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Abstract
To avoid the challenges of crystallization and the size limitations of NMR, it has long been hoped
that single-particle cryo-electron microscopy (cryo-EM) would eventually yield atomically
interpretable reconstructions. For the most favorable class of specimens (large icosahedral
viruses), one of the key obstacles is curvature of the Ewald sphere, which leads to a breakdown of
the Projection Theorem used by conventional three-dimensional (3D) reconstruction programs.
Here, we review the basic problem and our implementation of the “paraboloid” reconstruction
method, which overcomes the limitation by averaging information from images recorded from
different points of view.

1. Introduction
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy were the first
techniques to reveal the atomic structures of biological macromolecules. Electron
crystallography then followed, first on “two-dimensional” (2D) crystals (crystals one unit
cell thick) (Henderson et al., 1990; Kuhlbrandt et al., 1994) and then on helical (tubular)
crystals (Unwin, 2005). To avoid the challenges of crystallization and the size limitations of
NMR, it has long been hoped that single-particle cryo-electron microscopy (cryo-EM)
would eventually also produce atomically interpretable maps. Steady progress toward this
goal has been made, led by reconstructions of large icosahedral viruses, whose 60-fold
symmetry, size, and rigid architecture all facilitate precise image alignment (Chapter 7, Vol.
482). Eventually, such efforts will be hampered by the fact that conventional methods
assume that EM images are true projections, but in fact they are not: the information
delivered by the microscope is actually a mixture of information belonging to a curved
surface within the 3D Fourier transform (FT) of the specimen called the Ewald sphere. The
mixing occurs when the complex electron wave functions are measured by the CCD or film
to produce real images. The severity of the problem increases with specimen thickness,
resolution, and electron wavelength.

A method for recovering the full, complex electron wavefunction from focal series was
proposed by Schiske (1968). Further discussion then followed through 1990, when the
method was reproposed using a different, more intuitive approach (Van Dyck and Op de
Beeck, 1990). Saxton, who referred to this class of approaches as the “paraboloid method,”
later showed it to be equivalent to the original (Saxton, 1994). More recently, the problem
was discussed in the context of 3D reconstruction by DeRosier, who outlined four basic
strategies to recover all the unique Fourier coefficients by merging focal pairs, images at
different tilt angles, or images of ordered (crystalline or helical) objects in reciprocal space
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(DeRosier, 2000). A different idea for addressing the problem in real space was proposed by
Jensen and Kornberg (2000), followed by additional analyses and suggestions by Wan et al.
(2004). Wolf et al. (2006) implemented a version of the paraboloid method in the popular
FREALIGN package (Grigorieff, 2007). Simultaneously with the Wolf work, we
implemented an iterative version of the same basic method we called Prec (for Paraboloid
reconstruction) (Leong, 2009) in three major single particle reconstruction software
packages: Bsoft (Heymann, 2001), EMAN (Ludtke et al., 1999), and IMIRS (Liang et al.,
2002). The Bsoft and EMAN versions use Cartesian-coordinate systems, while the IMIRS
version uses cylindrical coordinates to exploit the advantages of Fourier–Bessel transforms
(Klug et al., 1958) (Chapter 5, Vol. 482).

2. The Ewald Curvature Problem and Symbols Used
To introduce needed symbols, we will follow DeRosier’s derivation of the effects of the
Ewald sphere curvature closely (DeRosier, 2000), except that here all Fourier coefficients F
are complex and amplitude contrast is included explicitly. Beginning first with the effect of
a sample on an incident electron wave and its weak-phase approximation,

(14.1)

where At(x) is the transmitted wave, A0 is the incoming wave, α is the amplitude contrast

value, is the phase contrast value (Erickson and Klug, 1971), ρ(x) is the density of
the sample, and i is an imaginary number with magnitude 1; the diffracted wave F(X) takes
the form

(14.2)

where Fρ(X) is the FT of our sample density.

Considering the sum of a single, symmetric pair of diffracted beams represented by Fourier
coefficients FL and FR on an Ewald sphere (Fig. 14.1), whose additional path length through
the lens with respect to the unscattered beam adds an additional phase shift of eiχ, we have:

(14.3)

where χ is the wave aberration function at Xa and is defined as

(14.4)

in which λ is the electron wavelength, s is the spatial frequency, Cs is the spherical
aberration coefficient, and Δf is the defocus.

The interference of these beams will produce a single complex fringe with a periodicity of 1/
Xa whose amplitude, σ(x), will be

(14.5)

The intensity of the wave is recorded as our image
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(14.6)

where the F2 terms can be ignored due to the weak-phase approximation.

The FT of our image Fobs(X) is then

(14.7)

We see that FRobs, the observed Fourier value on the right side at X = Xa, is

(14.8)

Because of the curvature of the Ewald sphere, FL and FR are not a Friedel pair (i.e., not
complex conjugates), but rather independent Fourier coefficients, mixed by the process of
image formation. Thus, conventional methods, which treat FRobs as if it were the sum of a
Friedel pair FL and FR, do progressively worse as FL and FR diverge at higher resolutions.

3. The Paraboloid Method in the Context of 3D Reconstruction
The original Fourier coefficients can be recovered by averaging information from multiple
images, which each contain different combinations of the unique coefficients. First, images
are corrected for the contrast transfer function (CTF). This is performed by multiplying each
term Fobs by −(α − iβ)e−iχ. Unlike conventional CTF corrections, where values around CTF
zeros are discarded, here there is no such requirement, since this “complex” CTF-correction
(cCTF) is a multiplication by a factor of magnitude 1 rather than a division by a number
potentially close to zero. Thus, FRcorr, the cCTF-corrected coefficient on the right side, is

(14.9)

Because each FRcorr is the sum of the correct FR and a phase-shifted, complex-conjugated
FL, at this point it becomes clear how by averaging FRcorr from a number of different
images, each measuring the same FR but different FL’s, the FR’s will add coherently but the
sum of FL’s will diminish in comparison. At low resolution, however, where FL

* ≈ FR,

(14.10)

The cCTF-correction then leads to wrong values

(14.11)

since χ does not vary quickly, causing the second terms to also add coherently and introduce
a significant error. Thus at low resolution, it is better to use the simpler, real CTF correction
(rCTF), where Fobs is divided by the factor − 2(α cos χ − β sin χ). A practical transition
point can be found as the spatial frequency at which the cCTF-corrected and the rCTF-
corrected reconstructions match best.
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After CTF-correcting the raw images, the paraboloid method places the Fcorr values in their
correct position in Fourier space on the Ewald sphere:

(14.12)

(14.13)

where N is the total number of images (indexed by k) which contribute to each point.

4. The Prec Algorithm
In essence, the paraboloid method therefore “splits” the observed values Fobs into estimates
of FR and FL by averaging information from a set of images. Once initial estimates are
obtained, they can be refined through iteration, since knowledge of any particular coefficient
will affect how all the sums it is involved in should be split. In Prec’s iterative refinement
loop, each Fobs of each image is compared to the expected (“calculated”) value FRcalc that is
obtained by combining Ewald sphere-related Fourier coefficients from a previous
reconstruction:

(14.14)

where the index j represents the jth iteration of the reconstruction. The difference between
the CTF-corrected observed value for image k and this calculated value is stored as the
“error” 2FΔk:

(14.15)

Half of these errors are then added as a refinement to the Fourier component on the right:

(14.16)

The correction can also be immediately added to the left side:

(14.17)

which after rotation, complex conjugation and summation of corrections simplifies to:

(14.18)

To begin the process, in the first iteration the “reconstruction” to be refined can simply be a
set of zeroes. Then the calculated value, FRcalc, is also zero and thus the correction applied
to the left and right Fourier components (FR0 and FL0) are just the values called for by the

paraboloid method, scaled by a simple factor of :
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(14.19)

(14.20)

(14.21)

Subsequent iterations refine that estimate. Take, for example, any Fourier coefficient FR0
and the contributions to it:

(14.22)

where N is the number of images that measured FR.

This can be recast as

(14.23)

where F ̄R is the average FRk and ε is the residual error which consists of the average of the

FLk (α − iβ)2e − i2χk terms, which is a random walk with step size of approximately .

Thus, after the first refinement cycle, the residual error falls off as .

5. Implementation of the Prec Algorithm
Three versions of Prec have been implemented, one each in the software packages Bsoft,
IMIRS, and EMAN, which each have all the functionality required to produce high-
resolution reconstructions from raw cryo-EM images. While the mathematical theory is as
described above, key differences exist in how the interpolations are handled in the different
coordinate systems. Bsoft and EMAN use a Cartesian-coordinate system. Starting with raw
cryo-EM images, the Bsoft and EMAN implementations of Prec begin by calculating the
images’ 2D FTs, multiplying them by the cCTF, and then calculating the “z-” coordinate
(height up the Ewald sphere) for each Fourier coefficient. Taking into account the projection
direction, the coefficients from the image are then added to the nearest corresponding lattice
points of the “reconstruction” 3D FT with appropriate phase factors. In the Bsoft version,
the standard interpolation procedure with weight w = 1 − d (where d is distance in pixels
from the measurement to the 3D lattice point) is used. In the EMAN version, any of its
various built-in interpolation procedures can be used. After all the data are added to the
“reconstruction” 3D FT, each amplitude is divided by the total weight of all the
measurements that contributed, and a density map is produced through an inverse 3D FT.
Refinement cycles, as implemented in Bsoft, loop through each coefficient of each corrected
image transform. The expected value is calculated by summing the coefficients at the
nearest corresponding lattice points of the 3D FT of the current reconstruction with
appropriate phase factors and complex conjugation. Half the difference between this
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expected value and the (CTF-corrected) observed value is added to each contributing
coefficient.

A different version of Prec was implemented within IMIRS. IMIRS uses a cylindrical
coordinate system for the reconstruction process, where the 3D reconstruction and its FT are
expressed as expansions of cylinder functions, as proposed by Klug et al. (1958). We follow
the notation used by Crowther et al. (1970). The 2D FTs of the raw images are calculated
and multiplied by the cCTF as before. The 3D FT of the object is represented in cylindrical
coordinates, Z, R, and Φ. The Ewald sphere of measurements recorded in each image will in
general intersect each ring of coordinates in two places. For each intersection of an image
Ewald sphere and a ring of the 3D FT, a Fourier coefficient for that location is estimated
from the pixels of the FT of the image through bilinear interpolation. Once all the estimates
on a particular ring have been calculated, all of them are used to determine then cylindrical
expansion terms, Gn(R,Z) through a least squares fit which differs from the conventional
IMIRS reconstruction in that the magnitude of the cCTF term is 1 and therefore is not a
factor in the weighting of terms. A Fourier–Bessel transform is used next to obtain the
gn(r,Z) terms, which are then used to generate the density map.

Because in this case, the FL that pairs with each FR of a randomly spaced intersection of an
image Ewald sphere and a Fourier ring does not generally fall upon any ring, a 3D nearest
neighbor interpolation was required to estimate its value. Our tests suggested that the losses
due to this less accurate nearest neighbor interpolation outweighed the gains obtained by
iteration, so that iteration of the cylindrical-coordinate-based version of Prec is not
recommended. Similarly for the Cartesian-coordinate-based versions of Prec, iterations
beyond the first refinement cycle are also not recommended as successive refinements yield
minimal gains (see Eq. (14.23)).

6. Tests on Simulated Data
All three implementations of Prec have been tested on both simulated and experimental data.
As an example, a large number of images of the moderate-sized (~300-Å diameter) Foot and
Mouth Virus (FMV) (Fry et al., 1993) were simulated with different methodologies,
voltages, and signal-to-noise ratios. A complete pdb was generated using the VIPERdb
(Shepherd et al., 2006) and then its density was sampled to produce a reference volume
using a modified version of bgex of the Bsoft package. “Ewald projection” images were
simulated by simply summing Fourier coefficients on Ewald spheres using Eq. (14.8) and a
complete 1D Whittaker–Shannon interpolation (Shannon, 1949; Whittaker, 1915) in the Z
direction, followed by an inverse 2D FT. Six data sets of 5000 images each, with
acceleration voltages of 15, 25, 50, 100, 200, and 300 kV, respectively, were calculated.
FMV reconstructions were then calculated from each data set using the conventional
reconstruction programs in Bsoft, IMIRS, and EMAN, which do not correct for curvature of
the Ewald sphere. The resolution of each reconstruction was measured by its correlation
with the original reference density map in Fourier shells (FSC) and confirmed visually (Fig.
14.2, Bsoft results only). The large number of images ensured that Fourier space was well
sampled. The expected increase in resolution as a function of voltage demonstrated the
Ewald sphere curvature problem. Analogous reconstructions of the 15 kV data set were then
performed with Bsoft, IMIRS, and EMAN implementations of Prec. All three programs
completely overcame the effects of Ewald sphere curvature (Fig. 14.2, again Bsoft results
only). Similarly successful tests have been performed with more accurate sets of simulated
images generated using the multislice algorithm (Cowley and Moodie, 1957), with different
signal-to-noise ratios, and a larger virus model (the 754-Å diameter Reovirus; Reinisch et
al., 2000).
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7. Application to Experimental Reconstructions
To what extent current experimental reconstructions of icosahedral viruses suffer from
uncorrected Ewald sphere curvature remains unclear. While previous analyses (DeRosier,
2000; Jensen and Kornberg, 2000) suggest that Ewald curvature should already be one of the
principal resolution limitations in the most recent, highest resolution (<4 Å) reconstructions,
actual reconstructions from simulated images of Reovirus showed that the Ewald curvature
did not become severely limiting until ~2.5 Å resolution, and an improvement of an
experimental reconstruction through curvature correction has yet to be reported (Leong,
2009). Nevertheless as the size of reconstructed viruses, the number and quality of images
that are included in reconstructions, and the precision to which those images can be mutually
aligned continue to increase, Ewald curvature correction will eventually become critical.

The Bsoft and IMIRS versions of Prec can be downloaded from www.jensenlab.caltech.edu.
The EMAN implementation can be obtained from jiang.bio.purdue.edu.
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Figure 14.1.
The Ewald sphere and Prec algorithm. (A) Fourier coefficients in the transforms of electron
microscope images (FRobs) are actually combinations of coefficients (FL and FR) that lie on
a spherical surface through the 3D transform of the specimen called the Ewald sphere. (B)
Prec iteratively recovers the independent values of these coefficients by comparing CTF-
corrected observations (FRcorr) with the calculated sum (FRcalc) that would have been
expected from the right (FRj) and left (FLj) terms of some previous reconstruction, with
appropriate phase factors eiφL = (α + iβ)2ei2χ. Half the difference (FΔ) is then added to FRj
and FLj to produce the next iteration (FRj + 1 and FLj + 1).
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Figure 14.2.
Prec overcomes the curvature problem in Ewald projections. (Top) FSC curves for
conventional Bsoft reconstructions of the Foot and Mouth Virus from 5000 “Ewald
projection” images simulated with the voltages shown, plus a reconstruction from the 15 kV
images calculated by the Prec program, which completely corrects for the curvature
problem. (A and B) Isosurface renderings of the conventional and Prec 15 kV
reconstructions, respectively. (C–H) Transparent isosurfaces of a single α-helix from the 15,
25, 50, 100, 200, and 300 kV reconstructions, respectively, surrounding the atomic model
used to simulate the images. (I) The same helix from the Prec 15 kV reconstruction. FSC
curves were calculated with bresolve (Heymann, 2001) and isosurfaces were rendered with
Chimera (Pettersen et al., 2004).
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