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E26 transformation-specific sequence (ETS) factors are a 
family of transcription factors that share a highly conserved 
DNA-binding domain. The name ETS originates from a 
sequence that was detected in an avian erythroblastosis virus, 
E26, where it formed a transforming gene together with ∆gag 
and c-myb.1,2 There are ~25–30 ETS family members in a vari-
ety of species from drosophila to man. ETS factors are involved 
in regulating a wide variety of biological processes including 
normal development and differentiation.3 As proto-oncogenes 
they have also been implicated in the pathogenesis of several 
different types of cancer.4,5

The epithelium-specific ETS transcription factor-1 (ESE-1)  
was originally identified as an epithelial-restricted ETS fac-
tor.6 Under noninflammatory conditions, ESE-1 is only 
expressed in cells of epithelial origin. However, in response to 
inflammatory stimuli such as endotoxin or proinflammatory 

cytokines including interleukin-1β (IL-1β) or tumor necrosis 
factor-α (TNF-α), this transcription factor is highly induced in 
cultured primary endothelial cells or vascular smooth muscle 
cells (VSMCs).7 In a mouse model of endotoxemia, ESE-1 is 
rapidly induced in the endothelium and first medial layer of 
VSMC of the mouse aorta.7 Target genes regulated by ESE-1 
include nitric oxide synthase 2 (NOS2) and cyclooxygenase 2 
(COX2).7,8 ESE-1 has also recently been shown to function in 
the regulation of TNF-α-mediated expression of angiopoietin-1 
in the setting of inflammatory arthritis.9 The transcriptional 
activity of ESE-1 can be positively and negatively modified 
by its interaction with other proteins. Whereas binding of 
ESE-1 to CBP and p300 is associated with an increase in the 
transcriptional activity of ESE-1, interaction with Ku proteins 
represses ESE-1 function.10

ETS factors have also been shown to play an important 
role in angiotensin II (Ang II)–mediated vascular inflam-
mation and remodeling. In particular, we have previously 
shown that the prototypic member of the ETS family, Ets-1, 
is a critical transcriptional mediator of Ang II–mediated vas-
cular inflammatory responses.11 The participation of other 
selected ETS factors in vascular inflammation was recently 
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Background
Angiotensin II (Ang II) is a critical mediator vascular inflammation 
and remodeling in a number of diseases including hypertension and 
atherosclerosis. The purpose of this study was to evaluate the role of 
the epithelium-specific ETS transcription factor-1 (ESE-1), a member 
of E26 transformation-specific sequence (ETS) transcription factors, 
as a mediator of Ang II–mediated vascular responses.

Methods
ESE-1 knockout mice were used to evaluate the role of ESE-1 in 
regulating Ang II–mediated vascular inflammation and remodeling.

Results
ESE-1 levels are low to undetectable under basal conditions but 
rapidly increase in response to Ang II. Intimal medial thickness and 
perivascular fibrosis of the aorta were significantly greater in ESE-1 
knockout mice compared with the wild-type littermate controls. 
Proliferating cell nuclear antigen (PCNA) staining was also greater in 
the aorta of the Ang II–infused ESE-1 knockout mice compared with 

the controls. The infiltration of T cells and macrophage into the vessel 
wall of the aorta was dramatically enhanced in the ESE-1 knockout 
mice compared with the controls. Finally, Ang II–induced expression 
of a known downstream target of ESE-1, nitric oxide synthase 2 
(NOS2), was significantly blunted in ESE-1 knockout mice compared 
to littermate controls. The alterations in vascular inflammation and 
remodeling were associated with an exaggerated systolic blood 
pressure response to Ang II in ESE-1 knockout mice.

Conclusions
ESE-1 is an Ang II–inducible transcription factor that plays an 
important counter-regulatory role in the setting of vascular 
inflammation and remodeling.
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reviewed.12 However, the role of ESE-1 in Ang II–mediated 
vascular inflammation and remodeling has not previously 
been explored. The primary purpose of this study was to deter-
mine whether ESE-1 expression is similarly induced in vivo, in 
the vasculature, in response to Ang II stimulation, and second-
arily to determine whether or not ESE-1 plays an important 
modulatory role by positively or negatively regulating vascular 
inflammatory responses to Ang II.

Methods
Cell culture. Primary human aortic smooth muscle cells were 
obtained from Lonza (Basel, Switzerland) and grown in 
smooth muscle growth medium-2 (cat. no. CC-3182; Lonza). 
Rat aortic smooth muscle cells (RASMCs) were grown in 
Dulbecco’s modified Eagle’s medium with 10% of fetal bovine 
serum. RASMCs were isolated from the thoracic aorta of male 
Sprague–Dawley rats (Charles River, Wilmington, MA) by 
using the collagenase digestion method we have previously 
described.11 For all experiments, primary VSMCs from pas-
sages 4–7 were used. VSMCs were grown to 70–80% con-
fluence and then made quiescent by starvation for 48 h. The 
VSMCs were collected at 0, 1, 2, 4, 6, and 24 h after stimulation 
with 100 nmol/l of Ang II.

Animals and Ang II infusion. Animals were housed in accord-
ance with the guidelines from the American Association for 
Laboratory Animal Care. The ESE-1−/− mice were generated 
and bred on a C57BL/6 background.5 ESE-1−/− mice were 
kindly provided by Ismail Kola, Monash University, Melbourne, 
Australia. Genotyping was performed by polymerase chain 
reaction (PCR) of genomic DNA isolated from tails of mice. 
All experiments were performed using 10-week-old male 
ESE-1−/− mice with littermate ESE-1+/+ controls. Mice were 
anesthetized by intraperitoneal injection of xylazine (5 mg/
kg) and ketamine (80 mg/kg). An ALZET minipump (Duret, 
Cupertino, CA) containing angiotensin  II (Sigma, St Louis, 
MO) 1.4 mg/kg/day dissolved in saline or saline alone (vehicle) 
was implanted subcutaneously and infused continuously. 
Aortic tissue samples were collected at 0, 3, 7, and 14 days after 
initiation of Ang II infusion. For immunohistochemical stud-
ies, mice were killed and perfused with 4% paraformaldehyde 
under 100 mm Hg of perfusion pressure with a microperfusion 
pump after 0.1 mol/l phosphate-buffered saline perfusion via 
a catheter inserted into the left ventricle. Fixed aortic tissue 
samples were embedded in paraffin.

Morphometric analysis. After the animals were euthanized, the 
thorax was opened, a 21-gauge needle was placed into the left 
ventricle, and the inferior vena cava was severed. The animals 
were perfused with normal saline at 100 mm Hg until the per-
fusate cleared and then pressure fixed at 100 mm Hg with 4% 
formalin. Tissues were paraffin embedded and cut into 5 µmol/l 
sections. Sections were stained with Masson’s trichrome stain to 
permit detection of perivascular fibrosis. Arterial thickening and 
perivascular fibrosis were assessed as previously described.13–15 
The media/luminal area ratio was used as the index of arterial 

thickening, which is the ratio of cross-sectional medial area to 
luminal area. Measurements were performed using image-an-
alyzing software (NIH Image). Three independent sections per 
artery of five pairs of mice were counted.

Immunohistochemistry. 5 µmol/l sections cut from paraffin-
embedded aorta were used for immunohistochemical staining. 
The primary antibodies used in the study were as follows: rabbit 
antihuman ESE-1 (Orbigen, San Diego, CA), rabbit antihuman 
CD3, rabbit IgG fraction as negative control for CD3 (Dako, 
Carpinteria, CA), rat anti-mouse Mac-3, rat IgG1 as negative 
control for Mac-3 (BD Pharmingen, San Jose, CA), rabbit anti-
human vascular cell adhesion molecule (VCAM)-1 (Santa Cruz, 
Santa Cruz, CA), rabbit antihuman proliferating cell nuclear 
antigen (PCNA) (Santa Cruz), and rabbit IgG as negative 
control for rabbit Ab (Santa Cruz). Vectastain Elite ABC kits 
(Vector Labs, Burlingame, CA) were used for the immuno
histochemical staining. The sections were counterstained with 
methyl green (Dako). CD3+ leukocytes and Mac-3+ macro-
phages in three independent sections per artery of five pairs of 
mice were counted. The number of cells were expressed as a 
percentage of the total cells.

Blood pressure measurement. BP-2000 blood pressure analysis 
system (Visitech Systems, Cincinnati, OH) was used to meas-
ure the systolic blood pressure of the mice. Systolic blood pres-
sure was measured on 0, 3, 7, and 14 days after angiotensin 
infusion. Mice were weighed at 3 and 8 weeks, and every time 
before blood pressure measurements were made. No signifi-
cant differences in weight were observed between the ESE-1 
knockout and wild-type controls at the different time points.

RNA isolation, quantitative RT-PCR, and genotyping. RNA 
from aorta of C57BL mice was homogenized using Tissue-
Tearor (Biospec Products, Bartlesville, OK). Human aortic 
smooth muscle cells were treated by QIAshredder (Qiagen, 
Valencia, CA) before mRNA extraction. mRNA was isolated 
using RNeasy Mini Kit (Qiagen) with RNase-free DNase set 
(Qiagen) to remove the genomic DNA. RNA was reverse tran-
scribed to cDNA using oligo dT primer and SuperScript II 
RT-polymerase (Invitrogen, Carlsbad, CA). Real-time quanti-
tative PCR was performed using the ABI PRISM 7700 machine 
(Applied Biosystems, Carlsbad, CA). Mouse tail DNA was iso-
lated, and PCR for genotyping was performed for 30 cycles of 
1 min at 94 °C, 1 min at 55 °C, and 1 min at 72 °C followed by 
7 min at 72 °C. Five microliters of the amplification product 
were analyzed on a 2% agarose gel.

Measurement of DNA synthesis. VSMCs were stimulated 
by Ang II for 18 h and pulsed with 1 µCi/ml [3H]thymidine 
for 5 h. Then cells were washed twice with phosphate-buff-
ered saline, incubated for 5 min in 5% trichloroacetic acid, 
washed by methanol, and dissolved in 99% formic acid. The 
incorporation of [3H]thymidine into trichloroacetic acid–
insoluble material was measured by liquid scintillation 
spectrophotometer.
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Statistical analysis. The data are presented as mean ± s.e.m. 
The statistical significance of differences was analyzed by 
analysis of variance with a subsequent Dunnett test in multiple 
comparisons.

Results
We have previously shown that ESE-1 is induced in vascular 
endothelial cells and VSMCs in response to proinflamma-
tory cytokines including IL-1β and TNF-α.7 Because Ang II is 
known to function as a critical mediator of vascular inflam-
mation as it relates to atherosclerosis, hypertension, and aging, 
we were also interested in determining whether Ang II could 
induce the expression of ESE-1 in VSMCs.16 We first evaluated 
ESE-1 expression by semiquantitative RT-PCR in human aortic 
smooth muscle cells. Although low levels of ESE-1 were detect-
able under basal conditions, there was a rapid and transient 
induction of ESE-1 (Figure 1a). Using quantitative RT-PCR, 
the increase in ESE-1 was about twofold at 2 h (Figure  1c). 
ESE-1 was similarly measured in the mouse aorta at differ-
ent time points after the infusion of Ang II (1.4 mg/kg/day). 
Minimal expression of ESE-1 was observed at baseline, but 
the levels of ESE-1 increased significantly by 3 days and were 
persistently elevated throughout the course of the infusion 
(Figure 1b). Robust ESE-1 expression was similarly detected 
by immunohistochemistry in the VSMCs of the mouse aorta 
after 2 weeks of Ang II infusion (Figure 1d). ESE-1 staining 
was also observed in the endothelium and adventitia.

In addition to the induction of inflammatory genes, systemic 
administration of Ang II also promotes the influx of inflam-
matory cells.17 These are first detected within the first week 
of infusion. To determine the role of ESE-1 in the regulation 
of the influx of inflammatory cells, Ang II was infused into 
ESE-1 knockout mice and littermate controls. We observed 
an increase in the number of T cells (CD3) and macrophages 
(Mac-3) by immunohistochemical staining (Figure 2a,c). This 
was particularly strong in the adventitia. We then counted 
the number of CD3 and Mac-3 staining cells per high power 
field magnification. The absence of ESE-1 was associated with 
over a tenfold increase in the number of inflammatory cells 
(Figure 2b,d). Interestingly, the levels of the vascular adhesion 
molecule VCAM-1 were exaggerated in the ESE-1−/− mice 
compared to controls (Figure 5).

Chronic exposure of blood vessels to Ang II is associated 
with increased thickness and perivascular fibrosis.11 We also 
evaluated changes in vascular remodeling in ESE-1−/− mice 
and littermate controls (ESE-1+/+). There did not appear to 
be  any significant morphological difference in vessel thick-
ness prior to Ang II stimulation (Figure 3a, vehicle). However, 
after 2 weeks of infusion, there was a marked increase in 
thickness of the aortas and the extent of perivascular fibrosis 
in the ESE-1−/− compared to the littermate ESE-1+/+ control 
(Figure 3a; Ang II 14 days). Quantitation of the medial thick-
ness and extent of perivascular fibrosis before and after stimula-
tion confirmed these observations (Figure 3b,c). Interestingly, 
this was also associated with an exaggerated systolic blood 
pressure response to Ang II in the ESE-1−/− compared to the 

littermate ESE-1+/+ controls (Figure  3d). Genotyping of the 
mice was performed by PCR (Figure 3e).

We hypothesized that one potential mechanism by which 
the increase in thickness could occur was through an increase 
in the proliferative capacity of the VSMCs from ESE-1−/− 
mice compared to control mice. PCNA staining of the media 
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Figure 2 | Increased recruitment of inflammatory cells in ESE-1−/− mice in 
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of ESE-1−/− mice was compared to littermate ESE-1+/+ con-
trols. In addition to cells within the media of the aorta, we 
also noted an increase in the PCNA staining of cells within 
the adventitia (Figure 4a). The number of PCNA+ cells in the 
media (Figure 4b) and the adventitia (Figure 4c) were signifi-
cantly higher in the ESE-1−/− mice compared to control mice. 
To further define whether this effect was Ang II–dependent, 
we isolated VSMCs from the aorta of ESE-1−/− and littermate 
ESE-1+/+ controls and assessed their relative uptake of triti-
ated thymidine. Interestingly, at baseline, there was no differ-
ence in proliferation. However, in the VSMCs obtained from 
ESE-1−/− mice exhibited and exaggerated response to Ang 
II compared to VSMCs from littermate ESE-1+/+ controls 
(Figure 4d).

We have previously shown that one of the direct targets of 
ESE-1 in response to proinflammatory cytokines in VSMCs 

and EC is NOS2 (ref. 7). We next evaluated whether NOS2 
was also regulated by ESE-1 in response to Ang II. In wild-type 
mice, we observed a robust induction of ESE-1 and NOS2, that 
was significantly blunted in the ESE-1−/− mice (Figure 5).

Discussion
Until recently, very little was known about the role of ETS fac-
tors in regulating vascular inflammation. Over the past few 
years, several studies have been completed that support a role 
for selected members of the ETS transcription factor family in 
the regulation of vascular inflammation, including endothelial 
activation in response to inflammatory mediators, the recruit-
ment of inflammatory cells to the vessel wall, and proliferation 
and migration of VSMCs.12 We and others have observed that 
Ets-1 is induced in VSMCs and endothelial cells in response to a 
variety of stimuli including Ang II, PDGF-BB, thrombin, IL-1β, 
and TNF-α.11,18–23 Target genes identified to be downstream 
of Ets-1 in the setting of acute vascular inflammation include 
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the chemokine MCP-1 and the adhesion molecule VCAM-1. 
Systemic administration of the vasoactive peptide Ang II via 
continuous infusion is not only associated with increases in 
systolic blood pressure but also promotes the recruitment of 
inflammatory cells, including T cells and monocytic cells, to the 
vessel wall.24 One of the major mediators of vascular inflam-
mation within the vessel wall is reactive oxygen species. Ang II, 
for example, promotes the generation of superoxide anions in 
VSMCs largely via the activity of NAD(P)H oxidases, that can 
be converted to hydrogen peroxide by superoxide dismutase.25

The results of our study support apparent opposing or 
counter-regulatory effects of different Ets factors to the same 
inflammatory stimuli, Ang II. One explanation for these oppo-
site effects could be that they simply provide a mechanism 
for providing balance so that inflammatory responses do not 
go unopposed. The lack of ESE-1 expression in the ESE-1 
knockout mice, for example, could lead to an exaggerated 
Ang  II–mediated inflammatory response via an associated 
augmentation in the expression of Ets-1. The production of 
reactive oxygen species, such as hydrogen peroxide, is known 
to induce the expression of the ETS factor Ets-1 (ref. 26). When 
ESE-1 is normally expressed, the production of NO by NOS2 
acts to counterbalance this increased inflammatory response 
leading to a reduction in adverse or pathologic remodeling. 
The ESE-1-dependent NO production can therefore be viewed 

as directly contributing to the regulation Ets-1 gene transcrip-
tion by modifying the level of reactive oxygen species.

We also observed an exaggerated blood pressure response to 
Ang II in the ESE-1 knockout mice. We have previously identi-
fied NOS2 as a downstream target of ESE-1 in the setting of 
endotoxemia and in VSMC in response to proinflammatory 
cytokines such as TNF-α.7 ESE-1 synergizes with NF-κB to 
induce the expression of NOS2 in VSMC. The results of the 
current study also support a role for ESE-1 in the regulation of 
NOS2 downstream of Ang II. However, previous studies have 
demonstrated that Ang II does not directly induce NOS2 in 
cultured VSMC.27 We postulate that one possible mechanism 
by which Ang II might lead to increase expression of NOS2 
in vivo is through the recruitment of inflammatory cells such 
as T cells that are known to secrete proinflammatory cytokines 
such as TNF-α.28 Therefore, although the primary vascular 
effect of Ang II on VSMC is to promote vasoconstriction, it 
is possible that the recruitment of inflammatory cells and the 
paracrine release of proinflammatory cytokines could explain 
the increased NOS2 expression we observed 1 week after 
Ang II infusion.

Prostaglandins may also play an important role in the regu-
lation of blood pressure in response to Ang II. For example, 
it is known that COX2 synthesizes vasodilator prostaglandins. 
Inhibition of COX2 has been shown to augment the pressor 
effects of Ang II.29 Furthermore, COX2 is a downstream target 
of ESE-1 in the setting of inflammation.8 Therefore, another 
possible explanation for the increased blood pressure observed 
in the ESE-1 knockout mice at 7 and 14 days after Ang II infu-
sion is a reduction in the production of vasodilator prostaglan-
dins by COX2.

Leukotrienes, the products of the lipoxygenase enzymes have 
also been implicated in the pathogenesis of hypertension.30 For 
example, the lipoxygenase derived 12-hydroxyeicosatetraenoic 
acid (12-HETE) is associated with the development of hyper-
tension and is a mediator of Ang II–mediated mesangial injury 
in diabetic nephropathy. Similarly, the P450 hydroxylase–
derived 20-HETE is also a potent vasoconstrictor. 20-HETE 
has also been shown to promote the development of hyperten-
sion. We have previously shown that ESE-1 can also function 
as a transcriptional repressor.31 ESE-1 could potentially func-
tion as a repressor of these enzymes and thereby inhibit the 
production of selected leukotrienes known to play a role in the 
pathogenesis of hypertension.

In addition to the role of ETS factors as positive regulators 
of gene transcription, two members of the ETS factor family 
have been shown to function as transcriptional repressors of 
selected genes under noninflammatory conditions. For exam-
ple, Elk-3 regulates the expression of the heme oxygenase-1 
(HO-1) gene.32 HO-1 is a cytoprotective enzyme that is 
rapidly induced in monocytic cells in response to inflamma-
tory stimuli such as endotoxin.33 Elk-3 functions as a potent 
transcriptional repressor that binds to regulatory sites within 
the HO-1 promoter and thereby inhibits the transcriptional 
activity of this promoter. In response to endotoxin, levels of 
Elk-3 rapidly diminish in cultured primary macrophages, 
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Figure 5 | Immunohistochemical staining of ESE-1, NOS2, and VCAM-1 in the 
thoracic aorta of ESE-1+/+ and ESE-1−/− mice after Ang II infusion. Evaluation 
of expressions of ESE-1, NOS2, and COX2 in the thoracic aorta of ESE-1+/+ and 
ESE-1−/− mice, after infusion of Ang II (1.4 mg/kg/day) for 1 week. Original 
magnification ×400. Isotype-matched controls are shown below each panel. 
Ang II, angiotensin II; COX2, cyclooxygenase 2; ESE-1, epithelium-specific ETS 
transcription factor-1; IgG, immunoglobulin G; NOS2, nitric oxide synthase 2; 
VCAM-1, vascular cell adhesion molecule-1.
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which is associated with increased HO-1 levels.32 Under basal 
conditions, Elk-3 functions as a potent repressor of HO-1 
expression, thereby contributing to transcriptional regula-
tion of HO-1 gene under inflammatory and noninflammatory 
conditions. Elk-3 similarly functions as a repressor of NOS2 
gene expression under noninflammatory conditions.34 More 
recently, we have shown that the ETS-related gene (ERG) 
functions as a transcriptional repressor of the IL-8 gene in 
endothelial cells under basal conditions.35 In response to 
proinflammatory cytokines such as TNF-α, a reduction in 
ERG is associated with a marked increase in IL-8 production 
and neutrophil attachment. These studies suggest that selected 
members of the ETS transcription factor family function to 
promote vascular quiescence in the absence of inflammation. 
In the presence of inflammatory stimuli, these transcriptional 
repressors are suppressed, thereby allowing the expression of 
selected inflammatory genes.

In summary, the results of our studies as well as those of 
others provide strong evidence for an important regulatory role 
of several different members of the ETS transcription in the set-
ting of vascular inflammation remodeling. Whereas Ets-1 gen-
erally promotes inflammation downstream of Ang II, we have 
identified a counter-regulatory role for ESE-1 that may, at least 
in part, be mediated through the induction of the NOS2.
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