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8OHdG is not a biomarker for
Huntington disease state or progression

ABSTRACT

Objective: To evaluate plasma 8-hydroxy-deoxy-guanosine (8OHdG) levels as a potential bio-
marker of premanifest and early Huntington disease (HD).

Methods: Personnel from 2 independent laboratories quantified 8OHdG in blinded longitudinal plasma
samples taken 24months apart from 160 TRACK-HD participants, as well as samples containing con-
trol plasmawith added (“spiked”) 8OHdG.One laboratory used a liquid chromatography–electrochemical
array (LCECA) assay, and the other used liquid chromatography–mass spectrometry (LCMS).

Results: The LCMS assay was more accurate than the LCECA assay for measurements of “spiked”
8OHdG levels in plasma. Neither assay demonstrated cross-sectional differences in plasma 8OHdG
among controls, premanifest HD, and early symptomatic HD. Similarly, neither assay showed longitu-
dinal changes in any disease group over 24 months.

Conclusions: Plasma concentration of 8OHdG is not a biomarker of disease state or progression in
HD. We recommend that future putative biomarker studies use blinded sample analysis, standard
curves, independent analytical methods, and strict quality control of sample collection and storage.
Neurology� 2013;80:1934–1941

GLOSSARY
8OHdG 5 8-hydroxy-deoxy-guanosine; CV5 coefficient of variation; EDTA5 ethylenediaminetetraacetic acid;HD5 Huntington
disease; LCECA 5 liquid chromatography–electrochemical array; LCMS 5 liquid chromatography–mass spectrometry; preHD 5
premanifest Huntington disease; TMS 5 total motor score; UHDRS 5 Unified Huntington’s Disease Rating Scale.

Huntington disease (HD), an autosomal dominant neurodegenerative disease, is caused by an
abnormally expanded trinucleotide (CAG) repeat in the huntingtin (HTT) gene.1 The disorder
is typically diagnosed at onset of motor symptoms, but there is a “premanifest” period associated
with clinical signs, including brain atrophy, psychiatric symptoms, and cognitive decline.2–4

PREDICT-HD5 and TRACK-HD,6 both longitudinal observational studies, aim to identify
early HD biomarkers. These and other studies have shown differences in neuroimaging, cog-
nitive, and motor measures among control, premanifest, and clinically diagnosed cohorts.7,8

Although premanifest and clinically diagnosed groups show robust longitudinal changes in
neuroimaging measures, the latter shows more easily detectable declines in other measures
compared with controls and premanifest HD (preHD).9–14

Currently, there are no validated candidate blood, CSF, or urine biomarkers that track the pro-
gression of HD.15 8-Hydroxy-deoxy-guanosine (8OHdG) has been proposed as a biomarker of
HD progression.16 8OHdG is a product of the oxidation of guanine by reactive oxygen species, and
its levels in blood and urine may correlate with the degree of oxidative DNA damage.17,18 Although
increased levels of 8OHdG have been reported in patients with HD and mouse models indicating
such oxidative DNA damage, the role of such damage in HD pathogenesis remains obscure.19–23

Using our recently developed liquid chromatography–mass spectrometry (LCMS) assay, we were
unable to replicate the modest increase previously demonstrated with the liquid chromatography–
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electrochemical array (LCECA) assay in plasma
8OHdG in PREDICT-HD participants com-
pared with controls.22,24–26 To re-evaluate
8OHdG as an HD biomarker, we conducted a
head-to-head, blinded, comparative study of the
2 assays using a large set of rigorously prepared
plasma samples.

METHODS Participants. The TRACK-HD cohort comprised

366 participants at the baseline visit and 332 participants at the 24-

month visit at 4 sites (Leiden, Netherlands; London, UK; Paris,

France; and Vancouver, Canada). Each site recruited equal numbers

of participants in 3 groups: preHD, early HD, and controls. At the

time of recruitment, preHD participants had a disease-burden score

$250 (disease burden is [number of CAG repeats 2 35.5] 3 age)

and a total motor score (TMS)#5 in the Unified Huntington’s Dis-

ease Rating Scale (UHDRS). The preHD cohort was split at the

median predicted years to diagnosis at the first visit (10.8 years).27

PreHD-A and preHD-B participants were those nearer and further

from predicted diagnosis, respectively. Diagnosed HD patients

included HD stage 1 (HD1) and HD stage 2 (HD2) based on

the baseline UHDRS total functional capacity score. Participants in

the control group were balanced for age and sex to the combined

preHD and HD groups.

Standard protocol approvals and patient consents. All partici-
pants provided written informed consent, and local ethics committees

approved the study protocol.

Clinical assessment. All participants underwent the full TRACK-
HD clinical assessment battery at each visit, as described previ-

ously.6,9,10 This included collection of demographic and clinical

data as well as UHDRS-99; 3-tesla brain MRI; and cognitive,

quantitative motor, oculomotor, and neuropsychiatric assessments.

Plasma sample collection and storage. At each visit, TRACK-HD

study personnel collected blood samples from the cubital vein of

unfasted participants at approximately 10 AM into 5–7 3 6-mL

EDTA-coated tubes. Tubes were immediately inverted 10 times,

stored briefly on ice, and centrifuged at 2,000g at 4°C for 15 minutes.

If visual inspection revealed discoloration of sample in an individual

tube, indicating hemolysis, it was discarded. If all plasma tubes were

discolored or turbid, all tubes were recentrifuged. Plasma was trans-

ferred from each EDTA tube into 15-mL conical base tubes, leaving

5mm of liquid above pellets. These tubes were centrifuged at 3,000g
at 4°C for 15 minutes, and then plasma was carefully transferred

into a 50-mL tube, leaving 5 mm above pellets. This tube was

sealed, agitated gently, placed on ice, and then 500-mL aliquots

were pipetted into 1.2-mL cryotubes. Cryotubes were stored at

280°C for up to 1 month locally and then shipped on dry ice to

a central biorepository (BioRep, Milan, Italy) where they were

stored at 280°C.

Quality control of the plasma collection procedure included mea-

surement of hemoglobin levels as an indicator of hemolysis, usingmul-

tiwavelength spectrophotometric readings, from one plasma cryotube

from each of the first 5 participants at each site during each year of the

study, at random times throughout the study, and following changes

in site staff. If hemoglobin levels exceeded 100 mg/mL, the correct

sampling procedure was reviewed with study personnel and the qual-

ity-control procedures continued until levels were ,100 mg/mL.

Plasma samples. Three hundred twenty TRACK-HD plasma sam-

ples in their original 500-mL aliquots, along with 15 spiked samples,

were randomized, blinded (numbered 1 to 335), and shipped on dry

ice to the 2 laboratories for analysis. We included 32 participants

from each of the 5 disease groups. With one exception, samples from

each disease group included equal numbers of males and females and

equal distribution across the 4 study sites. For each participant, 2

samples (baseline and 24-month visit) were sent to the 2 laboratories.

Thus, there were, on average, 4 samples per sex per site per disease

group per visit.

Spiked samples were prepared in identical cryotubes with control

human plasma (Innovative Research reference no. IPLA-2-NO6-50,

lot no. IR-10-1527) spiked with 8OHdG (Calbiochem reference

no. 390582, lot no. D00104661) to final concentrations in triplicate

of 0, 5, 10, 20, or 50 pg/mL.

LCMS assay.We purchased 15N5-8OH29dG (1mg, 98%, catalog

no. NLM-6715-0) from Cambridge Isotope Laboratories and unla-

beled 8OHdG was purchased from Cayman Chemicals. All sol-

vents were high-performance liquid chromatography grade.

As an internal standard, we spiked 400 mL of each sample with

62.5 pg of 15N5-8OH29dG. Endogenous 8OHdG was calculated

using peak area ratio as the spiked concentration of 15N5-8OH29dG

3 (peak area endogenous 8OHdG/peak area 15N5-8OH29dG). Use

of the internal standard enabled normalization for variability in recov-

ery and matrix effects. To each sample, we added 500mL of water and

150 mL of 1 M ammonium acetate (pH 5.25). Samples were ran-

domized, vortexed for 10 minutes, and centrifuged for 5 minutes at

10,000 rpm at room temperature. Supernatants were then loaded on a

C18 cartridge for cleanup (SEP-PAC cartridge by Waters Corp., Mil-

ford, MA). Cartridges were washed with 3 mL of water, then 8OHdG

was eluted with 1 mL of methanol. Eluates were dried in a SpeedVac

and stored at 280°C.

Frozen samples were resolubilized in 72 mL of 10 mM ammo-

nium acetate (pH 4.6), and 18 mL was injected into the LCMS

system composed of a nanoAcquity LC pump from Waters Corpo-

ration and 4000 QTRAP AB Sciex (Foster City, CA) tandem mass

spectrometer, operating in positive-ionmode. TheMultiQuant soft-

ware tool in the Analyst software bundle (AB Sciex, Framingham,

MA) was used for data analysis. Sample run time was 20 minutes on

a Zorbax SB C18 column, 35 3 0.5 mm, particle size 5 mm with

guard column by Agilent (Santa Clara, CA) with a 15 mL/min flow

rate and an 8-minute gradient from 0% to 50% B solvent, using A

solvent composed of 10 mM ammonium acetate (pH 4.6) and B

solvent composed of acetonitrile 1 0.1% formic acid.

LCECA assay. Plasma samples were analyzed for 8OHdG using

the LCECA method as described previously.24–26

Statistical analysis.Weused simple linear regression analysis to assess

accuracy in detection of spiked 8OHdG for each assay. Cross-sectional

analyses were measured between relevant disease groups at the baseline

visit. Within-subject change scores were used for comparison of longi-

tudinal changes in disease groups to controls, using linear models and

controlling for age and sex. Confidence intervals and p values for each
comparison were not corrected to account formultiple comparisons. As

a result, 1 of 20 of these comparisons was expected to be significant

(p , 0.05) even if no true relationship was present.

RESULTS Validation of LCMS assay for 8OHdG. To val-
idate the LCMS assay, we generated a standard curve by
spiking 15N5-8OH29dG at concentrations ranging from
1 to 1,000 pg/mL in pooled human plasma (Biorecla-
mation, LLC, Westbury, NY). The resultant standard
calibration curve (figure 1A) is linear from 1 to 1,000
pg/mL (r2 5 0.999). The estimated lower limit of
detection is approximately 1 pg/mL and the estimated

Neurology 80 May 21, 2013 1935



lower limit of quantification is approximately 5 pg/mL.
The coefficient of variation (CV) is 4% at concentra-
tions above 10 pg/mL. Recovery of spiked standard
was 79%.

We first used the LCMS assay to measure 8OHdG
in previously described plasma samples from the PRE-
DICT-HD study.22 Our analysis, using a nonparametric
Kruskal-Wallis test, and the previous report found no
differences in 8OHdG levels among controls, preHD far
from diagnosis, preHD near to diagnosis, and diagnosed
HD participants (figure e-1 on the Neurology® Web site
at www.neurology.org).

Blinded comparison of LCMS and LCECA assays. Because
our findings did not confirm those from the PRE-
DICT-HD study using the LCECA assay,22 we com-
pared the 2 assays head-to-head, blindly, using 320
TRACK-HD plasma samples and control samples
spiked with 8OHdG as described above. The LCMS
assay was remarkably accurate in quantifying spiked con-
centrations of 8OHdG (adjusted r2. 0.999; figure 1B),

whereas the fit of the LCECA assay for the spiked sam-
ples was not as good (adjusted r2 5 0.622; figure 1C).
Precision of the spiked samples expressed as %CV was
#5.5% and accuracy expressed as %bias was #10.8%.

Table 1 shows demographic characteristics of study
participants. Boxplots for 8OHdG levels at baseline and
24-month follow-up visits are shown for the LCMS assay
(figure 2A) and the LCECA assay (figure 2B). We found
no differences between disease groups at the baseline visit
(table 2, top 2 rows). Longitudinal analysis of scores for
controls and the other disease groups revealed no robust
changes in 8OHdG between baseline and 24-month
follow-up visits (figure 2, A and B; table 3, top 2 rows).

Analysis of other TRACK-HD measures. To determine
whether this study was appropriately conducted and suf-
ficiently powered to show cross-sectional and longitudinal
effects, we performed similar analyses of other TRACK-
HD measures. Figure 2 shows boxplots for one imaging
measure, putamen volume (figure 2C), and one clinical
measure, TMS (figure 2D), from the same subset of

Figure 1 LCMS calibration curve and spiked sample recovery for LCMS and LCECA assays

Standard calibration curve for LCMS assay (A). Concentration of spiked 8OHdG measured in control plasma using LCMS assay (B) and LCECA assay (C).
8OHdG 5 8-hydroxy-deoxy-guanosine; LCECA 5 liquid chromatography–electrochemical array; LCMS 5 liquid chromatography–mass spectrometry.
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participants at baseline and at 24-month visits. We found
strong (p , 0.0001) between-group differences in both
measures at the baseline visit (table 2, bottom rows). In
addition, between-visit score changes differed between
each group of gene-positive participants and controls

for both measures, with the exception of TMS for the
preHD-A group (table 3, bottom).

DISCUSSION We set out to resolve conflicting pub-
lished data regarding the utility of 8OHdG as a

Table 1 Demographic characteristics of the cohort

Controls

PreHD group HD group

PreHD-A PreHD-B HD1 HD2

No. of participants 32 32 32 32 32

Age, y, mean 6 SD (range) 46.47 6 7.15 (34–59) 42.94 6 6.93 (32–56) 40.88 6 6.81 (25–59) 48.59 6 7.48 (37–63) 51.47 6 7.51 (34–62)

Sex, F:M 16:16 16:16 17:15 16:16 15:17

CAG repeat length,
mean 6 SD (range)

41.66 6 1.41 (39–45) 43.75 6 2.03 (40–50) 43.34 6 2.36 (40–50) 43.19 6 1.80 (40–48)

Abbreviations: HD 5 Huntington disease; HD1 5 HD stage 1; HD2 5 HD stage 2; preHD-A 5 premanifest HD further from predicted onset; preHD-B 5

premanifest HD closer to predicted onset.

Figure 2 8OHdG, putamen volume, and total motor score in TRACK-HD participants at baseline and 24 months

Boxplots for each disease group showing baseline (B) and 24-month (24) 8OHdG levels measured with LCMS (A) and LCECA (B) assays, putamen volume as
a percentage of ICV (C), and total motor score (D). One outlier (121 pg/mL, HD1 24 months) was excluded for graphical purposes only for the LCECA assay.
8OHdG 5 8-hydroxy-deoxy-guanosine; HD 5 Huntington disease; HD1 5 HD stage 1; HD2 5 HD stage 2; ICV 5 total intracranial volume; LCECA 5 liquid
chromatography–electrochemical array; LCMS 5 liquid chromatography–mass spectrometry; pre-A 5 premanifest HD further from predicted onset; pre-B 5

premanifest HD closer to predicted onset.
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biomarker for HD progression by performing blinded
cross-platform analyses of 8OHdG. Because samples
from PREDICT-HD previously provided support for
8OHdG as anHD biomarker using the LCECA assay,22

we first developed a new LCMS assay and used it to
evaluate samples from the same study. We found no
differences in plasma 8OHdG among controls, near
to onset premanifest, far from onset premanifest, and
diagnosed early-stage HD participants. Similarly, using
both the LCECA and LCMS assays, we found no differ-
ences in plasma 8OHdG among preHD gene carriers,
early-stage HD participants, and age-matched controls
from the TRACK-HD study, nor did 8OHdG levels
change during a 2-year period. In contrast, the same
participants showed large differences in clinical and
imaging measures, both among disease groups and
within individual participants across time.

Demonstrating excellent assay characteristics, the
LCMS assay was more accurate than the LCECA assay
in measuring the levels of 8OHdG in spiked samples
(figure 1), showed good signal-to-noise ratio, was linear
from 1 to 1,000 pg/mL, and above 10 pg/mL had a CV
of 4%. LCMS instrumentation and techniques often
replace previous analytic methods as the technology im-
proves and proliferates (including those with ultraviolet
or electrochemical readouts, such as LCECA) because
they have better sensitivity, precision, and specificity.

Increased levels of leukocyte 8OHdG have previ-
ously been reported in HD participants compared with
controls, but no stage-related changes were identified.21

Also, serum 8OHdG has been reported to be higher in
patients with HD than in controls.16 Although using the
LCECA assay longitudinal increases in plasma 8OHdG
levels that varied with disease burden have been
reported, this did not hold true when using the LCMS
assay for the same analysis.22 More recently, it was re-
ported that baseline plasma 8OHdG levels in a small
number of participants in the 2-CARE study were not
different between individuals with HD and controls.28

These previous reports came to different conclusions
about the effects of HD status on 8OHdG levels at base-
line and through disease progression.16,21,22 These analy-
ses were not blinded, used the same LCECA assay, and
did not include calibration curves or standardized meth-
ods of collection, preparation, and storage. Furthermore,
plasma samples from the previous study were stored in
larger volumes, requiring at least one freeze-thaw cycle
before analysis.22 The present study used plasma samples
from TRACK-HD, which employed a stringent, consis-
tent sample collection and preparation protocol with
quality-control measures and did not include a freeze-
thaw cycle.6We also included plasma spiked with various
concentrations of 8OHdG to ensure the assays were
measuring the same substrate and to better compare
the accuracy of the 2 assays. Previous studies have not
described sample-collection procedures in detail, making
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comparison difficult, but we consider proper sample han-
dling critical to biomarker analysis efforts.

Although previous reports describing changes in
8OHdG in HD participants supported the view that
HD-related neurodegeneration results from oxidative
stress due to impaired mitochondrial function or exci-
totoxicity,19,21,29 our data do not support this hypoth-
esis. Furthermore, we found no evidence that plasma
8OHdG is a useful measure of disease status, disease
progression, or the efficacy of potential therapeutics.

Creatine treatment decreased and placebo treatment
increased serum 8OHdG levels in patients withHD, and
coenzymeQ10 treatment decreased plasma 8OHdG lev-
els in both HD patients and controls.16,28 Although these
observations raise the possibility that 8OHdG could be a
pharmacodynamic biomarker for antioxidant drug
action, in the absence of evidence that creatine or coen-
zyme Q10 has a clinical benefit for HD patients that can
be monitored by 8OHdG levels, this should not be used
as an efficacy biomarker in clinical trials.

Although our study strongly indicates that plasma
8OHdG is not a biomarker for HD progression, it
may nonetheless reflect disease state when assessed in
other fluids or tissues, or in other disorders. Two reports
indicated that 8OHdG was elevated in HD in leuko-
cytes and serum, whereas the current study and the
recent report by Long et al. used plasma.16,21,22 Interest-
ingly, in other studies, 8OHdG was elevated in leuko-
cytes in Alzheimer disease and in urine in Friedreich
ataxia30,31 and was higher in CSF from patients with
Parkinson disease without dementia than in controls,
but there were no differences between levels in controls
and those with Parkinson disease without dementia,
Alzheimer disease, or dementia with Lewy bodies.32

Furthermore, 8OHdG was higher in CSF, urine, and
plasma from patients with amyotrophic lateral sclerosis
compared with controls, whereas only the plasma levels
and not the urine or CSF levels were elevated in a group
of participants with other neurologic disorders.33

Identification and validation of biomarkers for
HD clinical trials is extremely important and remains
a challenging goal; this was a principal goal of the pro-
spective, longitudinal, observational TRACK-HD
study. Because the use of inappropriate biomarkers
in clinical trials includes the risk of continuing trials
that are likely to fail (potential false-positive signal)
and stopping trials that may have led to a positive out-
come (potential false-negative), potential biomarkers
must be evaluated using the most careful and rigorous
scientific principles and analysis tools. Based on our
results, we recommend that future studies of putative
biomarkers employ the following: 1) blinded sample
analyses; 2) verification of measurements by indepen-
dent analytic methods, particularly if the primary
assay is not well-validated; 3) standard curves to esti-
mate the accuracy and precision of measurements in
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the presence of the biological fluid(s); and 4) collec-
tion and storage of biological fluids under strict qual-
ity control. Using these strict criteria, our data
challenge previous claims that 8OHdG is a useful
clinical biomarker for HD progression.
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