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Nitazoxanide (NTZ) has bactericidal activity against the H37Rv laboratory strain of Mycobacterium tuberculosis with a MIC of
16 �g/ml. However, its efficacy against clinical isolates of M. tuberculosis has not been determined. We found that NTZ’s MIC
against 50 clinical isolates ranged from 12 to 28 �g/ml with a median of 16 �g/ml and was unaffected by resistance to first- or
second-line antituberculosis drugs or a diversity of spoligotypes.

Treatment of drug-sensitive tuberculosis (TB) currently in-
volves treatment with four drugs for 2 months and two drugs

for another 4 months. Failure to adhere to this regimen or inges-
tion of diluted or counterfeit drugs may lead to emergence of
drug-resistant TB. TB most often occurs in resource-poor settings
that lack the health care system necessary to ensure adherence (1,
2). HIV infection increases the risk for developing active TB and is
fueling the TB epidemic, particularly in places where both infec-
tions are prevalent. TB remains one of the leading causes of death
in AIDS patients, and treatment of TB in such patients requires
longer duration of therapy and is associated with a high recurrence
rate.

Moreover, primary drug-resistant TB is rarely recognized as
such when patients first present, owing to the lack of facilities for
drug sensitivity testing (DST). As a consequence, multidrug-resis-
tant (MDR) TB, defined as Mycobacterium tuberculosis disease
that is resistant to the first-line drugs isoniazid and rifampin, is
increasing in prevalence (3–6). Also increasing is extensively drug-
resistant (XDR) TB caused by strains of M. tuberculosis that are
also resistant to the second-line quinolones and injectable amin-
oglycoside and peptide antibiotics (7, 8). The discovery of new TB
drugs is therefore a public health priority (9, 10).

Nitazoxanide (NTZ) (Alina; Romark Laboratories) is a widely
used anti-infective that is remarkable for both the breadth of its
clinical indications and its record of safety (11, 12). NTZ, a syn-
thetic nitrothiazolyl salicylamide, is deacetylated in the gastroin-
testinal tract to the active metabolite tizoxanide (13, 14). NTZ is
approved for the treatment of giardiasis and cryptosporidiosis
(15, 16) and has broad-spectrum activity against other protozoa,
helminths, and the anaerobic or microaerophilic bacteria Clos-
tridium difficile and Helicobacter pylori, as well as showing
effectiveness in infections caused by rotavirus and hepatitis C (14,
17–22).

It was recently reported that NTZ and tizoxanide killed the
H37Rv reference strain of M. tuberculosis in vitro, both when M.
tuberculosis was replicating and when its replication was blocked
by physiologic conditions of acidity and nitrosative stress (23).
The ability of a given compound to kill both replicating and non-
replicating M. tuberculosis is uncommon (24). The mycobacteri-
cidal activity of NTZ was both dose and time dependent but min-
imally inoculum dependent (23). No resistant mutants were
identified in multiple experiments that implied a frequency of

resistance of �10�13, suggesting that nitazoxanide may have mul-
tiple targets (23). The aim of the present study was to evaluate the
MIC of NTZ against clinical isolates of M. tuberculosis with vari-
ous drug resistance patterns.

Sputum specimens for M. tuberculosis culture were collected at
Le Groupe Haïtien d’Etude du Sarcome de Kaposi et des Infec-
tions Opportunistes (GHESKIO) in Port-au-Prince, Haiti, stored
at 4°C, and processed within 3 days. Samples were decontami-
nated with N-acetyl cysteine-sodium hydroxide, washed, resus-
pended, cultured in Bactec MGIT growth indicator tubes accord-
ing to the manufacturer’s instructions (Becton Dickenson), and
incubated in a Bactec 960 MGIT device. Aliquots were frozen at
�70°C in 30% glycerol.

Conventional DSTs were performed on positive cultures using
the Bactec MGIT 960 SIRE kit with 1.0 �g/ml streptomycin, 0.1
�g/ml isoniazid, 1.0 �g/ml rifampin, and 5.0 �g/ml ethambutol.
Pyrazinamide (PZA) susceptibility testing was performed using
Bactec MGIT 960 PZA kits at pH 6.0 with 100 �g/ml pyrazin-
amide. Ofloxacin susceptibility testing was performed using a
concentration of 2.0 �g/ml with a proportion method on 7H10
agar as recommended by the Clinical and Laboratory Standards
Institute (25).

Spoligotyping was performed using standard PCR-based
methods determining variations in the presence or absence of 43
direct-repeat interspacers (26). Spoligotyping was performed us-
ing a Luminex platform for high-throughput detection of multiple
simultaneous DNA sequences. The Luminex system incorporates
microspheres containing two fluorochromes, with oligonucleotide
probes attached to each microsphere as previously described (27).
Results were referenced against the SITVITWEB international data-
base to assign spoligotype number and lineage (28).

The present study used 50 typed isolates, including 20 pan-
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sensitive specimens, 3 specimens resistant to isoniazid but sensi-
tive to other first-line drugs, and 27 isolates resistant to both iso-
niazid and rifampin, with various resistances to streptomycin
(21), ethambutol (22), and pyrazinamide (14). Two of the MDR
specimens were also resistant to ofloxacin.

In the GHESKIO biosafety level 3 laboratory, M. tuberculosis
isolates were grown in Bactec MGIT 960 as described above. Cul-
tures were vortexed for 10 s and subcultured in Difco Middle-
brook 7H9 broth supplemented with oleic acid-albumin-dex-
trose-catalase (OADC) and tyloxapol to an optical density at 580
nm (OD580) of 0.01 and then subcultured to an OD580 of 0.6 to 0.8.
Cultures were diluted in 7H9/OADC/tyloxapol to an OD580 of
0.01, and 200 �l was added to 96-well plates whose outer wells
were filled with phosphate-buffered saline (PBS)/tyloxapol to
minimize evaporative losses. NTZ (2 �l) was prediluted in di-
methyl sulfoxide (DMSO) to appropriate concentrations and
added to produce final concentrations of 0 to 36 �g/ml in 4-�g/ml
increments (final DMSO concentration � 1%). Assays were per-
formed in triplicate. After 10 days of incubation at 37°C, MICs
were determined by visual inspection. Each set of experiments
included a MIC determination for rifampin on a pansensitive
strain as a positive control.

MICs for NTZ ranged from 12 to 28 �g/ml with a median of 16
�g/ml and a mean of 17.6 �g/ml (Table 1). There was no signifi-
cant difference in MICs between the drug-sensitive strains and the
drug-resistant strains (P � 0.22; Student’s t test). The MICs for the
20 pansensitive isolates ranged from 12 to 28 �g/ml with a median
of 18 �g/ml and a mean of 17.9 �g/ml. The MICs for the 30
drug-resistant isolates ranged from 12 to 28 �g/ml with a median
of 16 �g/ml and a mean of 17.5 �g/ml.

Twenty-two different spoligotypes from 5 different M. tuber-
culosis lineages were represented among the isolates (29). Spoligo-
type did not appear to affect the MIC, but the sample size was
insufficient for statistical analysis. MICs from H and LAM lineages
did not show significant variance (P � 0.91).

Thus, MICs of NTZ for clinical isolates of M. tuberculosis were
not significantly different from that seen for the H37Rv laboratory
strain and were not affected by resistance to first- and second-line
TB drugs or by spoligotype. Plasma NTZ levels of 30.7 �g/ml have
been observed in human volunteers following the administration
of 1g NTZ twice daily (b.i.d.) with minimal side effects (30). These
concentrations are nearly double the median MICs observed
among sputum samples shown in this report as well as concentra-
tions shown to be bactericidal against H37Rv (23).

NTZ and tizoxanide accumulate in M. tuberculosis and disrupt
M. tuberculosis’s membrane potential and intrabacterial pH ho-
meostasis (31). Neither of these mechanisms accounts for NTZ’s
synergistic mycobactericidal activity with reactive nitrogen inter-
mediates (31), and NTZ’s molecular targets within M. tuberculosis
are unknown. In protozoa, NTZ inhibits pyruvate-ferredoxin ox-
idoreductase (PFOR). PFOR is an essential enzyme in some an-
aerobic and microaerophilic microbes but has not been identified
in M. tuberculosis (32).

NTZ has host targets as well, leading to immune modulatory
effects that may augment its direct antimicrobial actions. For ex-
ample, NTZ activates the double-stranded RNA (dsRNA)-depen-
dent protein kinase PKR, leading to increased phosphorylation of
eukaryotic initiation factor 2� (eIF2�) (17, 22, 33). NTZ inhibits
the quinone reductase NQO1, which contributes to suppression
of signaling by the mammalian target of rapamycin (mTORC1)

TABLE 1 Nitazoxanide MICs on 50 clinical isolates with multiple drug
resistance patterns and spoligotypesa

Specimen
no. Spoligotype

M. tuberculosis
lineage Drug resistance

Mean NTZ
MIC (�g/ml)

1 42 LAM None 16
2 4 ND None 17.3
3 ND ND None 20
4 5 T None 24
5 42 LAM None 18.7
6 42 LAM None 16
7 70 X None 16
8 ND ND None 20
9 163 LAM None 16
10 106 ND None 20

11 51 T None 20
12 50 Haarlem None 20
13 2 Haarlem None 16
14 51 T None 20
15 168 Haarlem None 28
16 17 LAM None 14.7
17 168 Haarlem None 20
18 42 LAM None 12
19 34 S None 12
20 50 Haarlem None 12

21 53 T H 26.7
22 53 T H 18.7
23 183 Haarlem H 24
24 909 ND H, R 16
25 20 LAM H, R 20
26 53 T H, R, E 17.3
27 20 LAM H, R, E 20
28 17 LAM H, R, E 16
29 390 Haarlem H, R, S 16
30 137 X H, R, E, S 16

31 137 X H, R, E, S 14.7
32 20 LAM H, R, E, S 16
33 50 Haarlem H, R, E, S 20
34 50 Haarlem H, R, E, S 14.7
35 2281 LAM H, R, E, S 12
36 2 Haarlem H, R, S, Z 20
37 34 S H, R, E, Z 16
38 119 X H, R, S, Z 20
39 50 Haarlem H, R, E, S, Z 16
40 93 LAM H, R, E, S, Z 16

41 34 S H, R, E, S, Z 12
42 455 T H, R, E, S, Z 21.3
43 93 LAM H, R, E, S, Z 16
44 47 Haarlem H, R, E, S, Z 13.3
45 455 T H, R, E, S, Z 24
46 93 LAM H, R, E, S, Z 17.3
47 50 Haarlem H, R, E, S, Z 16
48 17 LAM H, R, E, S, Z 16
49 93 LAM H, R, E, S, Ofx 16
50 93 LAM H, R, E, S, Z, Ofx 16
a The MICs of nitazoxanide (NTZ) against 20 pansensitive and 30 drug-resistant
clinical isolates of Mycobacterium tuberculosis are shown. Resistance to isoniazid (H),
rifampin (R), streptomycin (S), ethambutol (E), pyrazinamide (Z), and ofloxacin (Ofx)
is indicated. Assays were run in triplicate. The mean is reported, with the standard error
of the mean ranging from 0 to 1.9. Spoligotypes are assigned a numerical code
according to international standards (29). Isolates not coded in the international
database are reported as not defined (ND). Lineage designation also follows
international standards.
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and is associated with stimulation of autophagy within macro-
phages, enhancing their mycobactericidal activity (34).

In summary, NTZ has significant bactericidal activity against
replicating and nonreplicating H37Rv M. tuberculosis, exhibits an
ultralow frequency of resistance, and has an excellent clinical
safety record when used as an approved antimicrobial agent for
other indications. NTZ is quantitatively glucuronidated in mice,
and the glucuronide is inactive against M. tuberculosis (L. P. Sorio
de Carvalho and C. Nathan, unpublished observations), so studies
of NTZ in mouse models of tuberculosis have not been informa-
tive. Given the safety record of NTZ in humans and the present
demonstration that NTZ was comparably effective in vitro against
M. tuberculosis from 50 clinical isolates with various drug resis-
tance patterns and spoligotypes at clinically relevant concentra-
tions, we believe that trials of the 2-week early bactericidal activity
of the drug are warranted for the experimental treatment of drug-
resistant TB.
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