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Purpose: Respiratory motion introduces uncertainties in tumor location and lung deformation, which
often results in difficulties calculating dose distributions in thoracic radiation therapy. Deformable
image registration (DIR) has ability to describe respiratory-induced lung deformation, with which
the radiotherapy techniques can deliver high dose to tumors while reducing radiation in surrounding
normal tissue. The authors’ goal is to propose a DIR method to overcome two main challenges of
the previous biomechanical model for lung deformation, i.e., the requirement of precise boundary
conditions and the lack of elasticity distribution.
Methods: As opposed to typical methods in biomechanical modeling, the authors’ method assumes
that lung tissue is inhomogeneous. The authors thus propose a DIR method combining a varying
intensity flow (VF) block-matching algorithm with the finite element method (FEM) for lung de-
formation from end-expiratory phase to end-inspiratory phase. Specifically, the lung deformation is
formulated as a stress–strain problem, for which the boundary conditions are obtained from the VF
block-matching algorithm and the element specific Young’s modulus distribution is estimated by
solving an optimization problem with a quasi-Newton method. The authors measure the spatial ac-
curacy of their nonuniform model as well as a standard uniform model by applying both methods to
four-dimensional computed tomography images of six patients. The spatial errors produced by the
registrations are computed using large numbers (>1000) of expert-determined landmark point pairs.
Results: In right-left, anterior–posterior, and superior–inferior directions, the mean errors (stan-
dard deviation) produced by the standard uniform FEM model are 1.42(1.42), 1.06(1.05), and
1.98(2.10) mm whereas the authors’ proposed nonuniform model reduces these errors to 0.59(0.61),
0.52(0.51), and 0.78(0.89) mm. The overall 3D mean errors are 3.05(2.36) and 1.30(0.97) mm for the
uniform and nonuniform models, respectively.
Conclusions: The results indicate that the proposed nonuniform model can simulate patient-specific
and position-specific lung deformation via spatially varying Young’s modulus estimates, which
improves registration accuracy compared to the uniform model and is therefore a more suit-
able description of lung deformation. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4812419]
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1. INTRODUCTION

Respiratory motion plays a significant role in radiation ther-
apy for thoracic tumors.1 Motion introduces uncertainties in
tumor location and volume, which often results in difficulties

calculating dose distributions to high precision. As such, four-
dimensional computed tomography (4DCT) has been used to
visualize respiratory-induced image characteristics and there-
fore aid the treatment planning process.2 Moreover, it has re-
cently been shown that change in the air content of pulmonary
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parenchyma can be extracted from 4DCT image sets, result-
ing in CT derived ventilation image.3 However, deformable
image registration (DIR) is required to establish a spatial
correspondence between the time-varying volumetric images
comprising a 4DCT in order to compute the ventilation im-
ages. The information provided by DIR also describes com-
plex respiratory motion and physiological information that
modern radiotherapy techniques, such as image-guided radio-
therapy (IGRT), can exploit to potentially deliver high dose to
tumors while reducing the risk of toxicity in the surrounding
healthy tissue.4

In the past decades, various DIR methods have been
proposed and developed. Two main categories often used
are intensity based methods and biomechanical methods.
Both methods have their advantages and limitations. Inten-
sity based methods typically generate the motion field by
maximizing the similarity or minimizing the dissimilarity be-
tween image pairs. As such, mainly image related aspects are
taken into account while physiological processes are not em-
phasized. Consequently, the registration result loses physical
meaning and may not be sufficiently realistic or plausible.

Biomechanical methods compute the registration using
material properties and spatial positions of anatomy. For ex-
ample, Mead et al.5 utilize a stress distribution model for
lungs and a numerical implementation based on the finite el-
ement method (FEM). The FEM provides a framework that
allows for the relationships between stress, strain, and force
loads on a target to be expressed in terms of a motion field
that more realistically describes the underlying physiology.2

It has been taken as the most suitable procedure to solve the
complex elasticity problem of lungs6 and is a widely used
method to describe lung deformation.2 For instance, Brock
et al.7 developed a software platform called MORFEUS based
on the FEM and surface projection alignments. The method
has been applied to liver, prostate, and lungs with encourag-
ing results.8 Another approach taken by investigators involves
modeling lung motion as a contact problem to be solved by
the FEM. For instance, Werner et al.9 derived a formulation
based on modeling ventilation. Specifically, the lung geome-
try at exhale is “inflated” by applying a negative pressure in
accordance with elasticity theory until it matches a final lung
shape at inhale. In order to allow large magnitude motion,
Al-Mayah et al.10 incorporated material nonlinearity into the
FEM model and simulated boundary conditions using a fric-
tionless contact surface, such that the lung is separated from
the body and assumed to slide relative to the chest wall.

It is acknowledged that the elastic properties of soft tissues
within the lung are heterogeneous and differ from person to
person.10 However, most current FEM models are presented
under an assumption that the lung tissue is homogenous, due
to the fact that the material properties of human lung tissue
are difficult to obtain. Though elasticity properties for lung
tissue of canines have been reported11 and applied to human
lung deformation models,12 the material properties between
human and canine lung have been shown to be different.13

Similarly, Zeng et al.13 obtained estimates for material prop-
erties from a cadaver that were subsequently incorporated into
lung deformation modeling. However, it should be noted that

the relationship between living and nonliving tissue, in terms
of material properties, is not known, which further confounds
the difficulty in measuring the true characteristics of human
lungs.

Methods utilizing both biophysical information and
image-based information have exhibited strong potential in
the field of DIR. Li et al.14 introduced a method that first uti-
lizes an intensity based algorithm to determine the surface
deformation approximation and then incorporates this infor-
mation into a system of partial differential equations (PDEs)
for describing lung motion. However, intensity based registra-
tion methods are prone to misregistration in low-contrast re-
gions where the intensity variations are too small for the sim-
ilarity metric to distinguish. To cope with this issue, Zhong
et al.15 employed the FEM theory to correct registration er-
rors from the “demons” algorithm in low-contrast regions and
achieved encouraging results. Inspired by their work, we in-
tend to model the motion of human lungs by linking image-
based information to biophysical characteristics.

As introduced above, elasticity parameters are difficult to
measure for human lungs and there is no consensus for the
correct numerical values of these constants within the liter-
ature. Consequently, homogenous models of lung tissue are
key to previous methods. In this study, we derive a DIR mod-
eling approach based on the more physically accurate as-
sumption that lung tissue is heterogeneous. The method em-
ploys a robust, intensity-based, block matching registration
approach to first estimate the heterogeneous distribution of
the elasticity properties within the lungs. This information is
then incorporated into the FEM to deform lungs from end-
expiratory (EE) phase to end-inspiratory (EI) phase according
to elasticity principles. To our knowledge, this is the first FEM
lung motion model that incorporates an estimate of the 3D
elasticity distribution of human lungs obtained from intensity-
based registration. Using block matching and the FEM, our
combined method takes advantages of similarity in inten-
sity locally and anatomic correspondence in geometry glob-
ally, which leads to high accuracy without loss of biophysical
meaning in modeling the lung deformation.

2. METHODS

The proposed DIR framework is shown in Fig. 1 and con-
sists of four main steps: (1) volumetric modeling, (2) surface
motion estimation, (3) elasticity evaluation, and (4) internal
motion calculation. Specifically, the lung is discretized into
a large number of tetrahedral elements during the volumetric
modeling process. The surface motion of the lungs is obtained
from the intensity-based registration. In addition, the element
specific elasticity is estimated from the initial registration re-
sult via a quasi-Newton optimization approach. Using the sur-
face motion as the boundary conditions for the elasticity dis-
tribution, the internal motion of the lungs is finally evaluated
by the FEM.

2.A. Linear elasticity theory

The elastic properties of lung tissue are often modeled with
Hooke’s law16,1,2 which describes the relationship between
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FIG. 1. The proposed DIR framework.

the strain tensor εij and stress tensor σ ij. In this paper, the
strain tensor used is known as Cauchy’s strain tensor which is
linked to the displacement vector (u) by εij = (1/2)((∂ui/∂xj)
+ (∂uj/∂xi)). Here, the subscripts j and i indicate the
stress acting direction and its normal plane, respectively.
In 3D Cartesian coordinates, εij and σ ij have the following
relationship:

[σxx σyy σzz σxy σyz σzx]T

= D[εxx εyy εzz 2εxy 2εyz 2εzx]T (1)

where D is the elasticity matrix defined in Eq. (2) by the
Young’s modulus (E) and Poisson’s ratio (ν), and the strain
tensor is given in Eq. (3) as a function of the displacement
vector (u):

D = E

(1 + ν)(1 − 2ν)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
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⎤
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(3)

Based on linear elasticity theory, the lung achieves static
equilibrium when the total potential energy is minimized.

According to Eq. (1), this implies

F = [K]U, (4)

where F is the vector of forces acting on each node and U
is the nodal displacement vector. The matrix [K] is known
as the stiffness matrix which can be taken as a function with
respect to Yong’s modulus and Poisson’s ratio as [K(E, v)]
= ∫

�
[B1, B2, . . . , Bn]′D[B1, B2, . . . , Bn]d� (� is the do-

main of the volumetric model and n is the number of nodes
in volumetric mesh). For a tetrahedral element, [K] is a 12
× 12 matrix, while each F and U is a vector with length 12.

In the FEM, nodal displacement vectors are solved from
the algebraic equations in terms of Eq. (4). The accuracy and
efficiency of the FEM are subject to three key factors: the
mesh quality, the boundary conditions, and the elasticity dis-
tribution. These three factors are now explained in detail.

2.B. Meshing

In the FEM, mesh quality is of great importance and has a
direct effect on deformation results. The mesh is expected to
be robust to complex deformations without loss of topological
details within the anatomy. Tetrahedral elements, widely used
in commercial meshing software, are more suitable than other
elements for building a mesh of the lung because of its flex-
ibility in representing and handling complex geometric ob-
jects. We describe the meshing process into six main steps:

1. Segmentation—Only the lung tissue is taken as the
ROI and extracted using 3D connectivity and global
histogram thresholds of [−999 −250] Hu. The full
segmentation routine is detailed in previous work.17

The ROI is finally converted to a binary mask image
to define the spatial domain of lungs.

2. Surface rendering—The surface is reconstructed from
the binary mask image by the Marching Cubes
technique.18 The resulting isosurface is then modeling
by a surface mesh composed of triangular elements.

3. Surface smoothing—Smoothing of the approximate
surface mesh is necessary to regularize the underly-
ing shape while preserving salient features in the ge-
ometry. For this purpose, the Laplacian smoothing ap-
proach described in the literature19 is employed.

4. Volumetric mesh—The smoothed surface mesh is used
to generate a volumetric model by discretizing the en-
capsulated ROI with tetrahedral elements using the
mesh generator described by Fang and Boas.20

5. Mesh refinement—The initial tetrahedral mesh ob-
tained in step 4 is typically coarse. A finer mesh is
obtained by applying refinement approach described
by Zhong et al.15 As shown in Fig. 2, by adding an ad-
ditional node at each edge, a target tetrahedron is di-
vided into eight subtetrahedrons, and the neighboring
elements into four or two subtetrahedrons depending
on whether the neighbor shares a face or an edge with
the target.

6. Mesh orientation—The elastic equations requires that
all tetrahedrons be oriented consistently.15 Ensuring
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FIG. 2. Mesh refinement of a target element (P1–P2–P3–P4) and its neigh-
boring elements: the target element is divided into eight subtetrahedrons by
six added nodes Ni(i = 1, 2, . . . , 6) that result in four subtetrahedrons for the
neighboring element (P1–P2–P3–P5) sharing a face in (a), and two subtetra-
hedrons for the neighboring element (P1–P2–P6–P7) sharing an edge in (b).
Pi(i = 1, 2, . . . , 7) are nodes of the original elements.

that the determinate of the Jacobian matrix corre-
sponding to the expected orientation is positive en-
forces this property. If the determinant is negative, the
tetrahedron nodes are reordered appropriately.

2.C. Boundary conditions

In this work, we propose that the surface motion of the
lungs be used as the boundary conditions for the internal mo-
tion evaluation. The surface motion is estimated by comput-
ing the spatial correspondence between the inhale and ex-
hale lung surfaces via an intensity-based image registration.
A commonly used similarity criterion for registration is the
sum of squared intensity differences (SSDs).21 SSD methods
assume voxel intensities remain constant throughout deforma-
tion. However, due to the compressible nature of lung tissue,
this assumption is inappropriate. Here, we present an inten-
sity model, referred to as varying intensity flow (VF), that ac-
counts for intensity fluctuations.

Let image pairs I0(x) and I1(x) be the reference image and
the target image, respectively. The goal is to determine a dis-
placement vector d, for any position x in the reference image,
that relates the position of x within the target image. The VF
model is formulated by modifying the SSD formulation with
an intensity compensation variable � to allow for intensity
variations:

min
d

1

2

∑
xi∈Nr (x)

[I1(xi + d) − I0(xi) + �]2, (5)

where Nr(x) represents the “matching window” for x and is a
neighborhood centered at x with radius r. Here d is the dis-
placement vector. It can easily be shown that for any given d,
the optimal value of � is represented as

� = 1

Nr (x)

∑
xi∈Nr (x)

[I1(xi + d) − I0(xi)], (6)

a result similar to the minimal variance similarity metric.

Using Eqs. (5) and (6), a block matching strategy can be
employed to compute the VF registration. To reduce the com-
putational cost of the block-matching procedure, the refer-
ence image is sampled using a uniform 3D grid and the block
matching is only conducted on the grid nodes. The resulting
displacements obtained for each grid nodes are then interpo-
lated with the moving least squares method22 to produce a
displacement field defined on the entire ROI. The boundary
conditions for the FEM are then given by the nodal displace-
ments on the lung surface.

2.D. Elasticity estimation

The key properties of elastic materials are often described
by the Young’s modulus and Poisson’s ratio, though both
quantities have different definitions in literatures.10,2,15 In this
study, the Poisson’s ratio is assumed to be constant for lung
deformation, while the Young’s modulus is allowed to vary
spatially to describe the unknown elasticity distribution. We
aim to find the Young’s modulus distribution that best approx-
imates the displacement field from the VF registration. There-
fore, the Young’s modulus distribution Ê is defined to min-
imize the difference between computed displacements from
the FEM and predicted displacements from VF registration. It
is given by

Ê = arg min
E∈�+

{
�(E) = 1

2
‖Uc(E) − Up‖2

}
, (7)

where Up is the vector of predicted displacements from VF
registration and Uc(E) is the vector of computed displace-
ments from Eq. (4) as Uc(E) = [K]−1F. Since Poisson’s ratio
is constant, the stiffness matrix [K] only has relationship to
Young’s modulus.

Formulation (7) can also be thought of as an inverse prob-
lem (IP) describing the unknown Young’s modulus distribu-
tion E. To solve it, we first differentiate the objective function
in Eq. (7) with respect to E and set the gradient to zero:

�′(E) = [U ′
c]T (Uc − Up) = 0. (8)

Taking a Taylor series of �′(E) at Ek, we have

�′(E) ≈ �′(Ek) + �′′(Ek)(E − Ek), (9)

where �′′ is the Hessian matrix of � and given by

�′′ = [U ′
c]T [U ′

c] + [U ′′
c ]

[
IM ⊗ [Uc − Up]

] ≈ [U ′
c]T [U ′

c],

(10)

where IM is the identity matrix and ⊗ is the Kronecker prod-
uct. In Eq. (10), the Hessian matrix can be approximated us-
ing only the first term because The second term [U′′

c]�IM ⊗ [Uc

− Up]	 is small relative to [U ′
c]T[U ′

c].
Substituting Eqs. (8) and (10) into Eq. (9) yields

[U ′
c]T (Uc − Up) + [U ′

c]T [U ′
c]	Ek = 0. (11)

In order to solve for	Ek using Eq. (11), the sensitive ma-
trix U ′

c must first be determined. Since U ′
c represents the first

derivative of the displacement Uc with respect to the Young’s
modulus E, the following expression can be obtained by
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applying the partial derivative to both sides of Eq. (4):

∂F

∂E
= K

∂U

∂E
+ ∂K

∂E
U. (12)

Since the external force F is independent of Young’s modulus,
∂F/∂E equates to zero. Therefore,

KU ′
c = −∂K

∂E
Uc. (13)

Given U ′
c from Eq. (13), the corresponding 	Ek can be ob-

tained using Eq. (11) and the Ê can be updated iteratively
by

Ek+1 = Ek + 	Ek (14)

in a quasi-Newton method scheme.

2.E. Algorithm implementation

Since the lung model is represented by discrete tetrahedral
elements, our modeling approach assumes that each element
has its own Young’s modulus value. We calculate these values
using an iterative quasi-Newton scheme and then estimate the
lung’s internal motion as follows.

1. Initialize each element with the same Young’s modu-
lus Ek = 1000 kPa and Poisson’s ratio ν = 0.38. Set
k = 1.

2. Find point matches between the reference and target
images by the VF registration. With point matches,
nodal displacements in volumetric model are inter-
polated and taken as the predicted displacements Up,
including the predicted internal nodal displacements
Up_inner and external nodal displacements Up_surface.

3. Determine the stiffness matrix of each tetrahedral
element and combine them into the total stiffness
matrix K.

4. Using linear Eq. (4) with Up_surface as the boundary
conditions, calculate the internal nodal displacements
Uc_inner by the biconjugate gradient method. We thus
obtain the computed displacements Uck.

5. Solve for the sensitive matrix U ′
c by Eq. (13) and com-

pute 	U = Uck − Up.
6. Compute 	Ek by solving the linear Eq. (11) and then

substitute it to Eq. (14) to compute Ek+1. Let k = k
+ 1 and go back to step 3.

FIG. 3. Comparison of surface meshes overlay between exhale and inhale:
(a) prior to registration and (b) after registration.

7. The above steps do not stop until the average value
of Uck − Uc(k+1) is less than the predefined tolerance
T = 0.5.

All numerical experiments were conducted on a Linux
workstation with two Intel Xeon x5560 six-Core 2.80 GHz
processors and a single NVIDIA Tesla 2070 GPU.

3. RESULTS

3.A. Data preparation

The proposed lung modeling method has been applied to
the inhale/exhale phases of six 4DCT data sets. The detailed
image characteristics are shown in Table I.

All patients were treated for esophagus or lung cancer
in the Department of Radiation Oncology at The Univer-
sity of Texas MD Anderson Cancer Center. The patient un-
derwent a normal resting breathing in the supine position
and the identifiers were removed according to a retrospective
study protocol approved by the Institutional Review Board
(RCR 03-0800). Using the respiratory signal from the Real-
Time Position Management Respiratory Gating System (Var-
ian Medical Systems, Palo Alto, CA), 4DCT images of the
entire thorax and upper abdomen were acquired at 2.5 mm
slice spacing on a PET/CT scanner (Discovery ST; GE
Medical Systems, Waukesha, WI) with a 70 cm bore. We
use images at EE and EI phases from the 4D CT sets for our
experiments.

TABLE I. The characteristics of the data for experiment.

C Respiratory period (s) Tidal volume (ml) Malignancy Tumor location GTV (ml) Image dimensions Voxel dimensions (mm)

1 3.5 406 Eso ca. GE jxn 41.4 256 × 256 × 104 1.15 × 1.15 × 2.50
2 3.3 269 Eso ca. GE jxn 112.9 256 × 256 × 106 1.10 × 1.10 × 2.50
3 5.4 635 Eso ca. GE jxn 16.7 512 × 512 × 136 0.97 × 0.97 × 2.50
4 2.9 255 Eso ca. Distal eso 54.1 512 × 512 × 128 0.97 × 0.97 × 2.50
5 2.4 191 Eso ca. Mid eso 30.2 256 × 256 × 94 0.97 × 0.97 × 2.50
6 4.0 673 SCLC LLL 132 512 × 512 × 128 0.97 × 0.97 × 2.50

Note: C = case; Eso ca. = esophagus cancer; SCLC = small cell lung cancer; LLL = left lower lobe; GE jxn = Gastro-esophageal junction; and GTV = gross tumor
volume.

Medical Physics, Vol. 40, No. 8, August 2013
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FIG. 4. Visualization of displacement magnitude (mm) of the left and right lungs using the nonuniform model.

3.B. Qualitative evaluation

The proposed method has been used to deform the lung
model from EE status to EI phase. In order to qualitatively vi-
sualize the deformation, the registration results are presented
in two ways. First, The EI surface mesh was superimposed
with the EE surface meshes before and after deformation.
Figure 3(a) illustrates the differences between the EI surface
mesh and the EE surface mesh before deformation. Using the
proposed method, the EE surface is expended according to the
EI surface, which reduces the differences after deformation.
Figure 3(b) illustrates the comparison between the EI and the
deformed EE surface meshes. The two meshes are in agree-
ment with each other in general. Only some small deforma-
tion errors remain which are possibly due to the segmentation
uncertainties.

Second, the displacement field is measured for each case
and represented in color as shown in Fig. 4. We can see that

the motion magnitude varies from the top to the bottom of
lungs with the maximal deformation occurring at the lower
lobes because of the large diaphragm motion. In addition, the
lung experiences the main motion in the SI direction. Cases 4
and 5 depict smaller deformation magnitudes in relation to the
other cases. This is mainly due to the fact that lungs in the two
cases, as shown in Table I, have less breathing volumes and
shorter respiratory cycles.

3.C. Quantitative validation

Based on the validation framework introduced by Castillo
et al.,23 a large number of expert determined landmark
pairs are used to estimate the registration spatial accuracy.
Table II summarizes the characteristics of the landmarks for
the six cases used in this paper and previously described in
publications.24, 25

TABLE II. The characteristics of landmarks.

Landmark number in lungs Average displacements (standard deviation) (mm)

C Total Left Right Intraobserver error (mm) 3D- Euclidean Anterior–posterior Left–right Superior–inferior

1 1560 802 758 0.77 (1.01) 9.42 (4.81) 1.28 (1.23) 1.17 (1.05) 6.10 (4.49)
2 1268 661 607 0.92 (1.16) 7.10 (5.15) 1.74 (1.66) 0.86 (0.96) 6.30 (5.45)
3 398 204 194 0.81 (1.32) 11.59 (7.87) 2.13 (1.54) 1.28 (1.17) 10.85 (8.29)
4 342 117 165 0.75 (1.09) 7.82 (3.99) 2.98 (1.93) 1.25 (1.02) 6.45 (4.51)
5 1280 672 608 0.85 (1.24) 4.01 (2.91) 0.67 (0.79) 0.58 (0.62) 3.68 (3.04)
6 419 230 189 0.97 (1.38) 11.10 (6.98) 2.53 (2.10) 2.15 (1.89) 10.21 (6.97)
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TABLE III. The registration results of the VF method, the uniform and nonuniform models using landmarks.

Average spatial error of registration (mm)

C Lungs Models/methods 3D- Euclidean Left–right Anterior–posterior Superior–inferior

1 LL VF 1.13 (0.92) 0.47 (0.50) 0.44 (0.48) 0.69 (0.89)
Uniform 2.15 (1.67) 1.10 (1.13) 0.64 (0.56) 1.39 (1.49)
Nonuniform 1.15 (0.87) 0.48 (0.52) 0.44 (0.48) 0.69 (0.82)

RL VF 1.24 (2.18) 0.56 (1.92) 0.46 (0.53) 0.65 (1.18)
Uniform 2.83 (1.93) 0.94 (0.81) 1.30 (1.22) 1.96 (1.79)
Nonuniform 1.12 (0.81) 0.48 (0.48) 0.46 (0.46) 0.65 (0.80)

2 LL VF 1.83 (2.17) 0.93 (1.64) 0.71 (0.89) 1.00 (1.50)
Uniform 4.61 (4.15) 2.25 (2.39) 1.43 (1.31) 2.98 (3.88)
Nonuniform 1.76 (1.52) 0.86 (1.08) 0.69 (0.72) 1.03 (1.21)

RL VF 1.45 (2.77) 0.62 (0.80) 0.48 (0.65) 0.88 (2.71)
Uniform 3.22 (3.33) 1.26 (1.25) 0.99 (1.26) 2.37 (3.18)
Nonuniform 1.22 (1.06) 0.58 (0.61) 0.43 (0.48) 0.71 (1.00)

3 LL VF 1.09 (0.77) 0.45 (0.42) 0.44 (0.40) 0.65 (0.80)
Uniform 2.66 (1.40) 1.24 (0.86) 1.06 (0.95) 1.69 (1.36)
Nonuniform 1.17 (0.76) 0.50 (0.48) 0.52 (0.50) 0.68 (0.69)

RL VF 1.50 (1.13) 0.67 (0.59) 0.62 (0.61) 0.82 (1.11)
Uniform 4.28 (2.27) 1.94 (1.62) 1.30 (1.04) 2.91 (2.43)
Nonuniform 1.59 (1.06) 0.69 (0.59) 0.62 (0.59) 1.03 (1.02)

4 LL VF 1.44 (2.35) 0.72 (1.40) 0.56 (0.85) 0.77 (1.87)
Uniform 4.79 (5.35) 2.70 (3.78) 1.64 (1.83) 2.71 (4.08)
Nonuniform 1.17 (0.78) 0.53 (0.49) 0.50 (0.50) 0.64 (0.75)

RL VF 1.34 (0.98) 0.64 (0.68) 0.47 (0.46) 0.79 (0.91)
Uniform 3.20 (1.62) 2.07 (1.69) 1.20 (0.94) 1.50 (1.07)
Nonuniform 1.40 (0.94) 0.69 (0.66) 0.66 (0.49) 0.87 (0.81)

5 LL VF 1.01 (1.48) 0.32 (0.53) 0.36 (0.72) 0.64 (1.33)
Uniform 1.40 (1.79) 0.43 (0.42) 0.56 (0.97) 1.02 (1.59)
Nonuniform 1.09 (1.01) 0.42 (0.61) 0.35 (0.39) 0.69 (0.95)

RL VF 0.98 (0.91) 0.41 (0.53) 0.38 (0.45) 0.51 (0.87)
Uniform 1.21 (0.64) 0.51 (0.45) 0.45 (0.37) 0.84 (0.61)
Nonuniform 1.00 (0.81) 0.42 (0.45) 0.38 (0.39) 0.57 (0.81)

6 LL VF 1.69 (2.87) 0.67 (0.90) 0.89 (2.73) 0.79 (0.99)
Uniform 3.06 (2.13) 1.23 (1.24) 1.13 (1.29) 2.12 (1.87)
Nonuniform 1.49 (1.01) 0.71 (0.73) 0.66 (0.64) 0.84 (0.81)

RL VF 1.43 (1.16) 0.66 (0.68) 0.51 (0.55) 0.90 (1.06)
Uniform 3.15 (2.06) 1.40 (1.42) 0.98 (0.80) 2.28 (1.84)
Nonuniform 1.45 (1.06) 0.66 (0.67) 0.49 (0.46) 0.97 (0.97)

Average VF 1.34 (1.64) 0.59 (0.88) 0.53 (0.78) 0.76 (1.27)
Uniform 3.05 (2.36) 1.42 (1.42) 1.06 (1.05) 1.98 (2.10)
Nonuniform 1.30 (0.97) 0.59 (0.61) 0.52 (0.51) 0.78 (0.89)

The registration spatial error is calculated as the 3D Eu-
clidean distance between the target position manually deter-
mined by experts and the computed target location from the
registration method. For each case, the mean error and stan-
dard deviation are calculated in anterior–posterior (AP), left–
right (LR), and superior–inferior (SI) directions, respectively.
For comparison, the spatial error of the same six cases using
the VF method and a standard uniform Young’s modulus FEM
model are also measured. Table III shows the spatial accuracy
results for the VF method, uniform and the proposed nonuni-
form models. For each of the six cases, the mean error ranged
from 1.00(0.81) to 1.76(1.52) mm for the nonuniform model,
from 1.21(0.64) to 4.79(5.35) mm for the uniform model, and
from 0.98(0.91) to 1.83(2.17) mm for the VF method. In AP,
LR, and SI directions, each overall mean error is less than

0.8 mm for nonuniform model but larger than 1 mm for
uniform model. Table III demonstrates that the nonuniform
model produces lower spatial error across all cases with an

FIG. 5. DIR errors of Landmark points for case 1: (a) expert-determined
displacement vectors, (b) residual error vectors for uniform model, and
(c) residual error for the proposed model.
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FIG. 6. The inhomogeneous Young’s modulus distribution in 2D: (a) axial,
(b) coronal, and (c) sagittal slices for case 6 with tumor area (indicated by
circles).

overall 3D mean error of 1.30(0.97) mm, as opposed to
3.05(2.36) mm spatial error obtained by the uniform model.
Although the VF method obtains a similar overall 3D mean
error of 1.34(1.64) mm, we note that the standard deviation
(in 3D-Euclidean) produced by the nonuniform model is al-
ways lower than that produced by the VF method for each
half lung.

Figure 5 illustrates the error vectors of 1560 landmark
pairs for case 1 between EE and EI phases. Figure 5(a) shows
the expert-determined displacement vectors. Figures 5(b) and
5(c) show displacement error vectors of the uniform and
nonuniform models, respectively. We can see that most er-
ror vectors become smaller in Fig. 5(b), which are substan-
tially reduced without visually apparent error in Fig. 5(c).
Specifically, the mean errors for the left and right lungs are
2.15(1.67) and 2.83 (1.93) mm, respectively, for the uniform
model shown in Fig. 5(b), whereas the errors achieved by
the nonuniform model for the left and right lung, depicted in
Fig. 5(c), are 1.15(0.87) and 1.12(0.81), respectively.

3.D. Modeling characteristics

Figure 6 shows an example of the Young’s modulus dis-
tribution in axial, coronal, and sagittal slices for case 6
and shows that the location-specific Young’s modulus varies
through the whole lung, which indicates characteristics of
the inhomogeneous tissue. We calculate the average Young’s

FIG. 7. The range of Young’s modulus for different cases.

modulus for each axial slice to generate the patient-specific
range of Young’s modulus that is shown in Fig. 7.

One concern about the proposed method is the required
computational workload, which is dominated by computing
the stiffness and sensitivity matrices as well as block match-
ing. One way to reduce computation time is to decrease the
number of elements. However, this approach is limited in
that accurate lung modeling requires a fine mesh to repre-
sent complex geometries. Table IV illustrates characteristics
of the model and algorithm computational time for each case.
Table IV shows that each lung is meshed with a large number
of nodes and elements but maintains a fast computation speed.
This is because the computational workload is effectively han-
dled by utilizing GPU computing, a standard practice for ac-
celerating image processing and radiation dose calculations.
For a volumetric mesh with 482 073 tetrahedral elements and
108 387 nodes, it takes almost 10 h for a sequential MATLAB

implementation to complete the stiffness matrix calculation,
but only 483.91 s for the FEM simulation on an NVIDIA
Tesla 2070 GPU.

TABLE IV. Characteristics of the model and algorithm computational time.

Point pair number from The VF registration FEM simulation
C the VF registration time (s) Lungs Node number Element number time (s)

1 7568 102.23 LL 84 282 372 239 436.95
RL 80 732 355 225 417.19

2 6517 92.03 LL 27 892 129 020 148.25
RL 68 090 300 320 289.4

3 9727 274.72 LL 91 669 407 946 479.97
RL 83 404 369 122 454.14

4 40 792 994.92 LL 50 709 220 024 621.52
RL 85 282 380 982 919.81

5 15 611 458.20 LL 69 483 307 152 444.52
RL 63 693 277 699 395.84

6 8243 102.51 LL 108 387 482 073 483.91
RL 77 768 363 181 415.14
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4. DISCUSSION AND CONCLUSIONS

In this study, a novel approach for modeling lung mo-
tion based on block matching registration and elasticity was
presented and applied to 4DCT images from six patients.
The method utilized the block-matching algorithm to deter-
mine the boundary conditions for the FEM to calculate the
lung motion from exhale to inhale. The FEM model allows
for an unknown Young’s modulus distribution that is as-
sumed to be position-specific and patient-specific. The pro-
posed methodology and the intensity based VF method, as
well as a standard FEM approach with constant Young’s mod-
ulus, were evaluated using large sets of expert-determined
landmark point pairs. Results demonstrate that the proposed
algorithm achieves significantly improved accuracy in lung
deformation.

The validation of DIR methods is in general a difficult
problem due to a lack of gold standards. One measure used
within the literature is image similarity. However, image sim-
ilarity is calculated with respect to intensity, which has been
shown to be unreliable for the evaluation of spatial accuracy
by many investigators.23,14,24 In previous publications, large
sets of expert-determined landmark point pairs have been
shown to effectively evaluate the spatial errors in registration.
The data utilized in this study are freely available for down-
load at www.dir-lab.com.

The influence of material parameters including
Young’s modulus and Poisson’s ratio has been previ-
ously investigated.9,2 In these studies, the Young’s modulus
varies from 0.1 to 7.8 kPa and the Poisson’s ratio is between
0.2 and 0.45. These works conclude that the incorporation
of nonconstant parameters values into the elasticity model
would only marginally affect the displacement fields inside
lungs. However, these studies only considered variance with
respect to time. Spatially, a uniform model is employed. Us-
ing the uniform model, it can be observed that the registration
error increases with the increasing tumor size in Table III.
For instance, case 2 has a large tumor and its registration
error is relatively high as a result. Similar reports can be
found in the literature.2 However, case 4 has the largest
spatial error on average but contains a relatively small tumor.
Therefore, we are not able to conclude that the tumor size is
the only factor to affect the registration accuracy. But, based
on our numerical experiments, larger tumors do seem to have
more influence on the elasticity of lungs suggesting that the
uniform model is lacking.

Though previous studies offer insights into lung modeling,
none have presented the estimation of elasticity distribution
over the entire lungs. In our study, we assume the mechanical
properties of lung tissue to be inhomogeneous. Specifically,
the material properties are assigned to be position-specific
and individual-specific, which leads to a nonuniform model
where the elasticity distribution is taken into account while
computing the lung deformation. For simplicity, we assume a
constant Poisson’s ratio and only allow the Young’s modulus
to vary spatially. The unknown Young’s modulus distribution
is determined by a quasi-Newton method. Comparison with a
standard uniform model reveals that the proposed nonuniform

model exhibits the superior performance in terms of spatial
accuracy and provides a significantly increased precision in
motion predication for all cases. This finding indicates that
the elasticity distribution has a substantial impact on the reg-
istration accuracy. The relatively small effect of Poisson’s ra-
tio on estimated lung deformations has also been reported by
Brock et al.7 Naturally, lung tissue consists of many different
structures, each of which should result in a different Poisson’s
ratio. It is possible that incorporating this behavior into the de-
formation model would have some effect on the registration
accuracy. Research into the effect of Poisson’s ratio distribu-
tion is our future work.

The proposed nonuniform biomechanical model can re-
place the uniform model in application because it achieves
much more accurate registration than the uniform biomechan-
ical model. The intensity based VF registration is good at
registration for high contrast regions, which leads to accurate
boundary conditions for the FEM. However, it loses physical
meaning and may not be sufficiently realistic since the method
only uses the local intensity information and does not con-
sider spatially globe anatomic relationships. In our nonuni-
form model, the relationship among the force, stress, and
strain is established locally at each tetrahedron and globally
as a system with all the elements. Compared to the intensity
based method, the proposed model conducts registration with-
out loss of accuracy and provides a quantitative elasticity dis-
tribution directly from images without measurement. More-
over, tissue elasticity estimated by our method is position-
specific and patient-specific, which would be of great signif-
icance in clinical application. For example, Young’s modulus
would be helpful for detection of the tumor area since ab-
normalities have different elasticity compared to the normal
tissue.

ACKNOWLEDGMENTS

This work is partially funded by the National Institutes of
Health through a NIH Director’s New Innovator Award No.
DP2OD007044. This research is also supported in part by
grants from the National Natural Science Foundation of China
(NSFC, Grant No. 60771025).

a)Author to whom correspondence should be addressed. Electronic mail:
ECastillo3@mdanderson.org

1R. Werner, J. Ehrhardt, A. Schmidt-Richberg, and H. Handels, “Validation
and comparison of a biophysical modeling approach and non-linear regis-
tration for estimation of lung motion fields in thoracic 4D CT data,” Proc.
SPIE 7259, 72590U (2009).

2R. Werner, J. Ehrhardt, R. Schmidt, and H. Handels, “Patient-specific finite
element modeling of respiratory lung motion using 4D CT image data,”
Med. Phys. 36(5), 1500–1511 (2009).

3T. Guerrero, K. Sanders, E. Castillo, Y. Zhang, L. Bidaut, T. Pan, and R. Ko-
maki, “Dynamic ventilation imaging from four-dimensional computed to-
mography,” Phys. Med. Biol. 51, 777–791 (2006).

4A. Al-Mayah, J. Moseley, and K. K. Brock, “Contact surface and material
nonlinearity modeling of human lungs,” Phys. Med. Biol. 53(1), 305–317
(2008).

Medical Physics, Vol. 40, No. 8, August 2013

http://www.dir-lab.com
http://dx.doi.org/10.1117/12.811130
http://dx.doi.org/10.1117/12.811130
http://dx.doi.org/10.1118/1.3101820
http://dx.doi.org/10.1088/0031-9155/51/4/002
http://dx.doi.org/10.1088/0031-9155/53/1/022


081902-10 Li et al.: Modeling lung deformation 081902-10

5J. Mead, T. Takishima, and D. Leith, “Stress distribution in lungs: A model
of pulmonary elasticity,” J. Appl. Physiol. 28, 596–608 (1970).

6G. C. Lee and A. Frankus, “Elasticity properties of lung parenchyma
derived from experimental distortion data,” Biophys. J. 15, 481–493
(1975).

7K. K. Brock, M. B. Sharpe, L. A. Dawson, S. M. Kim, and D. A. Jaffray,
“Accuracy of finite element model-based multi-organ deformable image
registration,” Med. Phys. 32(6), 1647–1659 (2005).

8K. K. Brock, “Results of a multi-institution deformable registration accu-
racy study (midras),” Int. J. Radiat. Oncol., Biol., Phys. 76(2), 583–596
(2010).

9R. Werner, J. Ehrhardt, R. Schmidt, and H. Handels, “Modeling respiratory
lung motion: A biophysical approach using finite element methods,” Proc.
SPIE 6916, 69160N (2008).

10A. Al-Mayah, J. Moseley, M. Velec, and K. K. Brock, “Toward efficient
biomechanical-based deformable image registration of lungs for image-
guided radiotherapy,” Phys. Med. Biol. 56(15), 4701–4713 (2011).

11F. L. Matthews and J. B. West, “Finite element displacement analysis of a
lung,” J. Biomech. 5, 591–600 (1972).

12S. H. Sundaram and C. C. Feng, “Finite element analysis of the human
thorax,” J. Biomech. 10, 505–516 (1977).

13Y. J. Zeng, D. Yager, and Y. C. Fung, “Measurement of the mechani-
cal properties of the human lung tissue,” J. Biomech. Eng. 109, 169–174
(1987).

14P. Li, U. Malsch, and R. Bendl, “Combination of intensity-based image reg-
istration with 3D simulation in radiation therapy,” Phys. Med. Biol. 53(17),
4621–4637 (2008).

15H. Zhong, J. Kim, H. Li, T. Nurushev, B. Movsas, and I. J. Chetty, “A
finite element method to correct deformable image registration errors in
low-contrast regions,” Phys. Med. Biol. 57(11), 3499–3515 (2012).

16T. J. Carter, M. Sermesant, D. M. Cash, D. C. Barratt, C. Tanner, and
D. J. Hawkes, “Application of soft tissue modelling to image-guided
surgery,” Med. Eng. Phys. 27(10), 893–909 (2005).

17R. Castillo, E. Castillo, J. Martinez, and T. Guerrero, “Ventilation from
four-dimensional computed tomography: Density versus Jacobian meth-
ods,” Phys. Med. Biol. 55(16), 4661–4685 (2010).

18W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D
surface construction algorithm,” Comput. Graph. Proc. Annu. Conf. Ser.
21(4), 163–170 (1987).

19A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian mesh
optimization,” in Proceedings of ACM GRAPHITE (ACM, NY, 2006),
pp. 381–389.

20Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary
and gray-scale images,” in Proceedings of IEEE International Symposium
on Biomedical Imaging (IEEE, Boston, MA, 2009), pp. 1142–1145.

21G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “3D brain mapping using
deformable neuroanatomy,” Phys. Med. Biol. 39, 609–618 (1994).

22T. K. Dey and J. Sun, “An adaptive MLS surface for reconstruction with
guarantees,” in Proceedings of the Eurographics Symposium on Geometry
Processing (ACM, Vienna, 2005), pp. 43–52.

23R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and
T. Guerrero, “A framework for evaluation of deformable image registration
spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54(7),
1849–1870 (2009).

24E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, “Four-
dimensional deform-able image registration using trajectory modeling,”
Phys. Med. Biol. 55(1), 305–327 (2010).

25E. Castillo, R. Castillo, B. White, J. Rojo, and T. Guerrero, “Least median
of squares filtering of locally optimal point matches for compressible flow
image registration,” Phys. Med. Biol. 57(15), 4827–4833 (2012).

Medical Physics, Vol. 40, No. 8, August 2013

http://dx.doi.org/10.1016/S0006-3495(75)85832-2
http://dx.doi.org/10.1118/1.1915012
http://dx.doi.org/10.1016/j.ijrobp.2009.06.031
http://dx.doi.org/10.1117/12.769155
http://dx.doi.org/10.1117/12.769155
http://dx.doi.org/10.1088/0031-9155/56/15/005
http://dx.doi.org/10.1016/0021-9290(72)90031-0
http://dx.doi.org/10.1016/0021-9290(77)90104-X
http://dx.doi.org/10.1115/1.3138661
http://dx.doi.org/10.1088/0031-9155/53/17/011
http://dx.doi.org/10.1088/0031-9155/57/11/3499
http://dx.doi.org/10.1016/j.medengphy.2005.10.005
http://dx.doi.org/10.1088/0031-9155/55/16/004
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1088/0031-9155/39/3/022
http://dx.doi.org/10.1088/0031-9155/54/7/001
http://dx.doi.org/10.1088/0031-9155/55/1/018
http://dx.doi.org/10.1088/0031-9155/57/15/4827

