

NIH Public Access

Author Manuscript

J Biol Chem. Author manuscript; available in PMC 2013 July 19.

Published in final edited form as: *J Biol Chem.* 1999 April 2; 274(14): 9607–9616.

Human Pancreatic Islets Express mRNA Species Encoding Two Distinct Catalytically Active Isoforms of Group VI Phospholipase A₂ (iPLA₂) That Arise from an Exon-skipping Mechanism of Alternative Splicing of the Transcript from the iPLA₂ Gene on Chromosome 22q13.1*

Zhongmin Ma, **Xiying Wang**, **William Nowatzke**, **Sasanka Ramanadham**, and **John Turk**[‡] Mass Spectrometry Resource, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

An 85-kDa Group VI phospholipase A₂ enzyme (iPLA₂) that does not require Ca^{2+} for catalysis has recently been cloned from three rodent species. A homologous 88-kDa enzyme has been cloned from human B-lymphocyte lines that contains a 54-amino acid insert not present in the rodent enzymes, but human cells have not previously been observed to express catalytically active iPLA₂ isoforms other than the 88-kDa protein. We have cloned cDNA species that encode two distinct iPLA₂ isoforms from human pancreatic islet RNA and a human insulinoma cDNA library. One isoform is an 85-kDa protein (short isoform of human iPLA₂ (SH-iPLA₂)) and the other an 88-kDa protein (long isoform of human iPLA2 (LH-iPLA2)). Transcripts encoding both isoforms are also observed in human promonocytic U937 cells. Recombinant SH-iPLA2 and LH-iPLA2 are both catalytically active in the absence of Ca²⁺ and inhibited by a bromoenol lactone suicide substrate, but LH-iPLA₂ is activated by ATP, whereas SH-iPLA₂ is not. The human iPLA₂ gene has been found to reside on chromosome 22 in region q13.1 and to contain 16 exons represented in the LH-iPLA₂ transcript. Exon 8 is not represented in the SH-iPLA₂ transcript, indicating that it arises by an exon-skipping mechanism of alternative splicing. The amino acid sequence encoded by exon 8 of the human iPLA₂ gene is proline-rich and shares a consensus motif of PX₅PX₈HHPX₁₂NX₄Q with the proline-rich middle linker domains of the Smad proteins DAF-3 and Smad4. Expression of mRNA species encoding two active iPLA₂ isoforms with distinguishable catalytic properties in two different types of human cells demonstrated here may have regulatory or functional implications about the roles of products of the iPLA₂ gene in cell biologic processes.

Phospholipases $A_2 (PLA_2)^1$ catalyze hydrolysis of *sn*-2 fatty acid substituents from glycerophospholipid substrates to yield a free fatty acid and a 2-lysophospholipid (1–7). PLA₂ is a diverse group of enzymes, and the first well characterized members have low

^{*}This research was supported by National Institutes of Health Grant R37-DK-34388. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

 $[\]ensuremath{\mathbb C}$ 1999 by The American Society for Biochemistry and Molecular Biology, Inc.

[‡]To whom correspondence should be addressed: Box 8127, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110. Tel.: 314-362-8190; Fax: 314-362-8188; jturk@imgate.wustl.edu..

This paper is available on line at http://www.jbc.org

The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EBI Data Bank with accession number(s) AF102988, AF102989, and AF116252 through AF116267.

molecular masses (approximately 14 kDa), require millimolar $[Ca^{2+}]$ for catalytic activity, and function as extracellular secreted enzymes (sPLA₂) (3, 6). The first cloned PLA₂ that is active at $[Ca^{2+}]$ achieved in the cytosol of living cells is an 85-kDa protein classified as a Group IV PLA₂ and designated cPLA₂ (3, 5). This enzyme is induced to associate with its substrates in membranes by rises in cytosolic $[Ca^{2+}]$ within the range achieved in cells stimulated by extracellular signals that induce Ca^{2+} release from intracellular sites or Ca^{2+} entry from the extracellular space, is also regulated by phosphorylation, and prefers substrates with *sn*-2 arachidonoyl residues (5).

Recently, a second PLA₂ that is active at $[Ca^{2+}]$ that can be achieved in cytosol has been cloned (8–10). This enzyme does not require Ca²⁺ for catalysis, is classified as a Group VI PLA₂, and is designated iPLA₂ (3, 4). The iPLA₂ enzymes cloned from hamster (8), mouse (9), and rat (10) cells represent species homologs and all are 85-kDa proteins containing 752 amino acid residues with highly homologous (approximately 95% identity) sequences. Each contains a GXSXG lipase consensus motif and eight stretches of a repeating motif homologous to a repetitive motif in the integral membrane protein-binding domain of ankyrin (8–10). The substrate preference of these iPLA₂ enzymes varies with the mode of presentation (8), but each is inhibited (8–10) by a bromoenol lactone (BEL) suicide substrate (11, 12) that is not an effective inhibitor of sPLA₂ or cPLA₂ enzymes at comparable concentrations (4, 11–14).

Proposed functions for iPLA₂ include a housekeeping role in phospholipid remodeling that involves generation of lysophospholipid acceptors for arachidonic acid incorporation into P388D1 macrophage-like cell phospholipids (4, 15, 16). Signaling roles for iPLA₂ in generating substrate for leukotriene biosynthesis (17) and lipid messengers that regulate ion channel activity (10, 18, 19) and apoptosis (20) have also been suggested. Recent observations with human iPLA₂ suggest that the enzyme might serve distinct functions in different cells that involve regulatory interactions among splice variants (17, 21). Human iPLA₂ cloned from B-lymphocyte lines and testis differs from iPLA₂ cloned from cells of rodent species in that it is an 88-kDa rather than an 85-kDa protein and contains a 54-amino acid insert interrupting the eighth ankyrin repeat (21). The human B-lymphocyte iPLA₂ sequence is otherwise highly homologous to hamster, mouse, and rat sequences and includes the seven other ankyrin-like repeats and a GXSXG lipase sequence (21). Catalytically active iPLA₂ other than the 88-kDa isoform have not yet been observed in human cells (21).

Human B-lymphocyte lines do express truncated, inactive iPLA₂ sequences that contain the ankyrin repeat domain but lack the catalytic domain and are thought to arise from alternative splicing of the transcript (21). Co-expression of the truncated sequences with full-length human iPLA₂ attenuates catalytic activity (21). Because the active form of iPLA₂ is an oligomeric complex (8, 22) that may result from subunit associations through ankyrin repeat domains (8), this suggests that formation of hetero-oligomeric complexes represents a means to regulate iPLA₂ activity (21). That mechanisms of iPLA₂ regulation differ among human cell types is suggested by the fact that stimuli that induce iPLA₂-catalyzed arachidonate release and leukotriene production in human granulocytes fail to induce these events in human lymphocyte lines, even though both classes of cells express iPLA₂ and leukotriene biosynthetic enzymes (17, 21).

¹The abbreviations used are: BEL, bromoenol lactone; bp, base pair(s); DAPI, 4', 6-diamidino-2-phenylindole; FISH, fluorescence *in situ* hybridization; IPTG, isopropyl-1-thio-β-D-galactopyranoside; kb, kilobase pair(s); PCR, polymerase chain reaction; RT, reverse transcription; Sf9, *Spodoptera frugiperda*, type 9; PLA₂, phospholipase A₂; cPLA₂, Group IV PLA₂; iPLA₂, Group VI PLA₂; sPLA₂, secretory PLA₂; LH-iPLA₂, long isoform of human iPLA₂; SH-iPLA₂, short isoform of human iPLA₂.

J Biol Chem. Author manuscript; available in PMC 2013 July 19.

One human cell type in which iPLA₂ may be biomedically important is the pancreatic islet beta cell. Impaired beta cell survival and signaling functions underlie development of types I and II diabetes mellitus, respectively; these are the most prevalent human endocrine diseases. In rodent islets, iPLA₂ has been proposed to play a signaling role in glucoseinduced insulin secretion (8, 23–25) and in experimentally induced beta cell apoptosis (26). Human islets express a BEL-sensitive PLA₂ activity that does not require Ca²⁺ (27, 28), but iPLA₂ mRNA has not been demonstrated in human islets. We have cloned human beta cell iPLA₂ cDNA here and find that human islets express mRNA species encoding two iPLA₂ isoforms with different sizes (85 and 88 kDa) and catalytic properties. We have also determined the human iPLA₂ gene structure and its chromosomal location and find that the transcript encoding the short isoform arises from an exon-skipping mechanism of alternative splicing.

EXPERIMENTAL PROCEDURES

Materials

The compounds [32 P]dCTP (3000 Ci/mmol), [35 S]dATPS (1000 Ci/mmol), and L- α -1-palmitoyl-2-[14 C]arachidonoyl-phosphatidylethanolamine (50 mCi/mmol) and ECL detection reagents were obtained from Amersham Pharmacia Biotech, and the BEL ((E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) iPLA₂ suicide substrate was obtained from BIOMOL (Plymouth Meeting, PA). A human placental genomic DNA library in lambda FIX II was obtained from Stratagene (La Jolla, CA). Human promonocytic U937 cells (30) were obtained from American Type Culture Collection (Manassas, VA) and cultured as described (20, 31). Sources of other common materials are identified elsewhere (10, 14, 23–25, 28).

Cloning cDNA Species Containing iPLA₂ Sequence from a Human Insulinoma Cell cDNA Library

Rat islet $iPLA_2$ cDNA was isolated (10), labeled with ³²P, and used to screen a human insulinoma cDNA library (32) provided by Dr. Alan Permutt of Washington University. Insert sizes in clones that hybridized with the probe were determined by digestion with restriction endonucleases, and their sequences were determined from the double strand (33). Two cDNA species were obtained that contained about 1.80 and 1.59 kb, respectively, of the 3'-sequence of human iPLA₂ cDNA, including the poly(A) tail. Neither contained the 5'end of the full coding sequence, and RT-PCR was therefore performed with human islet RNA.

Isolation of RNA from Human Islets and Human Promonocytic U937 Cells, Reverse Transcription, and Polymerase Chain Reactions

Islets were isolated from human pancreata in the Washington University Diabetes Research and Training Center (34) and cultured as described (35). Total RNA was isolated from human islets and promonocytic U937 cells and first strand cDNA prepared by reverse transcription (RT) using standard procedures (36). PCRs were performed under described conditions (10), and products were analyzed by agarose gel electrophoresis (36). Primers used to generate the 5' portion of human iPLA₂ cDNA were sense (5'-GATGCAGTTCTTTGGACGCCTGG-3'), anti-sense (5'-T-CAGCATCACCTTGGGT-TTCC-3'), and nested antisense (5-AATGGCCAGGGCCAGGATG-C-3'). Two distinct cDNA fragments were obtained, subcloned, sequenced, and found to extend from the 5'initiator codon through about 1.59 and 1.79 kb of DNA, respectively. The cDNA fragments obtained from screening the human insulinoma cell cDNA library overlapped at their 5'-ends with 3'-ends of cDNA fragments from RT-PCR of human islet RNA, and the overlapping region contained an *NcoI* site. The fragments were subcloned into pBluescript SK. Fragments from RT-PCR of human islet RNA contained the iPLA₂ 5'- coding sequence and were released from plasmids with *Eco*RI and *NcoI*. Products were isolated by agarose gel electrophoresis and ligated with a plasmid containing the 3'-end of human iPLA₂ cDNA that had been treated with *NcoI*. Ligation product plasmids were used to transform bacterial host cells and sequenced. The resultant cDNA species contained complete coding sequences of human iPLA₂ isoforms and were inserted into appropriate vectors for expression and used to prepare ³²P-labeled human iPLA₂ cDNA for genomic screening.

Bacterial Expression of Recombinant Human Islet iPLA₂ Isoforms

The cDNA species encoding full-length human islet iPLA₂ isoforms were subcloned inframe into the *Eco*RI and *Xho*I sites of pET-28c (Novagen). The constructs were analyzed by restriction endonuclease digestion, sequenced, and transformed into bacterial expression host BL21(DE3) (Novagen). Cells transformed with pET28c without insert were negative controls. Protein expression was induced by treating cells with 0.5 m_M isopropyl-1-thio- β -pgalactopyranoside (IPTG) and assessed by SDS-polyacrylamide gel electrophoresis analyses with Coomassie Blue staining and by immunoblotting under described conditions (10) with a rabbit polyclonal antibody against recombinant rat islet iPLA₂.

Eukaryotic Expression of Recombinant Human Islet iPLA₂ Isoforms

The *Spodoptera frugiperda* (Sf9) insect cell-baculovirus system used to express other PLA₂ enzymes in catalytically active forms (37, 38) was used to express human iPLA₂ isoforms. The iPLA₂ cDNA inserts were released from pBluescript SK plasmids by digestion with *Eco*RI and *Xho*I and subcloned into *Eco* RI and *Xho*I sites of pBAC-1 baculovirus transfer plasmid (Novagen). Sf9 cells were co-transfected with this transfer plasmid and linearized baculovirus DNA (BacVector-2000, Novagen) to construct recombinant baculovirus with human islet iPLA₂ isoform cDNA inserts. Infection and culture were performed under described conditions (47). At 48 h after infection, Sf9 cells were collected by centrifugation, washed, resuspended in buffer (250 m_M sucrose, 25 m_M imidazole, pH 8.0), and disrupted by sonication. Cytosolic and membranous fractions were prepared by sequential centrifugations (10,000 × g for 10 min and 100,000 × g for 60 min) and used for PLA₂ activity assays.

Phospholipase A₂ Activity Assays

The protein content of Sf9 cell cytosolic and membranous fractions was determined by Bio-Rad assay, and iPLA₂ activity was measured in aliquots (approximately 20 µg of protein) added to assay buffer (200 m_M Tris-HCl, pH 7.0; total assay volume, 200 µl) containing 5 m_M EGTA with or without 1 m_M ATP. Some aliquots were pretreated (2 min) with BEL (10 m_M) before the assay. Reactions were initiated by injecting substrate (L- α -1-palmitoyl-2-[¹⁴C]arachidonoyl-phosphatidylethanolamine; specific activity, 50 Ci/mol; final concentration, 5 µ_M) in ethanol (5 µl). Assay mixtures were incubated (3 min at 37 °C), and reactions were terminated by adding butanol (0.1 ml) and vortexing. After centrifugation (2000 × g for 4 min), products in the butanol layer were analyzed by silica gel G TLC in hexane/ethyl ether/acetic acid (80:20:1). The TLC region containing free arachidonic acid (*R*_E 0.58) was scraped into vials, and its ¹⁴C content was determined.

Cloning Human iPLA₂ Genomic DNA Fragments, Determination of Intron-Exon Boundaries, and Estimation of Intron Size

A ³²P-labeled human islet iPLA₂ cDNA was used to screen a human placental Lambda FIX II genomic DNA library (Stratagene). Clones that hybridized with the probe were isolated and plaque-purified, and the lambda DNA fragments containing genomic DNA inserts were purified by standard procedures (36). Inserts were excised with *Not*I and subcloned into a pBluescript SK plasmid for restriction site mapping. Sequences of intron-exon boundaries were determined by comparing sequences of genomic DNA and cDNA. Intron sizes were estimated from lengths of PCR products from reactions using genomic DNA as template and primers that hybridize to sequences in adjacent exons.

Chromosomal Mapping of Human iPLA₂ Gene by Fluorescence in Situ Hybridization

A human iPLA₂ genomic DNA clone was biotinylated with dATP (40, 41) and used as a probe to map the chromosomal location of the human iPLA2 gene. Fluorescence in situ hybridization (FISH) detection of the locus of hybridization of the fluorescent probe with chromosomal DNA was performed by See DNA Biotech Inc. (Downsview, Ontario, Canada) using described methods (40, 41). Human blood lymphocytes were cultured in aminimal essential medium supplemented with 10% fatal calf serum and phytohemagglutinin at 37 °C for 68–72 h. Bromodeoxyuridine (0.18 mg/ml, Sigma) was used to synchronize the cell populations, which were then washed three times with serum-free medium to release the block and recultured (37 °C, 6 h) in α -minimal essential medium with thymine (2.5 μ g/ml, Sigma). Cells were harvested and slides were prepared by standard procedures, including hypotonic treatment, fixation, and air-drying (40, 41), and the slides were baked (55 °C, 1 h). After RNase treatment, slides were denatured in 70% formamide and dehydrated with ethanol. Probes were denatured (75 °C, 5 min) in a hybridization mixture (50% formamide, 10% dextran sulfate, and human cot I DNA). After incubation (15 min, 37 °C) to suppress repetitive sequences, probes were loaded on denatured chromosomal slides, which were incubated overnight, washed, and subjected to detection and amplification procedures. FISH signals and DAPI banding patterns were recorded in separate photographs. Assignment of FISH mapping data with chromosomal bands was achieved by superimposing FISH signals with DAPI banding pattern on the chromosomes (40, 41).

RESULTS

Characterization of iPLA₂ cDNA from Human Islets

To determine whether human pancreatic islet beta cells express mRNA species encoding iPLA₂, a human insulinoma cell cDNA library (32) was screened with a ³²P-labeled rat iPLA₂ cDNA (10) probe. Two clones (INS-C1 and INS-C2) of about 1.59 and 1.80 kb in length, respectively, hybridized to the probe and were sequenced. Both clones contained identical 3'-sequences that included a presumptive polyadenylation sequence and a poly(A) tail, and their sequences were identical except for additional 5'-sequence in the longer clone not contained in the shorter clone. Alignment with the rat iPLA2 cDNA sequence indicated that the clones contained the 3'-end of human iPLA2 cDNA, but neither contained the full 5'-coding sequence (Fig. 1). RNA from human islets was therefore used as template in RT-PCRs with primers designed from the 5'-sequence of rat iPLA₂ cDNA and from sequence in INS-C1 and INS-C2 clones. The primers were designed to amplify cDNA from the initiator methionine codon at the 5'-end through the region of sequence at the 3'-end recognized by primers designed from INS-C1 and INS-C2 sequences. A nested primer approach was employed in 3'-end primers to verify specificity of amplification products. When used with the same 5'-primer, one of the 3'-primers was expected to yield a longer product than the other.

RT-PCRs with a given set of these primers using human islet RNA as template yielded two products (Fig. 2*A*). The experiments shown in *lanes 1–4* of the agarose gel electrophoretic analysis of the RT-PCR products (Fig. 2*A*) were performed with a primer set expected to yield a product of 1.65 kb in length based on the rat iPLA₂ cDNA sequence. *Lanes 1* and *3* represent PCRs performed without an RT step to exclude contamination with genomic DNA, and no amplification products were observed. *Lanes 2* and *4* represent RT-PCRs performed with two different preparations of human islet RNA, which both yielded two products. The more intensely staining product exhibited the 1.65-kb length expected from the rat iPLA₂ cDNA sequence. There was also a less intensely staining band at 1.85 kb. *Lanes 5* and *6* represent RT-PCRs performed with human RNA as template, the same 5' end primer used in *lanes 1–4*, and a nested 3' end primer expected to yield a shorter product than that obtained with the 3' end primer used in the experiments shown in *lanes 1–4*. Two products were again observed. The more intensely staining band exhibited the length expected based on the rat iPLA₂ cDNA sequence, and it was accompanied by another band about 0.2 kb longer.

The 1.65- and 1.85-kb human islet RT-PCR products in Fig. 2A, lanes 2 and 4, were subcloned and sequenced. Each contained a 5'-coding sequence that specified an amino acid sequence highly homologous to the N-terminal portion of rat iPLA2. The nucleotide sequences of the two human islet RT-PCR products were identical except for a 162-bp insert in the longer product that was not contained in the shorter product. This insert did not interrupt the reading frame and encoded a 54-amino acid insert in the eighth ankyrin repeat of the iPLA₂ amino acid sequence. Similar RT-PCRs using RNA from human U937 promonocytic cells as template and the primer set employed in Fig. 2A, lanes 1-4, indicated that U937 cells also express two distinct iPLA2 mRNA species (Fig. 2B), and the lengths of the two RT-PCR products corresponded exactly to those from human islet RNA. The relative intensities of the two products differed, however, and staining of the band for the longer product was more intense than that for the shorter product when U937 cell RNA was used as template. The converse was true with human islet RNA. The U937 cell RT-PCR products were subcloned and sequenced and were identical to the products from human islet RNA. RT-PCRs in Fig. 2 are analogous to competitive PCR (10, 66, 67) and involve amplification of two distinct cDNA species from the same primer set in the same reaction mixture. As with competitive RT-PCR, relative abundances of reaction products in Fig. 2 may reflect the relative abundances of different cDNA species in the original reaction mixture.

These findings indicate that some human cells express mRNA species that encode two distinct isoforms of iPLA₂. While these experiments were in progress, cloning of human iPLA₂ from lymphocyte lines and testis was reported (21). That report identified only one human mRNA species that encoded a full-length iPLA₂ sequence, and it corresponded to the longer isoform predicted from our results. No mRNA species corresponding to the shorter human iPLA₂ isoform predicted from our results was observed in human B-lymphocyte lines or human testis, but two mRNA species, thought to represent alternative splicing products, were observed that encoded truncated iPLA₂ variants that contained the ankyrin repeat region but lacked the catalytic domain (21). We sought evidence for expression mRNA encoding these truncated iPLA₂ variants in human islets and human U937 promonocytic cells and observed them in U937 cells but not in islets (not shown), suggesting that there is heterogeneity among human cells in expression of products of the iPLA₂ gene.

Fig. 3 illustrates nucleotide and deduced amino acid sequences predicted from our results for cDNAs encoding the long and short isoforms of human iPLA₂. The predicted amino acid sequence for the long isoform differs from that for the short isoform only by the presence of

a 54-amino acid insert interrupting the eighth ankyrin repeat. The short isoform is highly homologous to the hamster, mouse, and rat iPLA₂ sequences, all of which also lack the 54-amino acid insert (8–10). This insert is proline-rich, and a BLAST search revealed similarities to the proline-rich middle linker domain of the DAF-3 Smad protein from *Caenorhabditis elegans* (42), which is most closely related (42) to mammalian Smad4 (43). The proline-rich middle linker region of Smad4 shares a PX₅PX₈HHPX₁₂NX₄Q motif with the corresponding region of DAF-3 and the proline-rich insert in the long human iPLA₂ isoform. In Fig. 4, residues that are identical among the three sequences are indicated by *dark boxes*, and residues with chemically similar side chains are indicated by *light boxes*. The Smad4 middle linker domain mediates protein interactions with signaling partners (43), is located near the center of the protein, and separates an N-terminal MH1 domain with DNA binding activity from a C-terminal MH2 domain with transcriptional activity (54). The proline-rich insert in the long iPLA₂ isoform is also located near the center of the protein and separates an N-terminal domain with protein binding activity from a C-terminal catalytic domain.

Fig. 1 summarizes relationships among the human beta cell iPLA₂ cDNA fragments obtained from screening the insulinoma cell cDNA library and from RT-PCRs with human islet RNA relative to the predicted sequences for the two full-length iPLA₂ isoforms. The 5'-fragments obtained from RT-PCR overlap the 3'-fragments obtained from library screening, and within the region of overlap is a *Nco*I restriction endonuclease site. There are no other *Nco*I sites in the sequences. To obtain cDNA species with the full coding sequences for the long (LH-iPLA₂) and the short (SH-iPLA₂) human islet iPLA₂ isoforms, appropriate 5'- and 3'-fragments were digested with *Nco*I, and ligation reactions were performed. The resultant plasmids were used to transform bacterial host cells and sequenced. The cDNA species so obtained contained the full coding sequences of human iPLA₂ isoforms; they were inserted into vectors for expression in bacteria and in Sf9 insect cells and used to prepare ³²P-labeled human iPLA₂ cDNA to generate a probe for genomic screening.

Bacterial Expression of Recombinant Human Islet iPLA₂ Isoforms

To demonstrate that the human islet $iPLA_2$ isoform cDNA species encoded proteins of expected sizes, they were subcloned into expression vector pET-28c, and the resultant constructs were used to transform bacterial host BL21(DE3). Expression of proteins encoded by cDNA inserts was induced by IPTG treatment, and proteins were analyzed by SDS-polyacrylamide gel electrophoresis (Fig. 5). In IPTG-treated cells, proteins of the expected sizes, 85 (*lane 2*) or 88 (*lane 4*) kDa, were produced from cDNA for SH-iPLA₂ or LH-iPLA₂, respectively, in much greater abundance than in non-IPTG-treated cells (*lanes 1* and *3*). Both proteins were recognized by a polyclonal antibody against rat iPLA₂ (not shown).

Eukaryotic Expression of Recombinant Human Islet iPLA₂ Isoforms

To determine whether human islet iPLA₂ isoform cDNA species encoded catalytically active enzymes, a baculovirus vector-Sf9 cell system was used in which other PLA₂ enzymes have been expressed (38, 39). Recombinant baculovirus that contained inserts encoding LH-iPLA₂ or SH-iPLA₂ were used for infection, and subcellular fractions from infected cells were assayed for iPLA₂ activity. Uninfected Sf9 cells exhibited no detectable iPLA₂ activity, but such activity was observed in cytosolic and membranous fractions of cells infected with baculovirus that contained cDNA inserts encoding LH-iPLA₂ or SHiPLA₂ (Fig. 6). The iPLA₂ activities expressed in cells infected with baculovirus that contained cDNA encoding either human islet iPLA₂ isoform were inhibited by the iPLA₂ suicide substrate (4, 8–12) BEL (Fig. 6). We believe this to be the first demonstration that recombinant human iPLA₂ is inhibited by BEL, as this issue was not examined in a recent report on human iPLA₂ cloned from lymphocyte lines and testis (21). Activities of recombinant LH-iPLA₂ and SH-iPLA₂ were affected differently by 1 mM ATP (Fig. 6). ATP exerted a stimulatory effect on LH-iPLA₂ activities in cytosol or membranes but did not affect SH-iPLA₂ activities. ATP has been reported to stimulate iPLA₂ activities from rat islets (10) and murine P388D1 cells (9) but not to affect the iPLA₂ activity of Chinese hamster ovary cells (8). These findings indicate that cDNA species for both LH-iPLA₂ and SH-iPLA₂ encode catalytically active enzymes and that catalytic properties of the two human iPLA₂ isoforms differ. The experiments also suggest that the ratio of membranous to cytosolic activity may differ somewhat for LH-iPLA₂ and SH-iPLA₂ under these assay conditions (Fig. 6).

Characterization of the Human iPLA₂ Gene

To explore the basis for producing human islet mRNA species that encode the two distinct iPLA₂ isoforms, the structure of the human iPLA₂ gene was determined. A ³²P-labeled LH-iPLA₂ cDNA was used as probe to screen a human Lambda FIX II genomic DNA library. Eight genomic clones with overlapping regions of sequence were isolated and analyzed by Southern blotting and restriction endonuclease digestion. Fig. 7 is a schematic representation of the human iPLA₂ gene structure. The cloned sequence spans over 60 kb of DNA and includes 16 exons representing 5'-untranslated region, the entire coding sequence, and 3'-untranslated region of the LH-iPLA₂ transcript. Intron sizes were estimated from the length of PCR fragments produced by using genomic DNA as template and primers that hybridize with sequences in adjacent exons. The sequences of intron-exon boundaries were determined by comparing the sequences of genomic DNA and cDNA. Table I summarizes the sequences at the 39-acceptor sites and the 5'-donor sites at these boundaries. In each case, the intron sequence at the 5'-boundary of the exon ended in the dinucleotide AG and that at the 3'-boundary of the exon began with the dinucleotide GT, conforming to recognized rules for sequences at such junctions (29).

Alternatively Spliced mRNA Species Encoding Long and Short Isoforms of Human iPLA2

The 54-amino acid insert interrupting the last ankyrin repeat in the LH-iPLA₂ isoform corresponds exactly to the amino acid sequence encoded by exon 8 of the human iPLA₂ gene. This indicates that mRNA encoding the SH-iPLA₂ isoform arises from an exonskipping mechanism of alternative splicing (29) in transcription of the iPLA₂ gene. Different mechanisms of alternative splicing are involved in producing iPLA₂ truncation variants observed in human B-lymphocyte lines (21), as illustrated in Fig. 7. The variants contain additional sequence arising from introns that results in premature stop codons, and they encode truncated proteins that contain the ankyrin repeat domain but lack the iPLA₂ catalytic domain. The locations within the human $iPLA_2$ gene of intron sequences in the transcripts for the truncation variants were determined from PCR experiments using primers designed from the identified exon sequences and from the published (21) sequences of cDNA species encoding the truncation variants. The truncation variant human B-lymphocyte ankyrin-iPLA₂-1 contains sequence from the intron between exons 9 and 10. The truncation variant human B-lymphocyte ankryin-iPLA₂-2 contains sequence from two intron regions. The first resides between exons 8 and 9 and the second between exons 9 and 10. The second region of intron sequence occurs in transcripts encoding each of the truncation variants (Fig. 7). Table I indicates the sequences at the intron-exon junctions for these alternate exons.

Chromosomal Localization of Human iPLA₂ Gene

To determine the location of the iPLA₂ gene on human chromosomes, a clone identified in screening the human genomic DNA library with LH-iPLA₂ cDNA was biotinylated to generate a probe for FISH experiments with human lymphocyte chromosomes (40, 41). Using this probe, 91 of 100 examined mitotic figures exhibited fluorescent signals on one

pair of chromosomes (Fig. 8), indicating a hybridization efficiency of 91%. The human chromosomes were identified by their DAPI banding patterns (40, 41), and these patterns were correlated with the site of fluorescent signal from biotinylated probe. Such comparisons indicated that the iPLA₂ gene resides on human chromosome 22. A detailed positional assignment achieved from analyses of 10 photographs indicated that the iPLA₂ gene resides in region q13.1 of chromosome 22 (Fig. 8). No other loci of hybridization of the probe were observed.

DISCUSSION

Our results indicate that human pancreatic islets express mRNA species encoding two distinct, catalytically active isoforms of iPLA₂ that are distinguishable by size and by their susceptibility to activation by ATP. These two mRNA species are also observed in human U937 promonocytic cells. These two human iPLA₂ isoforms differ only by the presence of a 54-amino acid insert in the longer isoform that is absent from the shorter isoform, and the deduced amino acid sequences of the two isoforms are otherwise identical. This insert is encoded in its entirety by exon 8 of the human iPLA₂ gene, which resides in region q13.1 of human chromosome 22, indicating that the mRNA species encoding the short iPLA₂ isoform has not previously been identified in human cells, and we believe our studies are the first to demonstrate expression of iPLA₂ mRNA by human islets or U937 cells and to examine effects of BEL and ATP on activities of recombinant human iPLA₂ enzymes.

The demonstration that both human islets and U937 cells express iPLA₂ mRNA species that encode BEL-sensitive enzymes is of interest in the context of recent reports suggesting that iPLA₂ may participate in apoptosis in both U937 cells (20) and in islet beta cells (26). U937 cells express the protein Fas on their surfaces (20), and ligation of Fas molecules with the protein Fas ligand or with agonistic anti-Fas antibodies induces a cell death program that involves activation of caspase intracellular proteases (44–46). U937 cells also express a PLA₂ activity distinct from cPLA₂ or sPLA₂ that does not require Ca²⁺ and exhibits a profile of sensitivity to inhibitors such as BEL and methyl arachidonylfluorophosphate that is similar to that of iPLA₂ (20). Our demonstration that U937 cells express iPLA₂ mRNA indicates that this PLA₂ activity may reside in the iPLA₂ protein. Anti-Fas antibodies induce U937 cell apoptosis and hydrolysis of arachidonic acid from cell membranes (20). During this process, cPLA₂ is proteolytically inactivated by caspases, but iPLA₂ activity is preserved (20). Inhibitors of iPLA₂ both suppress Fas antibody-induced arachidonate release from U937 cells and retard cell death (20), suggesting that iPLA₂ may participate in apoptosis.

Similarly, stimuli that induce Ca^{2+} store depletion in islet beta cells induce apoptosis by a mechanism that does not require a rise in cytosolic $[Ca^{2+}]$ but that does require hydrolysis of arachidonic acid from membrane phospholipids and its conversion to 12-lipoxygenase metabolites (26). Ca^{2+} store depletion-induced hydrolysis of arachidonic acid from islet phospholipids also does not require a rise in cytosolic $[Ca^{2+}]$ and is mediated by a BEL-sensitive phospholipase (47), such as iPLA₂. Although phosphatidate phosphohydrolase is also inhibited by BEL (48), the phosphatidate phosphohydrolase inhibitor propranolol (49) does not block Ca^{2+} store depletion-induced release of arachidonate from islet phospholipids (47), suggesting that iPLA₂ may mediate this phenomenon. Inter-leukin-1 also induces accumulation of non-esterified arachidonate and its 12-lipoxygenase products in islets by a BEL-sensitive mechanism (50), and interleukin-1 induces apoptosis of human islet beta cells through Fas-mediated events (51). In the context of these observations, our findings that human islets express iPLA₂ mRNA raise the possibility that iPLA₂ might participate in Fas-

mediated apoptosis in human beta cells in a manner similar to that in U937 cells (20). Beta cell apoptosis is thought to contribute to development of diabetes mellitus (52).

The amino acid sequence of the insert that distinguishes the long and short isoforms of human iPLA₂ is of interest in the context of the potential involvement of iPLA₂ in apoptosis. This insert shares a $PX_5PX_8HHPX_{12}NX_4Q$ consensus motif with the proline-rich middle linker domains of the *C. elegans* Smad protein DAF-3 (42) and the mammalian protein Smad4 (43). Smad proteins participate in controlling cell proliferation and apoptosis and form hetero-oligomers with signaling partners (54), via the proline-rich middle linker domain in the case of Smad 4 (43). Smad4 and Smad2 are products of tumor-suppressor genes that are deleted or mutated in some human carcinomas (54–58). Studies of allelic losses in human breast and head and neck carcinomas indicate that a tumor suppressor gene(s) resides on human chromosome 22q13.1 (59, 60), which is the chromosomal location of the human iPLA₂ gene. If iPLA₂ does participate in apoptosis (20, 26), it might exert tumor suppressor activity.

The active form of iPLA₂ appears to be an oligomer of interacting protein subunits. Radiation inactivation studies of iPLA₂ activity in crude cytosol indicate a size of 337 kDa for the active complex (22). The iPLA₂ activity in crude cytosol also migrates with an apparent molecular mass of 250–350 kDa on gel filtration chromatography (8, 22, 61), and this is also the case for the iPLA₂ activity of the purified 85-kDa iPLA₂ protein (8). This has been taken to suggest that the active form of iPLA₂ is an oligomer of 85-kDa subunits and that the subunits may associate with each other via their ankyrin repeat regions (8) because such ankyrin repeats participate in many other protein-protein interactions (53). Consistent with this possibility is the observation that iPLA₂ deletion mutants lacking the ankyrin repeat domain but retaining the catalytic domain are catalytically inactive (8). In the long isoform of human iPLA₂, the last iPLA₂ ankyrin repeat is interrupted by a proline-rich insert with some similarities to the Smad4 domain that mediates interactions with signaling partners (43). This raises the possibility that the proline-rich insert in human iPLA₂.

That the long isoform of human iPLA₂ can form heterooligomers with altered catalytic properties is suggested by the finding that activity of this protein is reduced when it is co-expressed with truncated iPLA₂-like proteins that retain the ankyrin repeat domain but lack the catalytic domain (21). These truncated iPLA₂ variants arise from alternatively spliced transcripts that contain intron sequences that result in a premature stop codon, and these transcripts are expressed in human lymphoma cell lines (21). These lymphoma cell lines do not express mRNA species encoding the catalytically active short isoform of iPLA₂ observed in human islets that arises from another mechanism of alternative splicing of the transcript from the iPLA₂ gene. Human islets do not express mRNA species encoding the truncated iPLA₂ variants observed in human lymphoma cells. In contrast, human U937 promonocytic cells express mRNA species encoding both the long and short isoforms of catalytically active iPLA₂ and also express mRNA species encoding an iPLA₂ truncation variant. This indicates that there is heterogeneity among human cells in expression of iPLA₂ gene products that arise from alternative splicing.

The presence of two distinct domains that might mediate protein-protein interactions in the long isoform of human iPLA₂ could cause it to interact with a variety of other proteins. Various participants in hetero-oligomeric complexes with iPLA₂ have been suggested to alter iPLA₂ catalytic properties (21, 47, 61–64). These include calmodulin (63), which physically interacts with and negatively modulates the activity of recombinant 85-kDa iPLA₂ cloned from Chinese hamster ovary cells (64) and rat islets (47). This has been offered as one explanation of why Ca²⁺ store depletion activates iPLA₂ (65). Although the

mechanism underlying this effect may be complex, the effect itself has occurs in vascular myocytes (64), pancreatic islet beta cells (47), and human granulocytes (17). Ca²⁺ store depletion also activates hydrolysis of arachidonate from phospholipids in differentiated human U937 promonocytic cells by a mechanism that does not require a rise in cytosolic $[Ca^{2+}]$ (31). Our demonstration that U937 cells express mRNA species encoding iPLA₂ isoforms suggest that iPLA₂ is one candidate for mediating Ca²⁺ store depletion-induced arachidonate release in those cells. The differences in products of the iPLA₂ gene expressed in specific human cells suggest that iPLA₂ regulation might be complex, as also indicated by the fact that stimuli that induce iPLA₂-catalyzed arachidonate release and leukotriene production in granulocytes fail to induce these events in lymphocytes, even though both classes of cells express iPLA₂ and leukotriene biosynthetic enzymes (17, 21).

Acknowledgments

We thank Alan Bohrer, Sheng Zhang, and Dr. Mary Wohltmann for excellent technical assistance, Dr. Alan Permutt for the human insulinoma cDNA library, and Dr. Simon Jones of Genetics Institute and the members of his laboratory group for advice and encouragement at the outset of these studies.

REFERENCES

- 1. Dennis EA. J. Biol. Chem. 1994; 269:13057-13060. [PubMed: 8175726]
- 2. Gijon MA, Leslie CC. Cell Dev. Biol. 1997; 8:297-303.
- 3. Dennis EA. Trends Biochem. Sci. 1997; 22:1-2. [PubMed: 9020581]
- 4. Balsinde J, Dennis EA. J. Biol. Chem. 1997; 272:16069-16072. [PubMed: 9195897]
- 5. Leslie CC. J. Biol. Chem. 1997; 272:16709-16712. [PubMed: 9201969]
- 6. Tischfield JA. J. Biol. Chem. 1997; 272:17247-17250. [PubMed: 9211858]
- Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM. J. Biol. Chem. 1997; 272:17895– 17898. [PubMed: 9218411]
- Tang J, Kriz RW, Wolfman N, Shaffer M, Seehra J, Jones S. J. Biol. Chem. 1997; 272:8567–8575. [PubMed: 9079687]
- Balboa MA, Balsinde J, Jones SS, Dennis EA. J. Biol. Chem. 1997; 272:8576–8580. [PubMed: 9079688]
- Ma Z, Ramanadham S, Kempe K, Chi XS, Ladenson J, Turk J. J. Biol. Chem. 1997; 272:11118– 11127. [PubMed: 9111008]
- Hazen SL, Zupan LA, Weiss RH, Getman DP, Gross RW. J. Biol. Chem. 1991; 266:7227–7232. [PubMed: 2016324]
- Zupan LA, Weiss RH, Hazen S, Parnas BL, Aston KW, Lennon PJ, Getman DP, Gross RW. J. Med. Chem. 1993; 36:95–100. [PubMed: 8421294]
- 13. Balsinde J, Dennis EA. J. Biol. Chem. 1996; 271:6758-6765. [PubMed: 8636097]
- Ma Z, Ramanadham S, Hu Z, Turk J. Biochim. Biophys. Acta. 1998; 1391:384–400. [PubMed: 9555100]
- 15. Balsinde J, Bianco ID, Ackerman EJ, Conde-Friebos K, Dennis EA. Proc. Natl. Acad. Sci. U. S. A. 1995; 92:8527–8531. [PubMed: 7667324]
- 16. Balsinde J, Balboa MA, Dennis EA. J. Biol. Chem. 1997; 272:29317–29321. [PubMed: 9361012]
- Larsson Forsell PKA, Runarsson G, Ibrahim M, Bjorkholm M, Claesson H-E. FEBS Lett. 1998; 434:295–299. [PubMed: 9742941]
- Gubitosi-Klug RA, Yu SP, Choi DW, Gross RW. J. Biol. Chem. 1995; 270:2885–2888. [PubMed: 7852365]
- 19. Eddlestone GT. Am. J. Physiol. 1995; 268:C181-C190. [PubMed: 7840146]
- Atsumi G, Tajima M, Hadano A, Nakatani Y, Murakami M, Kudo I. J. Biol. Chem. 1998; 273:13870–13877. [PubMed: 9593733]
- Larsson PKA, Claesson H-E, Kennedy BP. J. Biol. Chem. 1998; 273:207–214. [PubMed: 9417066]

- 22. Ackerman EJ, Kempner ES, Dennis EA. J. Biol. Chem. 1994; 269:9227–9233. [PubMed: 8132660]
- 23. Ramanadham S, Gross RW, Han X, Turk J. Biochemistry. 1993; 32:337–346. [PubMed: 8418854]
- Ramanadham S, Bohrer A, Mueller M, Jett P, Gross R, Turk J. Biochemistry. 1993; 32:5339–5351. [PubMed: 8499439]
- 25. Ramanadham S, Wolf MJ, Jett PA, Gross RW, Turk J. Biochemistry. 1994; 33:7442–7452. [PubMed: 8003509]
- 26. Zhou Y-P, Teng D, Drayluk F, Ostrega D, Roe MW, Philipson L, Polonsky KS. J. Clin. Invest. 1998; 101:1623–1632. [PubMed: 9541492]
- 27. Gross RW, Ramanadham S, Kruszka K, Han X, Turk J. Biochemistry. 1993; 32:327–336. [PubMed: 8418853]
- Ramanadham S, Bohrer A, Gross RW, Turk J. Biochemistry. 1993; 32:13499–13509. [PubMed: 8257685]
- 29. McKeown M. Annu. Rev. Cell Biol. 1992; 8:133–155. [PubMed: 1335742]
- 30. Sundstrom C, Nilsson K. Int. J. Cancer. 1976; 17:565–577. [PubMed: 178611]
- Rzigalinsky BA, Blackmore PR, Rosenthal MD. Biochim. Biophys. Acta. 1996; 1299:342–352. [PubMed: 8597589]
- 32. Ferrer J, Wasson J, Permutt A. Diabetologia. 1996; 38:891–898. [PubMed: 8858210]
- Sanger F, Nickeln S, Coulson AR. Proc. Natl. Acad. Sci. U. S. A. 1977; 74:5463–5467. [PubMed: 271968]
- Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW. Diabetes. 1988; 37:413–420. [PubMed: 3288530]
- Ramanadham S, Hsu F-F, Bohrer A, Nowatzke W, Ma Z, Turk J. Biochemistry. 1998; 37:4553– 4567. [PubMed: 9521776]
- Davis, LG.; Kuehl, WM.; Battery, JF. Basic Methods in Molecular Biology. 2nd Ed.. Wonsiewicz, M.; Greenfield, S., editors. Appleton and Lange; East Norwalk, CT: 1994. p. 335-338.
- Becker GW, Miller JR, Kovacevic S, Ellis R, Louis AI, Small JS, Stark DH, Roberts EF, Wyrick TK, Hoskins J, Chious G, Sharp JD, McClure DB, Rioggin RM, Kramer RM. Bio/Technology. 1994; 12:69–74. [PubMed: 7764328]
- de Carvalho MS, McCormack AL, Olsen E, Ghomaschchi F, Gelb MH, Yates JR III, Leslie CC. J. Biol. Chem. 1996; 271:6987–6997. [PubMed: 8636128]
- O'Reilly, DR.; Miller, LK.; Luckow, VA. Baculovirus Expression Vectors: A Laboratory Manual. W. H. Freeman and Co.; New York: 1992.
- 40. Heng HHQ, Squire J, Tsui L-C. Proc. Natl. Acad. Sci. U. S. A. 1992; 89:9509–9513. [PubMed: 1384055]
- 41. Heng HHQ, Tsui L-C. Chromosoma. 1993; 102:325-332. [PubMed: 8325164]
- 42. Patterson GI, Koweek A, Wong A, Liu Y, Parkin G. Genes Dev. 1997; 11:2679–2690. [PubMed: 9334330]
- de Caestecker MP, Hemmati P, Larisch-Bloch S, Ajmera R, Roberts AB, Lechleider RJ. J. Biol. Chem. 1998; 272:13690–13696. [PubMed: 9153220]
- 44. Nagata S, Golstein P. Science. 1995; 267:1449–1456. [PubMed: 7533326]
- 45. Cleveland JL, Ihle JN. Cell. 1995; 81:479-482. [PubMed: 7758103]
- 46. Longthorne VL, Williams GT. EMBO J. 1997; 16:3805–3812. [PubMed: 9233790]
- 47. Nowatzke W, Ramanadham S, Ma Z, Hsu F-F, Bohrer A, Turk J. Endocrinology. 1998; 139:4073– 4085. [PubMed: 9751485]
- 48. Balsinde J, Dennis EA. J. Biol. Chem. 1998; 271:31937-31941. [PubMed: 8943239]
- 49. Balboa MA, Balsinde J, Dennis EA. J. Biol. Chem. 1998; 273:7684–7690. [PubMed: 9516474]
- Ma Z, Ramanadham S, Corbett JA, Bohrer A, Gross RW, McDaniel ML, Turk J. J. Biol. Chem. 1996; 271:1029–1042. [PubMed: 8557627]
- Loweth AC, Williams GT, James RFL, Scarpello JHB, Morgan NG. Diabetes. 1998; 47:727–732. [PubMed: 9588443]

- 52. Pick A, Clark J, Kubstrap C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS. Diabetes. 1998; 47:358–364. [PubMed: 9519740]
- 53. Bennett V. J. Biol. Chem. 1992; 267:8703-8706. [PubMed: 1533619]
- 54. Kretzschmer M, Massague J. Curr. Opin. Genet. Dev. 1998; 8:103–111. [PubMed: 9529613]
- de Winter JP, Roelen BAJ, ten Dijke P, van der Burg B, van den Eijnden-van Aaij AJM. Oncogene. 1997; 14:1891–1899. [PubMed: 9150356]
- 56. Zhang Y, Musci T, Derynck R. Curr. Biol. 1997; 7:270-276. [PubMed: 9094310]
- 57. Attisano L, Wrana JL. Curr. Opin. Cell Biol. 1998; 10:188-194. [PubMed: 9561843]
- 58. Padgett RW, Das P, Krishna S. BioEssays. 1998; 20:382–391. [PubMed: 9670811]
- Iida A, Kurose K, Isobe R, Akiyama F, Sakamoto G, Yoshimoto M, Kasumi F, Nakamura Y, Emi M. Genes Chromosomes Cancer. 1998; 21:108–112. [PubMed: 9491321]
- 60. Miyakawa A, Wang X-L, Nakanishi H, Imai FL, Shiiba M, Miya T, Tanzawa H. Int. J. Oncol. 1998; 13:705–709. [PubMed: 9735399]
- Ramanadham S, Wolf MJ, Ma Z, Li B, Wang J, Gross RW, Turk J. Biochemistry. 1996; 35:5464– 5471. [PubMed: 8611537]
- 62. Hazen SL, Gross RW. J. Biol. Chem. 1993; 268:9892-9900. [PubMed: 8486669]
- 63. Wolf MJ, Gross RW. J. Biol. Chem. 1996; 271:20989-20992. [PubMed: 8702861]
- 64. Wolf MJ, Gross RW. J. Biol. Chem. 1996; 271:30879–30885. [PubMed: 8940072]
- 65. Wolf MJ, Wang J, Turk J, Gross RW. J. Biol. Chem. 1997; 272:1522-1526. [PubMed: 8999823]
- Gilliland G, Perrin S, Blanchard K, Bunn HF. Proc. Natl. Acad. Sci. U. S. A. 1990; 87:2725–2729. [PubMed: 2181447]
- 67. Siebert PD, Larrick JW. Nature. 1992; 359:557–558. [PubMed: 1383831]

Fig. 1. Summary of cDNA fragments used to construct cDNA species containing the complete coding sequences of human islet iPLA₂ isoforms

The two cDNA clones obtained by screening the human insulinoma cell cDNA library that contain the 3'-sequence of the human islet iPLA₂ cDNA are designated INS-C1 and INS-C2. The RT-PCR products obtained using human islet RNA as template that contain the 5'-end of the human islet iPLA₂ coding sequence (see Fig. 2) are designated human islet PCR long fragment and human islet PCR short fragment. *Arrows* indicate the location of the recognition site for the restriction endonuclease *Nco*I that is contained in the region of overlap between the insulinoma cell cDNA fragments and the human islet RNA RT-PCR products. The cDNA species containing the complete coding sequence of the long and short isoforms of human iPLA₂ are designated LH-iPLA₂ and SH-iPLA₂, respectively. These cDNA species were prepared by *Nco*I digestion and ligation of the insulinoma cell cDNA fragment and one of the two RT-PCR products derived from human islet RNA. *R-iPLA₂*, rat islet iPLA₂ cDNA. The region of the 162-bp insert that distinguishes LH-iPLA₂ from SH-iPLA₂ is indicated by the *black bar*. The remainder of the coding sequence is indicated by *shaded bars*. The *lighter shading* represents *human* iPLA₂ coding sequence; the *darker shading* represents *rat* iPLA₂ coding sequence.

Fig. 2. Agarose gel electrophoretic analyses of products of RT-PCRs performed with human islet RNA or U937 cell RNA as template and primers designed to amplify the 5'-end of human iPLA₂ cDNA

RT-PCRs were performed with RNA isolated from human islets from two different donors (A) or from two different preparations of human promonocytic U937 cell RNA (B). In A, experiments shown in *lanes 1, 2*, and 5 were performed with RNA from islets from donor 1, and experiments shown in *lanes 3, 4, and 6* were performed with RNA from islets from donor 2. Reverse transcriptase was omitted from the reactions analyzed in *lanes 1* and 3 to exclude contamination from genomic DNA in the human islet RNA preparations. In reactions analyzed in lanes 1-4(A), a set of PCR primers was used that was expected to yield a single 1.65-kb product, based on the rat islet iPLA2 cDNA sequence. In reactions analyzed in *lanes 5* and 6(A), the same 5'-primer was used as in the reactions analyzed in lanes 1-4, but a different 3'-primer was used that was expected to yield a shorter product, based on the rat iPLA₂ cDNA sequence. The sequences of the 5'-primer and of the two 3'primers used in these reactions are specified under "Experimental Procedures." In B, experiments shown in *lanes 1* and 2 were performed with RNA from U936 cell preparation 1, and experiments shown in *lanes 3* and 4 were performed with RNA from U937 cell preparation 2. Reverse transcriptase was omitted from the reactions analyzed in *lanes 1* and $\mathcal{J}(B)$. In reactions analyzed in *lanes* $1-\mathcal{J}(B)$, the set of PCR primers was the same as that in lanes 1-4 of A. Both of the RT-PCR products visualized in lanes 2 and 4 (B) were subcloned and sequenced, and the results were identical to those for the products in lanes 2 and 4 of A.

Sous Primer argengtictitiggacyccigofeAntActrictroAcosconceanctmorfocterinacochificeosconadakosmostrosconceanchachacteroanthoscon M Q F F G R L V N T F S G V T N L F S N P F R V K E V A V A D Y T S S D R V R E	; 120
GAAGGGCAGCTGATTCCTGTACCCGAACCGCACCGGGACCGGGACCGGGGCCGCGGGGCCCCAGGGGCCCCCAGGAGTCGAACCGGACTCGCAGCCGGAGTCGAAGGCGAGG E G Q L I L F Q N T P N R T W D C V L V N P R D S Q S G F R L F Q L E L E A D A	: 240
CTABTEANTTICHTCARCASTRATCTTCCCACCTCTACCCTCTATGAGACCTCCCCCCCAGASTCCTGCACACCTCACCT	; 360
TCATGGCCCACTGGCTGTGGAGCTAGGGAGTGCGCGGAGTGCTTCCACCACGCCGGAGTACACGAGGAGAAGAGGAGGAGGAGGAGGAGGAGGAGGAGG	: 480
COCAMOGOTIGAMOGOGAGANCCTOGTIGGAGTAGCTGCACCACCTCACATAGANGUCACCGACTACLAAGGGAGAACCCGCTTCCCATTANGCTGTCCACGGAGACAATTCTCA R K G D G E I L V E L V Q Y C H T Q M D V T D Y K G E T V F H Y A V Q G D N S Q	; 600
GTGCTGCHGCTCCTTGGAAGGAAGCAGTGGCTGGCCGGAACCAGGTGAACCAGGGGAGCCGGCGCGCGC	; 720
CIGIGGAAIGGCIGGAGCACHCHIGGGCCCAAGGGCIACCGCHICCACIGGGCCAIGAAGGGFICICGGGAAIGACAICGACAIGGACAGGAGCAGCAGCAGACCGACC	: 840
AGCANAGACCCCCCTTACGAGCCACCCCCCCCCCCCACGAGGACGGCCCCCACGCCCCCC	960
CTGCACGTGGCGGTGATGGGCAGCGCTTGGACTGCTGCTGCTGCCGGGAGCGGGGGGCGGGGGGGG	1080
ακαλαστοριατοιλιταλισούσταλισοποίο το αρχατικό το	ž 1200
	1320
	G 1440
<u>P P P I S L N N L E</u> L Q D L M H I S R A R K P A F I L G S M R D E K R T H D H L CTOTOCOTOGANOGAGGAATGAMAGGOCTONTONTOCHOCHACTACTONTOCHOCAGAGAAGGOCTOGGATOTGOCOAGAACCAAGAAC	r 1560
L C L D G G G V K G L I I I Q L L I A I E K A S G V A T K D L F D W V A G T S T	
Nested Anli-sense Primer Neo I Galegoetectggccetggccettggccettgccalgologi New New New New New New New New New New	1680
GGILALAILHSKSMAYMRGMYFRMKDEVFRGSRPYESGPL Anti-conce Primer	
GNG3AGTTCCTGAAGCGGGAGACACGGACGACGACGACGACGACGCCGGCGACACCCCGCCG	1800
	1020
ARCHRONTOLTONAMMUTATCOSORICCTOTTICALCARAGOTTARCTICARCT	1920
COTRCTINCTICOGRACCANIGGGGGCTCCTCGGGCGGGGGGGGGGGGGGGGGGGGGGG	2040
COTACTINGTIC COACCEANTGGGGGCTTCCTGGACGGGGGGCGTGGGGCGGCGACGACCCACGCCGGGGGGGG	2040
$ \begin{array}{c} CTMCTMCTGARCCMATGGARCTTCCTGARGATGGACTCTGARGATGGACCACCACCCCCCCCCGCAGGACCCMCMCGAGATCCATAGGACCCGMATGCCCCMGATCCACGACCCCMCGCCGMGATCCATAGGACCCAGGACCCMGATGCGACCACGACCCACGACCCACGACCCCCGGACGACGACCGACGA$	2040 2160 2280
$ \begin{array}{c} CCCARCHARGEGAGACTOGGACGATGAGACGATGAGACTATCCARGEGAGAGCCARGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGACCCARGACGAGAGCGAGACGAGACGAGACGAGACGAGAGCGAGAGACGAGAGCGAGACGAGAGACGAGAGACGAGAGCGAGAGACGAGAGCGAGACGAGAGCGAGACGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGAGCGAGGACGAGAGCGAGGAG$	2040 2160 2280 2400
$ \begin{array}{c} CCARCYTACTTCCOARCCCARGEGGGCTGCTGGACGGGGGGGCTGGCGGCCARGACACACAC$	2040 2160 2280 2400

Fig. 3. Nucleotide and deduced amino acid sequences of cDNA species encoding the long and short isoforms of human $iPLA_2$

АССТОЯНИТСКИТИКИСОВИССТВИИТСКИКОСТИКСТОССОВИИСТОВНОСТОВНОССОКИОНСТОИТССКОЛТИКОСОВСИТИТСКООВИСТИТСКООСОВИИСТИТСКООСОВИИСТИСКИ 2460 ИНТОТИКИВОСОВСИТИТЕССООВИСТСКИКОТСКИКОВИТИССОВИИСТИСКИСКИТИКОВИТИСОВИИСКИКОСТИТСКОСТИРОССОВИИСТИТСКООСОВИСССКОСТ ПОВИЗОТСОССОВИСТСКОТСКИКОТСКИКОВИ СТИСКОВИ СТИСКОВИ ПОВИТИТСКООТСКИКОСТИТСКОСТИСКОСТИССКОССИССИТИСКО ПОВИЗОТСОСССИИССИТИКИ СТИСКИ И ПОВИТИТСКИ ПОВИТИТСКООТСКИКИ ТОВОГОВИИ СТИСКИТИКОСОСИИССИТИСКИ СТИСКИ. ПОВИЗОТСОССИИССИТИКИ СТИСКИ И ПОВИТИТСКОТИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТСОССИИССИТИКИ ТИТСКОТИКОВИ ПОВИТИТСКОТИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТСОССИИССИ ПОВИСТВИИ ПОВИТИКИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТ ПОВИЗИТИСТСКИКИ ПОВИТИКИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТ ПОВИЗИТИСТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТ ПОВИЗИТИСТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТ ПОВИЗИТИСТСКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИТСКОСТИСКИ. ПОВИЗОТ ПОВИЗИТИСТ ПОВИСТИТИТСКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ. ПОВИЗОТ ПОВИЗИТИСТ ПОВИСТИТИТСКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ. ПОВИЗОТ ПОВИЗИТИСТСКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ. ПОВИЗОТ ПОВИЗИТИСТ ПОВИСТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ ПОВИТИКИ. ПОВИЗОТ ПОВИТИТИСКИ ПОВИТИКИ ПОВИТИКИ. ПОВИЗИТИ ПОВИТИКИ ПО ПОВИТИКИ И ПОВИТИКИ ПОВИТИ ПОВИТИ ПОВИТИ ПОВИТИ ПОВИТИ ВИ ПОВИТИ ВИ ПОВИТИ ВИ ПОВИТИ ВИ ПОВИТИ ВИ ПОВИТИ ВИ ПОВИТ

Species of cDNA containing the full coding region and the 3[']-untranslated region for transcripts encoding LH-iPLA₂ and SH-iPLA₂ were constructed with cDNA fragments from the INS-C1 and INS-C2 clones and from the long and short fragments obtained from RT-PCRs with human islet RNA, as illustrated schematically in Fig. 1. The resultant cDNA species were subcloned and sequenced. The figure displays the nucleotide (*top row*) and deduced amino acid sequences (*bottom row*) for the LH-iPLA₂ cDNA. The sequences of the forward primer, the reverse primer, and the nested reverse primer used in the RT-PCRs with human islet RNA are indicated, as is the location of the *Nco*I restriction endonuclease site. The 162-bp insert that is present in LH-iPLA₂ cDNA but absent from SH-iPLA₂ cDNA is *underlined*. The stop codon TGA is indicated by an *asterisk*. The presumptive polyadenylation signal sequence is indicated in *boldface type*.

Fig. 4. Comparison of the amino acid sequence of the proline-rich insert in the long form of human iPLA_2 to sequences in the proline-rich middle linker domains of the Smad proteins DAF-3 and Smad4

The deduced amino acid sequence between residues 412–448 for the long isoform of human $iPLA_2$ is designated *H-iPLA_2* in the figure. A BLAST search indicated similarities between this sequence and that of residues 400-434 of the C. elegans DAF-3 Smad protein, which falls within the proline-rich middle linker domain of that protein. DAF-3 is most closely related to the mammalian protein Smad4, and residues 275-312 within the proline-rich middle linker domain of the Smad4 sequence are illustrated in the figure. Amino acid residues that are contained in the iPLA₂ sequence and one or both of the other sequences are illustrated by *dark boxes*, and residues with chemically similar side chains are illustrated by light boxes. In the consensus sequence, residues that are identical among the three sequences are indicated by underlined, capitalized Roman letters. Residues that are common to the iPLA₂ sequence and to one but not both of the other sequences are indicated by *capitalized Roman letters* that are not underlined. Positions at which residues with chemically similar side chains are observed in two or three of the sequences are designated with Greek letters. Acidic residues (Asp and Glu) are denoted by a; basic residues (His, Lys, and Arg) by b; neutral, nonpolar residues (Ala, Phe, Ile, Leu, Met, Pro, Val, and His) by \$\$; and neutral, polar residues (Gly, Asn, Gln, Ser, Thr, and Tyr) by p. Positions at which there is no similarity among the three sequences are denoted with an x.

Fig. 5. Bacterial expression of the long isoform and short isoform human islet iPLA₂ proteins The cDNA species containing the complete coding regions of the short isoform (*lanes 1* and 2) or the long isoform (*lanes 3* and 4) of human islet iPLA₂ were subcloned into the bacterial expression vector pET-28c (Novagen). The pET28-iPLA₂ constructs were then used to transform the bacterial expression host BL21(DE3) (Novagen). Expression of proteins encoded by the cDNA inserts was induced by treating the cells with IPTG, and proteins expressed by induced (*lanes 2* and 4) and noninduced (*lanes 1* and 3) cells were compared by SDS-polyacrylamide gel electrophoresis analyses with Coomassie Blue staining. The expected molecular mass of the short isoform of human islet iPLA₂ is 85 kDa (*lane 2*), and that of the long isoform of human islet iPLA₂ is 88 kDa (*lane 4*).

Fig. 6. Catalytic activities of recombinant long and short isoforms of human islet $iPLA_2$ expressed in Sf9 cells

Recombinant baculovirus that contained cDNA inserts encoding either the long or short isoforms of human islet iPLA₂ were prepared and used to infect Sf9 cells. At 48 h after infection, subcellular fractions were prepared from the Sf9 cells and assayed for iPLA₂ activity with a radiolabeled phospholipid substrate. Uninfected Sf9 cells exhibited no detectable iPLA₂ activity in either cytosol (*Cont.-Cyt.*) or membranes (*Cont.-Mem.*). Activity was observed in both cytosolic (*S-Cyt.* and *L-Cyt.*) and membranous (*S-Mem.* and *L-Mem.*) fractions of cells infected with baculovirus that contained cDNA inserts encoding LH-iPLA₂ or SH-iPLA₂, and activity was also observed in both subcellular fractions when cells were co-infected with baculovirus mixtures that contained both the LH-iPLA₂ and SH-iPLA₂ cDNA inserts (*S+L-Cyt.* and *S+L-Mem.*). The iPLA₂ activities expressed in cells infected with baculovirus that contained cDNA encoding either human islet iPLA₂ isoform were susceptible to inhibition by the iPLA₂ suicide substrate BEL (*filled bars*). ATP (1 mM) was included in some assay solutions (*hatched bars*). *Open bars*, no ATP.

Fig. 7. Schematic representation of the structure of the human $iPLA_2$ gene and its restriction endonuclease map

The *line* at the *top* of the diagram indicates the scale in kb. There is an interruption in the scale between 0 and 25 kb because of the long length of the first intron. The locations of cleavage sites for restriction endonucleases are illustrated beneath the scale line. Below the summary of endonuclease sites, the lines designated HG6, HG5, HG4, HG7, HG3, and HG8 represent the regions of sequence contained in separate genomic clones (HGn) obtained from screening a human genomic library with ³²P-labeled cDNA containing the full coding sequence of the long isoform of human islet iPLA₂ and the 3'-untranslated region of its transcript. The genomic clones span over 60 kb of DNA and contain 16 exons represented in the cDNA for the long isoform of human iPLA₂ that include 5'-untranslated region, the entire coding region, and 3'-untranslated region. The line below the genomic clone lines represents the locations of exons, which are identified by *black rectangles*, and the approximate lengths of the intervening introns are indicated by the lengths of the lines between the exons. The dark portions of the rectangles representing the exons indicate coding regions, and the unshaded portions of the rectangles representing exons 1 and 16 indicate untranslated regions. In the *lower portion* of the diagram, the region of the gene that includes exons 7-10 and the intervening introns is represented on an expanded scale, and the number of base pairs in each exon in this region is indicated. The regions of the gene that are included in four recognized splice-variant products iPLA2 gene are illustrated schematically in the bottom four lines. The human islet LH-iPLA2 isoform transcript contains exons 1-16 but not the alternate exons 8b and 9b. The human islet SH-iPLA₂ isoform transcript contains exons 1–7 and 9–16 but not exon 8 or alternate exons 8b or 9b. Two iPLA₂ splice variants have been reported by others in human B-lymphocyte lines (21). The transcripts for these variants contain intron sequences that result in premature stop codons and encode truncated forms of iPLA₂ that contain the ankyrin repeat domain but lack the catalytic domain. These variants are designated human B-lymphocyte ankyrin-iPLA₂-1 and human B-lymphocyte ankyrin-iPLA 2-2. The open rectangles reflect the sites of the intron sequences that are contained in these truncation variants, and the location of these intron sequences in the iPLA₂ gene are designated by sites 8b and 9b.

Fig. 8. Localization of the human iPLA $_2$ gene to chromosome 22q13.1 by fluorescence in situ hybridization

A genomic clone identified in screening the human genomic DNA library with the iPLA₂ cDNA was biotinylated to generate a probe for FISH experiments with human lymphocyte chromosomes. Using this probe, 91 of 100 examined mitotic figures exhibited fluorescent signals on one pair of chromosomes. The *white arrowhead* in the *left panel* indicates the location of the two intense fluorescent spots reflecting hybridization of the probe with each member of the chromosome pair. The *center panel* illustrates the DAPI staining pattern of the same mitotic figure and identifies the chromosome as number 22. The diagram in the *right panel* illustrates regions of human chromosome 22 determined by DAPI banding patterns. These patterns were correlated with the site of fluorescent signal from the biotinylated iPLA₂ genomic clone. A detailed positional assignment was achieved from analyses of 10 photographs from different preparations. The *black circles* indicate the location of the probe observed in each of the 10 experiments. In each case, the probe localized to region q13.1 of human chromosome 22. No other loci of hybridization of the biotinylated probe were observed.

Table I

Exon-intron boundary sequences of the human $iPLA_2$ gene

3' Acceptor site	Exor	5' Donor site	
(c/t) ₁₁ n(c/t)ag:			:gt(a/g)agt
	Exon	1GTGGATTCCG	gtgggtgatg
ggctctacag	ACTCTTCCAGExon	2GTATCATCAG	gtgagcaagg
tctcctgcag	CTGTCCAATTExon	3GGTGCTGCAG	gtgagcaggg
ctttcatcag	CTCCTTGGAAExon	4CTCAGAAGGG	gtaagacctc
ctctcaccag	GTGTGCGGAAExon	5GAACGCAGAG	gtgagtggat
tctcccgcag	ATGGCCCGCAExon	6GGCCATGTCG	gtgagcccag
tatccaacag	AAAGACAACGExon	7ATCGGCAGAC	gtatgtgctc
ccatgacaag	TTGTCACCAGExon	8AACAACCTAG	gtaggcctcg
aattttgcag	GCAGTCACCCExon	8bCGTCAGATGG	gtaacgccct
tgcctcacag	AACTACAGGAExon	9AGAAGCGGAC	gtaagtggat
tgttttacag	ATGCAGAACCExon	9bGTCACACGGA	gtgagtgtca
cccactgcag	CCACGACCACExon	10ATTCTGCACA	gtgagggcgg
ttgttcgtag	GTAAGTCCATExon	11GGAAACCCAA	gtaagccctg
ttctctccag	GGTGATGCTGExon	12CAGCCCTCAG	gtttaaacca
tggtttacag	ACCAGCTGGTExon	13GATCCGCAAG	gtgagtgccg
ttcccaacag	GGTCAGGCCAExon	14GGTGGACTGT	gtgagtgtgg
ttctcaccag	TGCACGGATCExon	15AGTACTTCAG	gtgagggctc
gcccgaacag	ATTGAACCCCExon	16ATTTGGATTC	

The sequences of exon-intron boundaries were determined by comparing the sequences of genomic DNA and of human islet LH-iPLA₂ cDNA. The table displays the 10 nucleotides at the 5'-end and at the 3'-end of each identified exon in the human iPLA₂ gene and that portion of the nucleotide sequences of the immediately adjacent introns that form junctions with the exons. Alternate exons 8b and 9b are not observed in the transcripts for human islet LH-iPLA₂ or SH-iPLA₂ but are observed in transcripts encoding catalytically inactive, truncated iPLA₂ variants in human lymphoma cell lines (21). Exon sequence is represented by upper case and intron sequence by lower case letters.