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Abstract
This paper develops an empirical likelihood approach to testing for the presence of stochastic
ordering among univariate distributions based on independent random samples from each
distribution. The proposed test statistic is formed by integrating a localized empirical likelihood
statistic with respect to the empirical distribution of the pooled sample. The asymptotic null
distribution of this test statistic is found to have a simple distribution-free representation in terms
of standard Brownian bridge processes. The approach is used to compare the lengths of rule of
Roman Emperors over various historical periods, including the “decline and fall” phase of the
empire. In a simulation study, the power of the proposed test is found to improve substantially
upon that of a competing test due to El Barmi and Mukerjee.
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1. Introduction
Comparing random variables in terms of their distributions can provide an understanding of
underlying causal mechanisms and risks. In addition, knowledge of an ordering of
distributions can be useful for increasing the efficiency of estimation procedures, as is well
documented in the literature on order restricted inference; see, for example, the
comprehensive monograph of Silvapulle and Sen [20]. There are many types of ordering for
the comparison of univariate distributions. These include, with increasing generality,
likelihood ratio ordering, uniform stochastic ordering (equivalent to hazard rate ordering),
stochastic ordering, and increasing convex ordering (of interest in economics and actuarial
science); see Shaked and Shanthikumar [19] for an overview.

The aim of this paper is to develop an empirical likelihood approach to testing for the
presence of the classical type of stochastic ordering. Such ordering often arises in the
biomedical sciences and reliability engineering, for example, with lifetime distributions of
human populations exposed to higher risk, or of engineering systems under greater stress.
The notion of stochastic ordering is due to Lehmann [11] who defined a random variable X1
to be stochastically larger than a random variable X2 if F1 (x) ≤ F2 (x) for all x (with strict
inequality for some x), where F1 and F2 are the corresponding cdfs; we write this as F1 ≻ F2.
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For a stochastic ordering of k distributions, we write F1 ≻ F2 ≻ ⋯ ≻ Fk if Fj (x) ≤ Fj+1 (x)
for all x and j = 1, …, k − 1, with strict inequality for some x and some j.

There is an extensive literature on the problem of testing for equality of two distributions
against the alternative that they are stochastically ordered. Lee and Wolf [10] proposed a
Mann–Whitney–Wilcoxon-type test. Robertson and Wright [17] studied the corresponding
likelihood test (LRT) in the one- and two-sample cases when the distributions are discrete.
They showed that the limiting distributions are chi-bar square. Their results indicate that, in
the two-sample case, the LRT is not asymptotically distribution free. They also obtained the
least favorable distribution in this case. Other tests are discussed in Dykstra, Madsen and
Fairbanks [3], Franck [7] and Mau [12]. For more than two populations, Wang [21]
discussed the LRT in the multinomial case; El Barmi and Johnson [5] showed that the
limiting distribution of his test statistic is of chi-bar square type and gave the expression of
the weighting values. Also in the k-sample case (k ≥ 2), El Barmi and Mukerjee [6] provided
an asymptotically distribution-free test based on the sequential testing procedure originally
introduced by Hogg [8]. This test is applicable in both the multinomial and the continuous
cases, with or without censoring. Recently, Baringhaus and Grübel [1] introduced a
nonparametric two-sample test for the more general hypothesis of increasing convex
ordering; their test is not asymptotically distribution-free, however, and requires the critical
values to be obtained via a bootstrap procedure.

The contribution of the present paper is to provide empirical likelihood based k-sample tests
for alternatives that are stochastically ordered. The empirical likelihood (EL) method was
originally introduced by Owen [15,16] for the purpose of finding confidence regions for
parameters defined by general classes of estimating equations. It combines the flexibility of
nonparametric methods with the efficiency of likelihood-ratio-based inference. Inference
based on EL has many attractive properties: estimation of variance is typically not required,
the range of the parameter space is automatically respected and confidence regions have
greater accuracy than those based on the Wald approach. Einmahl and McKeague [4]
developed a localized version of EL, to allow nonparametric hypothesis testing, and showed
via simulation studies that it outperforms (in terms of power) the corresponding Cramér–von
Mises statistics for a variety of classical testing problems. Their approach is restricted to
omnibus alternatives, whereas ordered alternatives are often more useful because they can
provide a more direct interpretation of the result of the test.

The development of the proposed test statistic and results on its asymptotic null distribution
are given in Section 2. First we consider the special case of testing whether a distribution
function is stochastically larger than a specified distribution function, based on a single
sample. Once the theory has been developed in this one-sample case, it is relatively
straightforward to extend the approach to the general k-sample setting in which all the
distribution functions are unknown. Section 3 presents the results of a simulation study in
which we find that the proposed test has superior power to the test of El Barmi and
Mukerjee [6], which is the only previous test to have been developed for ordered alternatives
in this setting. Section 3 also contains an application of the proposed test to a comparison of
the lengths of rule of Roman Emperors over various historical periods. Some concluding
remarks are given in Section 4. Proofs of the main results are collected in Section 5.

2. Empirical likelihood approach
2.1. Stochastic ordering relative to a specified distribution

Suppose we are given a random sample X1, X2, …, Xn from the cdf F, and we want to test
the null hypothesis H0: F = F0 versus H1: F ≻ F0, where F0 is a specified cdf.
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Adapting the approach of Einmahl and McKeague [4] to the present setting, we first need to
consider testing the “local” null hypothesis  versus the alternative

, where x is fixed. The empirical likelihood procedure in this case rejects 
for small values of

(1)

where the suprema are over cdfs F that are supported by the data points, L(F) is the
nonparametric likelihood function and, by convention, sup Ø = 0 and 0/0 = 1. For F having
point mass pi at Xi, define the new parameters θi = pi/ϕ and ψi = pi/(1 − ϕ), where 0 < ϕ =
F(x) < 1. In terms of this new parameterization, with F̂ denoting the empirical cdf, we need
to maximize

(2)

subject to the constraint

with either ϕ = F0(x) under , or ϕ < F0 (x) under . Note that the three terms in the right-
hand side of (2) can be maximized separately. As the constraints for the first two terms of
(2) are the same for both the numerator and the denominator of (1), these terms cancel and
make no contribution to R(x). The third term of (2) is maximized by ϕ = F0(x) under , or
ϕ = F0(x) ∧ F̂(x) under . Consequently,

with the convention that any term raised to a zero power is set to 1. Using a second-order
Taylor expansion of log(1 + y) about y = 0, it can be shown (see the proof of the theorem
below) that, for a given x, such that 0 < F0(x) < 1, under ,

using the CLT and the continuous mapping theorem, where Z ~ N(0, 1). That is, the
asymptotic null distribution of −2 log R(x) is chi-bar square.

To test H0 against H1, we introduce the integral-type test statistic
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Here the range of integration is actually restricted to the interval [X(1), X(n)], where X(1) and
X(n) are the smallest and largest order statistics in the sample, because the integrand
vanishes outside this interval. The following result gives the asymptotic null distribution of
Tn.

Theorem 1—If F0 is continuous, then under H0,

where B is a standard Brownian bridge.

Remark 1: An alternative test statistic is obtained by integrating with respect to the
empirical cdf (instead of F0),

It can be shown using a martingale argument (see Section 5), that  has the same
asymptotic null distribution as Tn.

2.2. Stochastic ordering among k distributions
Suppose now that we are given a random sample of size nj from the cdf Fj, for j = 1, …, k,
the k samples are independent and we want to test the null hypothesis H0: F1 = ⋯ = Fk
versus H1: F1 ≻ ⋯ ≻ Fk. We assume that the proportion wj = nj/n of observations in the jth
sample remains fixed as the total sample size n → ∞, with 0 < wj < 1 for all j = 1, …, k.

Adapting the approach of Section 2.1, we now consider the localized empirical likelihood
function

(3)

where, in each supremum, Fj is supported by the observations in the j th sample. Applying
the same parameterization used in (2), separately for each Fj, and making the same
cancelation in the numerator and denominator, it suffices to maximize

(4)

subject to the constraint 0 < ϕ1 = ⋯ = ϕk < 1, or 0 < ϕ1 ≤ ⋯ ≤ ϕk < 1, depending on whether
it is the numerator or the denominator of (3). Here F̂j is the empirical cdf based on the jth
sample. Under the first of these constraints, (4) is maximized by ϕj = F̂(x), where F̂ is the
empirical cdf of the pooled sample. Under the second constraint, this is the classical
bioassay problem, as discussed in Robertson et al. [18], page 32, and it follows that (4) is
maximized by
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where Ew(ϕ̂∣I) is the weighted least squares projection of ϕ̂ = (F̂1(x), …, F̂k(x))T onto I = {z
∈ ℝk: z1 ≤ z2 ≤ ⋯ ≤ zk}, with weights wj. In passing, we mention that several algorithms
have been developed for computing this projection, including the pool-adjacent-violators
algorithm, see Robertson et al. [18]. We now have

(5)

under the convention that any term raised to a zero power is set to 1.

To test H0 against H1, we propose the test statistic

(6)

The following theorem gives the asymptotic null distribution of Tn.

Theorem 2—Under H0 and assuming that the common distribution function F is
continuous,

(7)

where , the processes B1, B2, …, Bk are independent

standard Brownian bridges, and .

Remark 2: For the two-sample case, it can be shown that the limiting distribution in the
above result coincides with that in the one-sample case (Theorem 1); the equivalence arises
from the fact that  is a standard Brownian bridge. Moreover, when
testing against the unrestricted alternative F1 ≠ F2, the limiting distribution of the
corresponding test statistic (see Einmahl and McKeague [4], Theorem 2a) is the same apart
from the presence of the indicator I (B(t) ≥ 0) in the integrand.

3. Numerical examples
In this section we discuss some numerical examples illustrating the proposed test for a
comparison of two or more distributions developed in Section 2.2.

To implement the proposed test we first need to obtain critical values for Tn. The null
distribution of Tn is not tractable, even asymptotically, but it is asymptotically distribution
free. We use simulation to approximate selected critical values as provided in Table 1. These
critical values are based on 100 000 data sets distributed as N(0, 1), with sample sizes of ni =
100, i = 1, …, k, in each case. The (Fortran) program used to compute the critical values in
Table 1 is available online in the supplemental files.

3.1. Simulation study
Here we present the results of a simulation study designed to compare the performance of Tn
with the test statistic Sn of El Barmi and Mukerjee [6], which is defined as the maximum of
a sequence of (one-sided) two-sample Kolmogorov–Smirnov test statistics. As far as we
know, Sn is the only previously developed test statistic when k ≥ 3.
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Tables 2 and 3 give the results for a variety of distributions and sample sizes, for k = 2 and k
= 3, respectively. In each case, 10 000 data sets were used to approximate the power at a
nominal level of α = 0.05, with critical values for Tn taken from Table 1; critical values for
Sn are obtained from its asymptotic distribution, which is available in a closed form. In all
cases, Tn has greater power than Sn and has better agreement with the nominal level of the
test.

3.2. Lengths of rule of Roman Emperors
A recent article of Khmaladze, Brownrigg and Haywood [9] reached the interesting
conclusion that the lengths of rule of Roman Emperors were exponentially distributed,
implying that their reigns ceased unexpectedly (“brittle power”). It is also of interest to
examine whether there were changes in the distribution of rule lengths, especially during the
“decline and fall” phase of the empire. We use the list of n = 70 Roman Emperors from
Augustus to Theodossius, covering 27 BC to 395 AD. Our analysis is based on the
chronology of Parkin (see Khmaladze et al. [9] for further details). The (Fortran) programs
used for the two analyzes are available online in the supplemental files.

First we consider whether there is an effect on duration of rule due to the Crisis of the Third
Century (235–284 AD), when the Roman Empire nearly collapsed under the pressure of
civil war (among other things!). Figure 1 shows the empirical survival function of durations
of rule for the Principate (27 BC–235 AD), which was the relatively stable period preceding
the Crisis, compared with the period after 235 AD; the sample sizes are n1 = 29 and n2 = 41,
respectively. The two distributions appear to be exponential, and the likelihood ratio test of
stochastic ordering under this assumption has p-value 0.195; the corresponding unrestricted
likelihood-ratio test has p-value 0.390. Applying our proposed test (with k = 2) to assess
whether the duration of rule is stochastically shorter after the Principate, we obtain Tn =
0.3161 with a p-value of 0.424. This compares with a p-value of 0.575 based on Sn.

The period 285–395 AD forms part of what is known as the Dominate, the despotic later
phase of the empire. Inspection of Figure 2 suggests that the exponential hypothesis is not
tenable for each separate period, so our nonparametric approach is more reasonable. The
plot also suggests that the rule lengths are stochastically ordered as Dominate ≻ Principate ≻
Crisis. Applying our approach to formally test this hypothesis, we find that Tn has a p-value
of 0.0002, compared with a p-value of 0.0017 for Sn. Under the assumption of exponential
distributions, the likelihood ratio test has p-value less than 0.0007.

4. Discussion
In this paper we have developed a novel empirical likelihood approach to the important
problem of nonparametrically testing for the presence of stochastic ordering based on k
independent samples. The proposed tests are computationally efficient to implement, and
could be used with massive data sets because they do not rely on the bootstrap or any other
simulation technique, and they reduce to a local test for an ordering of binomial
probabilities, which only requires a single sweep through the pooled data in the k groups.

Various extensions of the proposed tests are possible. In change-point problems, for
example, it is of interest to test whether there is a sudden change in the distribution of a
sequence of independent random variables X1, …, Xn. Einmahl and McKeague [4]
developed an EL-based change-point test for the presence of an (unknown) change-point τ ∈
{2, …, n} such that
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They only considered the unrestricted alternative F1 ≠ F2, but it is also of interest to consider
the ordered alternative F1 ≻ F2. This can be done by extending the two-sample case to allow
the sample sizes to depend on an additional local parameter, namely t ∈ [1/n, 1), with n1 =
⌊nt⌋ and n2 = n − ⌊nt⌋. The resulting test statistic has a limiting distribution of the same form
as in Theorem 2 of Einmahl and McKeague [4], involving the integral of a four-sided tied-
down Wiener process W0(t, y), except that the integrand now includes the indicator I (W0(t,
y) ≥ 0).

Our approach also naturally extends to non-monotonic alternatives, namely to testing
whether F1, F2, …, Fk are isotonic with respect to a quasi-order on {1, 2, …, k}. A relation
≲ on {1, 2, …, k} is a quasi-order if it is reflexive and transitive (and a partial order if, in
addition, it is antisymmetric). We say that F1, F2, …, Fk are isotonic with respect to ≲ if Fi ≻
Fj whenever i ≲ j. Examples of such ordered alternatives include F1 ≻ Fi, i = 2, …, k (tree
ordering) and F1 ≻ F2 ≻ ⋯ ≻ Fi0 ≺ Fi0+1 ≺ ⋯ ≺ Fk, where i0 is known (umbrella ordering).
The localized empirical likelihood (3) extends naturally to such ordered alternatives, the
only difference being that in ϕj = Ew(ϕ̂∣I)j the set I is now the isotonic cone corresponding to
≲. For exampls, in the case of tree ordering, the cone becomes I = {z ∈ ℝk: z1 ≤ zi, i = 2, …,
k}. The ϕj can be computed using quadratic programming or algorithms described in
Robertson, Wright and Dykstra [18], one of the most general being the lower-sets algorithm.
The limiting distribution of the resulting test statistic is obtained by taking I in (7) as the
isotonic cone corresponding to ≲.

An important and challenging problem for future research in this area would be to develop
EL-based tests for stochastic ordering based on censored data. EL methods are well
developed for the comparison of survival functions from right-censored data, see McKeague
and Zhao [13, 14], but these methods only apply to omnibus alternatives. The complication
in extending the present tests to right-censored data arises because the EL ratio would then
no longer have such an explicit form as in (5), and Lagrange multipliers would be involved.
This extension is beyond the scope of the present paper.

5. Proofs
Proof of Theorem 1

For 0 < ε < 1, let xε, yε be real numbers such that F0(xε) = 1 − F0(yε) = ε/2. Then
decompose the test statistic as Tn = T1n + T2n, where

and

By appealing to Theorem 4.2 of Billingsley [2], note that, to complete the proof of the
theorem, it suffices to show that for fixed ε,

(8)

as n → ∞, and, for each δ > 0, that lim supn→∞ P (|T2n| ≥ δ) → 0 as ε → 0.
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First consider T1n. Using the inequality | log(1 + y) − y + y2/2| ≤ |y|3/3 when |y| ≤ 1/2, the
Glivenko–Cantelli theorem and Donsker’s theorem, we have

almost surely. Then, noting that F̂(x) = Γ̂ (F0(x)), where Γ̂ is the empirical cdf of Vi = F0(Xi)
~ U (0, 1), i = 1, …, n, and changing variables in the integration to t = F0(x), it follows that

(9)

where  is the uniform empirical process. Note that (for any fixed 0 < ε <
1) the functional

is continuous when the Skorohod space D[0, 1] is equipped with the uniform norm. By
Donsker’s theorem, Û converges weakly to B in D[0, 1], so applying the continuous
mapping theorem to the leading term in (9) establishes (8).

Finally we need to verify the claim concerning T2n. This follows immediately from a
corresponding result in Einmahl and McKeague [4], who considered the test of the null
hypothesis F = F0 versus the (omnibus) alternative F ≠ F0, with the same integral-type test
statistic as Tn except that the integrand does not vanish when F̂(x) > F0(x). This completes
the proof.

Proof for Remark 1

The asymptotic distribution of  can be obtained following the same steps as the proof of
Theorem 1, except that the leading term in T1n now becomes

where

Note that
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is a martingale wrt to the natural filtration defined by Γ̂, and its predictable quadratic

variation process is . Also note that V (t−) is a
predictable process because it is adapted and left-continuous. Write

Using a basic property of martingale integrals, the second moment of the first term above is

so this term tends in probability to zero. The second term in the above display can be
handled in the same way as the main term T1n in the proof of Theorem 1, and has the same
limit distribution.

Proof of Theorem 2
The proof is similar to the proof of Theorem 1, so we only indicate the main steps. Using the
Taylor expansion of log(1 + y), as before, and the (uniform) consistency of F̃j as an
estimator of Fj = F (see, e.g., El Barmi and Mukerjee [6], page 253), for each fixed x, such
that 0 < t = F (x) < 1, we have

where ,  are independent

uniform empirical processes, and . Donsker’s theorem and the continuous
mapping theorem have been used as before, but we have also used the fact that Ew(·∣I) is a
continuous function on ℝk.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Empirical survival functions of durations of rule of the first 70 Roman Emperors before 235
AD (crisis = 0), and after 235 AD (crisis = 1).
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Figure 2.
Empirical survival functions of durations of rule during the Principate, 27 BC–235 AD
(period = 1), the Crisis, 235–284 AD (period = 2) and the Dominate, 284–395 AD (period =
3).
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Table 1

Selected critical points of Tn

k

Significance level α

0.01 0.05 0.10

2 3.185 1.821 1.288

3 4.128 2.613 1.943

4 4.663 3.107 2.404

5 5.144 3.470 2.701
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