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Abstract

This paper presents a method for classification of structural magnetic resonance images (MRI) of
the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying
a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise
t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected
based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is
trained on each subset of image voxels. The class label of a test subject is calculated by combining
individual decisions of the SVM classifiers using a voting mechanism. The method is applied for
classifying patients with neurological diseases such as Alzheimer’s disease (AD) and autism
spectrum disorder (ASD). The results on both datasets demonstrate superior performance as
compared to two state of the art methods for medical image classification.

Index Terms
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1. INTRODUCTION

Neurological diseases such as autism spectrum disorder (ASD) and Alzheimer’s disease
(AD) are an ever growing health burden in the United States. Early detection of these
diseases can significantly improve prognosis. However, diagnosis of these diseases is based
on clinical evaluation, history and neuropsychological tests; clinical evaluation is subjective
and neuropsychological tests do not always have a high accuracy for detecting early stages
of disease. Magnetic resonance imaging (MRI) offers the possibility of an objective and
quantitative strategy for early diagnosis of these diseases. Nevertheless, crunching the large
amount of information presented by voxels in an MR image into a binary clinical diagnosis
is extremely challenging. Hence, in recent years, a substantial research effort has been
directed at the development of high dimensional classification methods to discriminate
between patients and normal controls using MR scans.

A detailed review of recent methods used for MR image classification is given in [1]. Most
methods use a supervised classification framework. In this framework: a) training images
with known labels are aligned to a common space, b) discriminative features are extracted,
c) an SVM classifier is trained on these features. Extracted features may simply be voxel
intensity values from the whole brain [2], a smaller set of values from selected voxels[2], or
features calculated from regions of interest (ROISs)[3]. These ROIs are either predefined or
learned from the data.

One major challenge of medical image classification is the very high dimensionality of the
image domain. A typical MRI scan of the brain includes several millions of measurements
on respective image voxels. Furthermore, depending on the type of the disease, pathology
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might cause subtle changes in specific brain ROIs (e.g. atrophy of the hippocampus), on the
whole brain (e.g. atrophy of the gray matter), or even both together. In order to obtain high
classification performance on different datasets, a classifier should be trained on features
that capture different patterns of structural degeneration, going from very localized to
completely global.

With this aim, we extend and improve upon the supervised classification framework by
using two established concepts of machine learning, a) ensemble learning, and b) feature
ranking.

Ensemble learning [4] involves training multiple classifiers on different feature sets.
Prediction is done by combining the decisions of all classifiers on the test data. In this way,
one aims to obtain a classifier that overperforms each individual classifier. SVM ensembles
have been shown to have improved performance over single SVMs [5, 6], and a more robust
performance on unbalanced datasets [6].

Feature ranking focuses on ordering features based on their relevance to classification. In [7]
it was shown that training on a diverse set of features decreases the probability of
generalization error in ensemble of classifiers. In this work, we use a feature ranking
strategy as a first step for constructing nested feature subsets. The features with the highest
ranking are grouped in the first feature subset. Each subsequent subset extends the previous
one by adding less discriminative features, until all features are included. Each SVM
classifier in the ensemble is trained on one of these feature vectors.

The method is applied for classifying two different neurological diseases: Alzheimer’s
disease (AD) and autism spectrum disease (ASD). The results on both datasets demonstrate
superior performance as compared to two state of the art methods [2, 3] for medical image
classification.

2. METHOD

Our method consists of two steps: 1) Generation of nested feature subsets, 2) Training and
testing using SVM ensemble classifiers.

2.1. Generation of nested feature subsets

Feature selection has been an active research area in applications that involve very high
dimensional data. Selection of a subset of relevant features from the available data before
applying a learning model could avoid overfitting and improve the generalization ability of
the final classifier. Also, feature selection allows a better understanding and visualization of
the data and the learned model. Selection of the optimal feature set for a classification task is
a NP-hard problem and is only feasible for datasets with low dimensionality. For high
dimensional data, a practical alternative is the univariate feature ranking. In this technique, a
score is calculated for each feature based on its relevance to the specific classification
problem, independently from the others. The features are then ranked by the assigned score
from highest to lowest.

In this work, we used Welch’s t-test for ranking individual image voxels in order of their

j m
discriminative power with respect to class labels. Let I={I,yl € R"}i:] be a set of mtraining
images with known class labels y; € {+1, -1}, aligned to a common template space. For

each voxel xj J€ {1,...,17}, a t-scoreis calculated, defined as:
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where Xj1 and Xj _1 are the mean intensities, 57, ;ands’;_; are the variances of intensities,
and A1, N_q are the number of samples in the respective classes.

The voxels are ordered by the calculated #-score, from most significant to least significant,
and a rank value 7;is assigned to each voxel.

K nested feature sets 7, k= {1,...,K} are selected from image voxels based on the rank
values:

Ceoll
fi= U x, Q)
J=1

where a is a parameter that describes the rate of increase in number of voxels added to
subsequent nested subsets.

The feature sets are constructed so that the voxels with the highest #-score are selected first.
Voxels with lower f-score are added incrementally to form multiple sets of features. This
process continues until all voxels in the image are selected in a final feature set (Figure 1).
This method of feature selection ensures that each feature set is a subset of the subsequent
set, and hence constitutes a nested forward feature selection scheme. In this scheme, voxels
with the highest ranking are included in all feature sets and voxels with the lowest ranking
are only included in one feature set that contains all voxels. This nested fashion of feature
selection enforces an implicit weighting of voxels as features.

2.2. SVM Ensemble

An SVM constructs a hyperplane in a high-dimensional space that separates training
samples with the largest distance to the nearest samples. It has been shown, both
theoretically and practically, that this hyperplane minimizes the generalization error of the
classifier. SVMs were first applied to medical image classification in [3] after being
successfully applied on classification problems in various domains.

We briefly describe the theory behind the SVM next. Let the imaging data and the
associated class labels of /7 subjects be defined by (1 y), i€ {1,....m}, |,€ R", y; € {-1,
+1}. Here | ;is a r-dimensional point representing an image containing /7 voxels. The linear
SVM attempts to find w € #7and b € R such that:

I P
min Wi +C;§i @

subj. to

VW L+b) > 1 =& &> 0,i=1,...,m

where &;are slack variables. Here w and 4 define the hyperplane that separates the two
classes with the maximum margin.

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 July 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Varol et al.

Page 4

We construct an SVM ensemble model by training an individual SVM on each nested
feature set 7. The ensemble methodology is particularly adapted herein for combining many
feature sets with different dimensionalities that we extracted from the data. Also training
SVM ensembles and then applying an aggregation strategy such as majority voting is known
to improve classification accuracy compared to a single SVM [5].

The ensemble model consists of the hyperplane normal vectors wyand intercepts by, K€ {1,
..., K} that were learned by each individual SVM classifier (Figure 2).

2.3. Testing using the SVM ensemble

To apply the SVM ensemble on a new test image, K feature sets Itff“, kefl,...,K}are first
extracted from the test data. These sets include voxels that were used as features for training
each SVM classifier. Each SVM model is applied on the respective feature set from the test
image to predict a classification score:

yErOd :wZ I}fSt +br  (4)

The prediction score obtained from all SVMs are combined using simple voting to
determine the class label of the test image:

K
1 d
ytestzsgn(sz;ygre) (5)

3. EXPERIMENTAL RESULTS

3.1. Data sources

The method is applied on two independent datasets. Alzheimer’s disease data was obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The MR scans were all T1-
weighted, acquired sagittally using volumetric 3D MPRAGE with 1.25 x 1.25 mm in plane
spatial resolution and 1.2 mm thick sagittal slices. All images were acquiredona 15T
scanner. 268 different age matched subjects were preprocessed and used for the
classification task. The autism data was accessed with permission from Childrens Hospital
of Philadelphia (CHOP). There were scans of a total of 131 different male subjects (81
ASD /50 controls). The images were T1 MR scans. Compared to AD dataset, these subjects
represented a more heterogeneous and unbalanced population. The mean age of ASD
subjects were 11.83 and standard deviation was 2.98. The mean age of controls was 16.71
and standard deviation 7.23. A large age variance hints at the wide spectrum of structural
differences that is evident in the brains of these subjects.

3.2. Preprocessing

The preprocessing protocol includes skull removal using the BET algorithm [8] and bias
field removal using N3 [9]. Images are then nonlinearly registered to a common template
using HAMMER [10]. Instead of directly using voxel intensities, voxelwise tissue density
maps for gray matter (GM), white matter (WM) and ventricles (VN) are extracted for each
individual brain using the method described in [11]. These tissue density maps give a
quantitative representation of the spatial distribution of brain tissues on a common space,
and thus they are ideal to be used as features for classification of neurodegenerative
diseases.
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3.3. Experiments

We generated K = 20 nested feature subsets with linearly increasing dimensions, by using
the algorithm described in 2.1. with a = 1. In order to evaluate the performance at variable
threshold values of the classifier, Receiver Operating Characteristic (ROC) curves are
created. Area Under the Curve (AUC) scores are calculated from the ROC curves. Also,
classification accuracy, sensitivity and specificity values are calculated for the optimal cut-
off threshold value in the ROC curves of the respective methods.

The classification performance of the proposed method is compared to two state of the art
methods that both use SVM for classification, COMPARE [3] and Kloppel’s [2]. Kloppel’s
method trains a linear SVM using segmented brain’s voxel intensities as features. On the
other hand, COMPARE executes internal leave-one-out cross validation to determine the
most discriminative regions of interest after a watershed segmentation has been applied.
These features are then trained using a linear SVM. According to the comparative evaluation
results reported in [1, 2], Kloppel’s method and COMPARE both obtained competitive
scores in the classification of AD data. We also applied an SVM classifier that trains only on
fi, in order to show that the SVM ensemble improves classification accuracy compared to a
single SVM trained on the features with the highest ranking. The same protocols for
training, testing and validation are used in all experiments.

For the AD dataset, GM, WM and VN tissue density maps are used for training and testing.
In experiments with AD, 132 subjects were used for training (58 AD / 74 NC) and 136 were
used for testing (58 AD / 74 NC). For the ASD dataset, only GM and WM maps are used.
This is in agreement with [12] which shows that in autism significant volumetric differences
were mostly observed in GM and WM. The ASD dataset contained 81 ASD /50 NC. Due to
the limited number of subjects in ASD dataset we report leave-one-out cross validation
accuracy instead of test accuracy.

Our method outperformed both COMPARE and Kloppel’s method in the classification of
both datasets in terms of AUC score, accuracy, specificity and sensitivity. It also had better
scores than single SVM on £. Note that AUC is better at quantifying classifier performance
than accuracy because it has higher statistical consistency [13]. The quantitative results for
our method, Kloppel’s method and COMPARE are presented in table 1. The ROC curves
corresponding these methods as well as SVM trained on £ is shown in figure 3.

Our method has two parameters a and K, which are used in combination to define the
number and dimensionality of the feature sets that are used in the SVM ensemble. We
evaluated the robustness of the method to the variation of these parameters. To explore the
sensitivity of the method to the choice of a we fixed K= 20 and applied the classification
for a values varying in a range from 0.5 to 2. Similarly, we applied the method for fixed a =
1 and Kvarying between 3 and 35. AUC values for classification of both datasets are
computed for all different parameter values. Figure 4 shows the variation of AUC scores for
variable values of a and K. These results confirm that the method is robust to variation of
these two parameters in a wide range.

4. DISCUSSION

Specifically, on the ASD data we observed a more significant increase in the classification
performance compared to Kloppel’s method. The implicit weighting of smaller but
statistically more significant features in feature selection emphasizes the respective regions
in training of the classifiers. Selecting smaller regions as features may fare better with a
disorder such as autism which exhibits a localized pathological structure.
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We used a feature selection strategy based on ranking individual voxels by their
discriminative power. This strategy could be enhanced by ranking clusters of voxels instead
of individual ones. In [7], it has been demonstrated that employing a diverse set of feature
subsets in ensembles reduces the generalization error. Hence, it may be beneficial to
investigate further methods to generate feature subsets.

In addition, other feature selection approaches or ensemble aggregation strategies may be
incorporated into the proposed framework in the future. Boosting, bagging or weighted
voting strategies may be used to combine the individual classifiers to improve the
classification performance.

5. CONCLUSION

We presented a novel model for medical image classification using feature ranking and
SVM ensemble classifiers. We showed that aggregating classifiers trained on nested feature
sets attained better classification performance than classifiers trained on a single feature set.
Furthermore, our method consistently outperformed two state of the art methods for medical
image classification on two different clinical datasets.

REFERENCES

1. Cuingnet R, et al. Automatic classification of patients with Alzheimer’s disease from structural
MRI: A comparison of ten methods using the ADNI database. Neuroimage. 2010

2. Kloppel S, et al. Automatic classification of mr scans in alzheimer’s disease. Brain. 2008

3. Fan'Y, et al. Compare: Classification of morphological patterns using adaptive regional elements.
IEEE Trans. Med. Imaging. 2007

4. Rokach L. Ensemble-based classifiers. Artif. Intell. Rev. 2010
5. Kim H, et al. Constructing support vector machine ensemble. Pattern Recognition. 2003

6. Liu Y, et al. Boosting prediction accuracy on imbalanced datasets with svm ensembles. Advances in
Knowledge Discovery and Data Mining. 2006

7. Zenobi G, et al. Using diversity in preparing ensembles of classifiers based on different feature
subsets to minimize generalization error. in Machine Learning: ECML 2001. 2001

8. Smith SM, et al. Fast robust automated brain extraction. Human Brain Mapping. 2002
9. Sled JG, et al. A nonparametric method for automatic correction of intensity nonuniformity in mri
data. Medical Imaging, IEEE Transactions on. 1998

10. Shen D, et al. Hammer: hierarchical attribute matching mechanism for elastic registration. Medical
Imaging, IEEE Transactions on. 2002

11. Davatzikos C, et al. Voxel-based morphometry using the ravens maps: Methods and validation
using simulated longitudinal atrophy. Neurolmage. 2001

12. McAlonan GM, et al. Mapping the brain in autism. a voxelbased mri study of volumetric
differences and intercorrelations in autism. Brain. 2005

13. Huang J, et al. Using auc and accuracy in evaluating learning algorithms. Knowledge and Data
Engineering, IEEE Transactions on. 2005

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 July 19.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Varol et al.

Fig. 1.
Nested subsets generated using feature ranking. Red indicates higher ranked voxels.

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 July 19.

Page 7



1dudsnuey Joyiny vd-HIN 1dudsnuey Joyiny vd-HIN

1duosnuey JoyIny vd-HIN

Varol et al. Page 8

Model 2
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Fig. 2.
Training of the SVM ensemble.
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Fig. 3.
ROC curves for the classification by our method, Kloppel’s method, COMPARE and SVM
trained on £ on the two datasets.
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AUC results for variable a and K'values.
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