and Conclusions
Optimally-Discriminative Voxel-Based Analysis (ODVBA), as a new voxel-based
morphometry method with a novel spatially adaptive smoothing scheme, is applied to three
previously-published studies assessing Schizophrenia, Normal-to-MCI conversion, and
MCI-to-AD conversion. The conventional VBM method (Gaussian smoothing plus GLM),
two existing spatially adaptive smoothing methods: propagation-separation (PS) and wavelet
denosing (WL), and two versions of the Threshold-Free Cluster Enhancement (TFCE)
method: G-TFCE and O-TFCE, are also performed for the comparison. ODVBA has been
previously validated using extensive simulated atrophy experiments, for which ground truth
was available. Therefore, the goal of this paper was to apply ODVBA to three previously-
published studies and compare its ability to detect group differences as compared to other
methods. There is no ground truth in these three studies; therefore, we focused on measuring
1) the spatial extent of brain regions detected as significantly different between groups, 2)
the significance of the group difference, 3) the spatial agreement between detected regions
and underlying tissue boundaries, which relates to the blurring effect typically caused by
Gaussian smoothing, and 4) classification accuracy based on detected regions.

With ODVBA, we measured widespread regions of significantly lower GM volumes in
schizophrenia patients. More than one third of these regions are located in the frontal lobe
including the middle frontal gyrus, the orbitofrontal cortex, the superior frontal gyrus, the
supplementary motor area, among others. That indicated that the frontal lobe has strong
involvement in schizophrenia, and is consistent with the earlier studies (Andreasen et al.,
1986, Gur et al., 2000, Davatzikos et al., 2005, Andreasen et al., 2011, Arangoet al., 2012 ).
The second largest cluster was located in the temporal lobe, especially the medial area,
which is the most frequent region in Honea’s review work (Honea et al., 2005). The main
new finding in our study is the significant volume reduction in the bilateral supplementary
motor area which however is not reported in our early study (Davatzikos et al., 2005) and
recent meta-analysis (Honea et al., 2005, Glahn et al., 2008, Ellison-Wright et al., 2010,
Bora et al., 2011). Abnormalities in the supplementary motor area is known (Schroder et al.,
1995, Frith et al., 2000, Putzhammer and Klein, 2006) to cause motor disturbances which
are common, disabling symptoms in schizophrenic patients. Therefore, the reduction in the
size of the bilateral supplementary motor area as demonstrated by ODVBA may imply a link
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between this region and the debilitating motor disturbances common in schizophrenic
patients.

The differences between cognitively normal elderly who remain stable and cognitive normal
elderly who convert to MCI are naturally more subtle. The conventional VBM method,
using GLM, was unable to find significant differences. However, these regions were
detected by ODVBA and had high t values. The regions are in accordance with the early
work (Davatzikos et al., 2008), which constructs the spatial map by using the SVM accuracy
scores (Lao et al., 2004). However besides the regions in the temporal lobe and the frontal
lobe, our new findings are involved with the parietal lobe bilaterally including the precuneus
and the superior parietal gyrus which are known to be involved in semantic and visuospatial
deficits (Caine and Hodges 2001, Eustache et al, 2004) in mild cognitive impairment and
early Alzheimer’s disease. These findings in parietal area agree with some studies with
different MCI datasets (Frisoni et al., 2002, Pennanen et al., 2005, Matsuda 2007, Bai et al.,
2008, Pihlajamäki et al., 2009, Tondelli et al., 2012).

Our results of ODVBA provided strong evidence that MCI-to-AD converters had already
reached levels of widespread and significant brain atrophy at baseline. They confirm our
earlier findings (Misra et al., 2009) of gray matter volume reduction in the temporal lobe and
the limbic lobe, the orbitofrontal cortex, the precuneous and the insular cortex. Morever,
compared with the earlier work, our results also present some new findings, most of which
are in agreement with the literature. They include the middle occipital gyrus (Hamalainen et
al., 2007), the lingual gyrus (Kinkingnehun et al., 2008), the cuneus (Kinkingnehun et al.,
2008), the supramarginal gyrus (Risacher et al., 2010, Schroeter et al., 2009, Bozzali et al.,
2006), the angular gyrus (Risacher et al., 2010, Hamalainen et al., 2007, Schroeter et al.,
2009, Bozzali et al., 2006), the putamen (Douaud et al., 2011), the heschl’s gyrus, the
rolandic operculum, the precentral gyrus, the straight gyrus (Schroeter et al., 2009), the
olfactory cortex, and etc. In the literature, these regions are known to be altered in pathology
studies of AD. Changes in these regions can be linked with clinical symptoms common in
AD patients. For example, changes in the occipital gyrus, lingual gyrus and cuneus can
cause visual field defects (Hof and Morrison, 1990, Armstrong, 1996); atrophies in the
supramarginal and angular gyrus can be reflected by language impairments (Harasty et al,
1999, Ullman et al, 1997); and as a part of the auditory system, the loss of heschl’s gyrus
may lead to certain auditory deficits (Goll et al, 2011).

For comparison, ODVBA demonstrated highest significance in group differences within the
identified voxels. In terms of spatial agreement of boundary, ODVBA and the two cluster
enhancing methods: O-TFCE and G-TFCE performed the best, while GLM performed the
worst, since it tends to blur the true structure of the group difference and do not necessarily
conform to the shape of the underlying pathology. With regard to the spatial extent of the
detected significant area, ODVBA produced the highest sensitivity of the voxel-based
methods. G-TFCE and O-TFCE, as the cluster enhancing methods, demonstrated enhanced
statistical power, with O-TFCE outperforming G-TFCE, thereby indicating the synergistic
value between ODVBA and TFCE. In addition, in experiments based on classification,
ODVBA demonstrated a slight advantage over the other voxel-based methods, and O-TFCE
displayed an enhanced performance. In conclusion, ODVBA showed overall higher
performance, at least for the criteria tested. In terms of agreement of anatomical boundary,
spatial extent of detected area, and classification, it performed competitively with both
cluster enhancing methods. It is worth noting that for all tested criteria, O-TFCE performed
better than the original G-TFCE, thereby indicating the synergistic value between ODVBA
and TFCE.
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Two typical spatially adaptive smoothing methods: propagation-separation (PS) and wavelet
denosing (WL) have been performed for comparison purpose. The experimental results
demonstrated the stability of the two methods with varying smoothing kernel sizes, and
excellent specificity in terms of agreement of tissue boundary especially shown in Figure
12(a). However, it’s also shown that PS and WL have limited sensitivity to detect the group
difference. The reason is that the two methods smooth each single subject separately and do
not enhance the discriminative information derived from population. Recently, there is some
related work having great potential to tackle this problem. For example, MARM as well as
its variant (Li et al 2011, Li et al 2012), has been proposed to extend the original PS method
to the case of multiple subjects by incorporating the voxel-wise general statistical modeling
for regression analysis. We will investigate their possible applications on two-group
comparison analysis in our future work.
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Figure 1.
Illustration of the flowchart of ODVBA. ODVBA works in three stages including 1)
Regional nonnegative discriminative projection, 2) Determining each voxel’s statistic, and
3) Permutation tests. The gray color in Stage 1 and Stage2 indicates the area with underlying
structural changes and the red color indicates the highlighted area via regional
discriminative analysis in ODVBA.
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Figure 2.
The number of significant voxels versues smoothing kernel sizes. (a) The results are
obtained from group comparison between the schizophrenia patients and the normal controls
in Dataset 1 where the voxels are counted if the unadjusted p value<0.001; (b) The results
are obtained from group comparison between the MCI-to-AD converters and the non-
converters in Dataset 3 where the voxels are counted if the unadjusted p value<0.005. The
results from Dataset 2 are not included since GLM, PS, and WL did not have detections for
most of kernel sizes, with a reasonable low p value threshold.
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Figure 3.
Significant areas of relative decreased gray matter detected by ODVBA in the schizophrenia
patients. Images are in radiology convention. Multiple voxel comparisons were corrected
using the FDR threshold of p<0.01 and a spatial extent threshold of 50 voxels was applied.
Color bar indicates −log (p) value.
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Figure 4.
Significant areas of relative decreased gray matter detected by ODVBA in the MCI patients.
Images are in radiology convention. Multiple voxel comparisons were corrected using the
FDR threshold of p<0.05 and a spatial extent threshold of 50 voxels was applied. Color bar
indicates −log (p) value.
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Figure 5.
Significant areas of relative decreased gray matter detected by ODVBA in the MCI-to AD
converters. Images are in radiology convention. Multiple voxel comparisons were corrected
using the FDR threshold of p<0.05 and a spatial extent threshold of 50 voxels was applied.
Color bar indicates −log (p) value.
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Figure 6.
Significant areas of relative decreased gray matter detected by GLM, PS, WL, G-TFCE, and
O-TFCE in the schizophrenia patients. Images are in radiology convention. Multiple voxel
comparisons were corrected using the FDR threshold of p<0.01 and a spatial extent
threshold of 50 voxels was applied. Color bar indicates −log (p) value.
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Figure 7.
Significant areas of relative decreased gray matter detected by G-TFCE and O-TFCE in the
MCI patients. Images are in radiology convention. Multiple voxel comparisons were
corrected using the FDR threshold of p<0.05 and a spatial extent threshold of 50 voxels was
applied. Color bar indicates −log (p) value. GLM, PS, and WL have no significant findings
after FDR correction.
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Figure 8.
Significant areas of relative decreased gray matter detected by GLM, PS, WL, G-TFCE, and
O-TFCE in the MCI-to-AD converters. Images are in radiology convention. Multiple voxel
comparisons were corrected using the FDR threshold of p<0.05 and a spatial extent
threshold of 50 voxels was applied. Color bar indicates −log (p) value.
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Figure 9.
The total number of significant voxels of different methods in three datasets. (a) Group
comparison between the schizophrenia patients and the normal controls in Dataset1; (b)
Group comparison between the MCI patients and the normal controls in Dataset2; (c) Group
comparison between the MCI-to-AD converters and the non-converters in Dataset3.
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Figure 10.
The average t values of anatomical regions of different methods in three datasets. (a) Group
comparison between the schizophrenia patients and the normal controls in Dataset1; (b)
Group comparison between the MCI patients and the normal controls in Dataset2; (c) Group
comparison between the MCI-to-AD converters and the non-converters in Dataset3.
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Figure 11.
Results in the local area near the hippocampus. Two representative sections are selected
from two analyses: (A) Group comparison between the schizophrenia patients and the
normal controls in Dataset1; (B) Group comparison between the MCI-to-AD converters and
the non-converters in Dataset3.
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Figure 12.
ROC curves of different methods reflecting spatial agreement between detected regions and
underlying GM segmentation. The results are obtained from two analyses: (a) Group
comparison between the schizophrenia patients and the normal controls in Dataset1; (b)
Group comparison between the MCI-to-AD converters and the non-converters in Dataset3.
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Figure 13.
ROC curves of different methods reflecting classification performances based on detected
regions. The results are obtained from three analyses: (a) Group comparison between the
schizophrenia patients and the normal controls in Dataset1; (b) Group comparison between
the MCI patients and the normal controls in Dataset2; (c) Group comparison between the
MCI-to-AD converters and the non-converters in Dataset3.
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