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Abstract

Background: In transcription factor binding site discovery, the true width of the motif to be discovered is generally
not known a priori. The ability to compute the most likely width of a motif is therefore a highly desirable property for
motif discovery algorithms. However, this is a challenging computational problem as a result of changing model
dimensionality at changing motif widths. The complexity of the problem is increased as the discovered model at the
true motif width need not be the most statistically significant in a set of candidate motif models. Further, the core
motif discovery algorithm used cannot guarantee to return the best possible result at each candidate width.

Results: We present MCOIN, a novel heuristic for automatically determining transcription factor binding site motif
width, based on motif containment and information content. Using realistic synthetic data and previously
characterised prokaryotic data, we show that MCOIN outperforms the current most popular method (E-value of the
resulting multiple alignment) as a predictor of motif width, based on mean absolute error. MCOIN is also shown to
choose models which better match known sites at higher levels of motif conservation, based on ROC analysis.

Conclusions: We demonstrate the performance of MCOIN as part of a deterministic motif discovery algorithm and
conclude that MCOIN outperforms current methods for determining motif width.
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Introduction

Recent advances in biology have led to a huge increase
in the amount of data available for study. Of consider-
able interest to biologists are transcription factor binding
site (TFBS) motifs; short DNA sequence patterns that
have important roles in gene transcription and regula-
tion. Discovery and further analysis of these sequences
remains an important task in the wider challenge of
understanding the mechanisms of gene expression (exam-
ples from the recent ENCODE project include [1-3]).
Consequently, there is much continuing interest in devel-
oping algorithms which can automatically discover TFBS
motifs [4].

Automatically determining the width of a novel TEBS
motif is a desirable property for motif discovery algo-
rithms since the true motif width is generally not known
a priori. An ideal algorithm would be executed over a
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range of reasonable candidate widths and return the most
likely result based on some criterion. This is an important
but challenging computational problem, as the likelihood
function maximised by motif discovery algorithms cannot
be used directly to compare models with different motif
widths [5]. The difficulty partially stems from the fact that
the maximum value of the joint likelihood of the model
given the data and the missing information is bound to
increase with increasing motif width as a consequence
of the increasing number of free parameters [5-7]. The
complexity of the problem is increased when additional
constraints on the parameters (e.g. the palindrome con-
straint in the popular MEME algorithm) are employed,
as the maximum likelihood value of models with param-
eter constraints will be lower than unconstrained models
of the same motif width. To some degree, this problem
corresponds to the more general problem of model selec-
tion in statistics. A number of general model selection
criteria which incorporate adjustments for model dimen-
sionality have been used in other areas with success [8,9].
However, these criteria have generally not performed well
at determining motif width in known datasets [5].
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The complexity of the computational problem is fur-
ther increased by the diversity of TFBS motifs (Figure 1).
Clearly, biologists are interested in the true motif width;
however, while some motifs provide statistically strong
signals, the majority of motifs are more subtle and in
the worst cases may be statistically indistinguishable from
random artefacts in a given set of DNA sequences [4].
This subtlety means that the most statistically signifi-
cant motif width need not match the biologically known
true motif width. As an example, the true width of
the FruR motif in E. coli is known to be 18bp. How-
ever, the sequence logo and known FruR binding sites
(Figure 2) show that the outermost motif positions are
very poorly conserved, providing little information above
that of background ‘noise’ Furthermore, motif discovery
algorithms cannot guarantee to return the best possible
result at each candidate width. Such algorithms often dis-
play a phenomenon known as ‘shifting’ (Figure 2), where
a motif is only partially recovered, along with some addi-
tional non-motif ‘background’ positions [5]. This is in
part due to the above fact that, from a statistical view-
point, the true boundaries of a motif are often unclear.
Although strategies to deal with this phenomenon have
been devised (for instance, GMA in [10]), none can pro-
vide a guarantee that shifting is completely eliminated.
This means that, even if the true motif width were known
in advance, a motif discovery algorithm is not guaran-
teed to discover this motif perfectly. We therefore require
a heuristic which is robust in practice, coping with both
cases where a statistically strong motif signal is present
and where the motif signal is more subtle.

Attempts at a heuristic to automatically determine motif
width in a deterministic (Expectation-Maximization, or
EM-based) algorithm have included functions based
on the maximum likelihood ratio test (LRT) [11],
methods based on V-fold cross-validation [7] and
the Bayesian Information Criterion (BIC) [12]. How-
ever, in practice, estimators based on the E-value of
the resulting multiple alignment are used instead [4].
The E-value of the multiple alignment of predicted motif
occurrences is an approximate p-value for testing the
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Figure 1 Diversity of E. coli motifs. Sequence logos for four E. coli
motifs illustrate the diversity of motifs in terms of information content
profile. (@) FruR has a number of perfectly conserved positions in the
centre of the motif, flanked by positions which are less
well-conserved. (b) The gapped motif of DeoR illustrates the
opposite: two well-conserved segments are separated by an
unconserved ‘gap’. (€) All positions in the Mall motif are perfectly
conserved. (d) The Nac motif has few well-conserved positions.

Page 2 of 12

@ _<TPACC JTcacs.

o  TeAACC. [Tcacs.
©  TeAALCo. T1c

@ __<JGAACE TTeocsa

(e) == IIf T_._f;

() GGTGAATCGTTCAAGCAA
GCTGACACCTTTCAGCAT
ACTGAAACGCTTCAGCTA
ACTGAAACGCTTCAGCTA
GCAAAAACGTTTCAGTCA
AGTGAATCGGTTCAATTC
AGTGAATCGGTTCAATTC
GCTGAATCGCTTAACCTG
GGTGAATCGATACTTTAC
AGTTAACCGATTCAGTGC
CGTTAAGCGATTCAGCAC
CTTGAATGGTTTCAGCAC
ACTTTATCGTTTCAGCAC
CCTGAATCAATTCAGCAG
GCTGAATCGTTAAGGTAG
GCTGAATCGATTTTATGA
GCTGAATCGATTTTATGA
TCTGAATCGATTCGATTG

Figure 2 E. coli FruR motif sequence logos and occurrences. (a-e)
Known and inferred E. coli FruR motif sequence logos. (a) The known
E. coli FruR motif. The central part of the motif has a number of
well-conserved positions; however, the outermost positions are very
poorly conserved and may be incorrectly statistically regarded as
background. A heuristic for determining the most likely width is
required to be robust in statistically unclear situations such as this. (b)
A motif discovery algorithm may become locked in a non-optimal
local maximum of the likelihood function which corresponds to a
shifted version of the true motif. (€) The most statistically significant
model in a set of candidate models may only represent a portion of
the true motif. (d) From the candidate set of computationally
discovered models, MCOIN chooses the model at w* + 1, which
corresponds well with the true motif. (e) The E-values estimator
chooses the model at w* — 3, which corresponds less well with the
true motif. (f) Known occurrences of the E. coli FruR motif.

hypothesis that the predicted motif occurrences were gen-
erated from the predicted model against the null hypoth-
esis that the predicted occurrences were generated by the
background model. Typically, E-values are calculated for
models at each candidate width and the model with the
minimum E-value chosen.

Here, we validate a novel heuristic for automatically
determining the width of a motif in deterministic motif
discovery algorithms, based on motif containment and
information content (MCOIN). Based on tests with pre-
viously characterised prokaryotic TFBS motifs, we show
that MCOIN outperforms the E-value of the resulting
multiple alignment as a predictor of motif width, using
mean absolute error. MCOIN is also shown to improve the
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overall correctness of results, based on receiver operating
characteristic (ROC) analysis. Finally, we show that the
performance of MCOIN will improve as the performance
of the core motif discovery algorithm improves.

Approach

The MCOIN heuristic is based on the concepts of motif
containment and mean information content per column.
If it is assumed that the motif discovery algorithm discov-
ers the true motif within the dataset as well as possible
at every candidate width {wy, . . ., Winas}, then the algo-
rithm discovers the true motif exactly at the true width w*.
It follows that, at candidate widths smaller than the true
width (that is, {Wuin, ..., w" — 1}), only a portion of the
true motif is discovered while at candidate widths larger
than the true width (that is, {w* + 1, ..., Wyu}), the full
motif is discovered, along with a number of background
positions. Clearly, these models must be similar and are
describing the same underlying motif. If we know that
the models for widths w — 1 and w are describing the
same motif and also assume that model selection criteria
(e.g. BIC) will choose the shorter model due to it having
fewer free parameters, then the model with width w — 1
can be removed from the set of candidate models as the
width-w model also describes the same motif.

Retaining the assumption that the motif discovery algo-
rithm discovers the true motif as well as possible at
every candidate width, it follows that the model at the
true width w* will also be removed as a result of it
being contained within the model at width w* + 1. The
result of discarding models based only on containment
would be to discard all but the longest model. Clearly,
we would prefer models at widths wy,;, to w* — 1 to be
discarded in favour of the model at width w*, but this
model not to be discarded in favour of longer models.
Calculating the mean information content per column
(IC/col) for each model allows a method of stopping con-
tainment at widths greater than w*. If, for example, the
IC/col of the model at width w* is B bits, the model
at width w* 4+ 1 will have these same columns plus an
additional background column, which will have a very
low information content (if each nucleotide in the back-
ground model is equiprobable, the information content
of this column will be 0 bits); the low information con-
tent of this additional background column will make the
IC/col of the model at w* + 1 less than B bits. We
can therefore modify our model selection process, dis-
carding a shorter model in favour of a longer model
only if the shorter model is contained within the longer
model and the IC/col of the longer model is similar to
that of the shorter model.

At a high level, this is implemented as follows: the
position weight matrix (PWM; the probabilistic model
of a motif used in motif discovery algorithms) of the
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shortest model (w,,;;,) is tested against each longer model
(Wiin + 1, ..., Wiay), calculating the mean root Jensen-
Shannon divergence per column (JSD/col) for each
comparison. The Jensen-Shannon divergence [13] is
used a measure of similarity; intuitively, the lower the
JSD/col, the more similar the PWMs are. The IC/col
ratio of the longer model to the shorter model is
then calculated. If this is significantly lower than 1, we
can assume that the additional column in the longer
model is not information-rich and the longer model is
longer than the true motif width. If the shorter model
is ‘contained’ within the longer model (that is, the
minimum JSD/col is smaller than some similarity thresh-
old ¢, where 0 < t5,, < 1) and the models have similar
information (that is, the IC/col ratio of the longer model
to the shorter model is greater than some information
threshold #;,5,), the shorter model is removed from the set
of candidate models. The process is repeated for model
widths Wi + 1 to Wyuex — 1 (the longest model is always
kept in the set of candidate models). The remaining model
with the lowest BIC score is chosen as our best estimate of
motif width.

Method

We assume throughout that we have a dataset X consisting
of all overlapping width-w subsequences {x1, . ..,x,} from
a number of DNA input sequences, as described by Bai-
ley and Elkan [11]. We model X using a two-component
mixture (TCM) model; such a model allows any num-
ber of non-overlapping motif occurrences within an input
sequence. We further assume that we have a motif discov-
ery algorithm which can predict a model ¢ = {6, 1}, where
0 = {6y, 01} represents the background (6p) and motif (6;)
models and A represents the prior probability that a given
position within the input sequences is a motif occurrence.
From these, a log-odds scoring matrix LO and threshold ¢
may be calculated:

LOj) = log ﬁk) 1)
0,k
t = log <1;)‘> @)

Together, LO and ¢ form a Bayes-optimal classifier; each
x; is scored (using Equation 3) and deemed to be a motif
occurrence if s(x;) > ¢ [11].

w T

st) =Y > L0 Ik, xi)), (3)

j=1 k=A

where I(k, a) is an indicator function which is 1 if and only
if a = ay and O otherwise and x;; is the nucleotide in
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the jth position of sample x;. Let x4 be the set of non-
overlapping predicted motif occurrences and ¢, be the
number of predicted motif occurrences [x,q|-

Calculating the BIC for candidate models
We run our motif discovery algorithm over a number of
reasonable candidate widths and return a model ¢ =
{6, A} for each width. We assume that the unknown true
motif width w* is within the range of tested candidate
widths, that is, W, < w* < Wy

For each width w € {wy, ..., W . .., Whax}, wWe
use ™ to create a set of predicted sites Xpred> a8
described above. For each width, the log likelihood of
a particular model ¢ given the predicted sites can
be calculated:

Npred

log L(8, Mxprea) = ) log [p(xil61)1 + p(xil60) (1 — )],
i=1

(4)

where we define the distributions for the motif and the
background model (following [11]) as:

w T
p(xi]61) = 1_[ 1‘[ £ L)

j=1 k=A
and
w T
pilbo) = [T [ Tk “.
j=1 k=A

Following [9], we calculate the BIC for each model using:

—2log L(0, AMxpreq) + M - log (preq), (5)

where M is the number of free parameters in the model,
equivalent to 3(w + 1). We now have a set of models

[¢(Wmi"), e @ pWmaz) ]; each model with its own

BIC score, based on its log likelihood (calculated using its
set of predicted sites) and the number of model param-
eters. We now apply MCOIN, as described in the next
section.

MCOIN heuristic

Following [13], we first define the Jensen-Shannon
divergence for two discrete probability distributions p and
q as:

1 1
JS(wllg) = SKL(pllm) + SKL(q|lm), (6)
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where m = 3(p + q) and KL(pllg) = Y p()53.
i

We also define the mean information content per column
of a given motif model 6; as:

w T
1 j.k
IC/CO[(Ql) = ; Z Zﬁ,klogz (:Zk

) . (7)
j=1 k=A

MCOIN relies on two threshold parameters, g, and
tinfo- The value of tg;,; may be chosen to be anywhere
between 0 and 1. Choosing a good value for fg, is
important. If this value is too small, smaller models are
required to match longer models more exactly before
being discarded. Therefore, fewer models are discarded
and MCOIN tends to choose models of shorter widths,
leading to an underestimation of the true motif width.
In contrast, if the value of £, is too large, shorter mod-
els may be discarded in favour of longer models when they
are dissimilar, leading to an overestimation of true motif
width. The optimal value of £, was calculated using tests
on the realistic synthetic data collection described in the
Data section; root mean squared error was minimised at
tsim = 0.32. Tests using the previously characterised E. coli
data described in the Data section validated this parame-
ter value: root mean squared error was minimised when
0.30 < tg, < 0.32. We therefore recommend %, = 0.32;
this is intuitively reasonable as we would prefer to keep
the value of &, low in order to ensure that two models are
reasonably similar before discarding the shorter in favour
of the longer. Tests which removed the motif discovery

Table 1 E. coli motifs

High conservation Low conservation

Name w* N Name w* N
Ada 13 4 ArgR 18 35
CaiF 16 8 DeoR 16 7
CueR 19 3 FruR 18 18
vy 21 4 Fur 19 99
Lacl 21 3 GntR 20 17
Mall 12 2 MalT 10 20
MelR 18 1 Nac 15 18
MetR 13 7 RcsB 14 1
PurR 16 20
SoxR 19 2
TorR 10 10
XyIR 18 4

Summary of known E. coli TFBS motifs used in tests with real data. For each
motif, transcription factor name is given, along with known width (w*, bp) and
number of motif occurrences (N).
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phase of the algorithm showed that the mean information
content per column ratio alone was sufficient to choose
the true motif width. That is, the value of £, had no
effect. From this, we may conclude that, as motif predic-
tions become stronger, the exact value of ¢, becomes
less important. However, at current motif discovery algo-
rithm performance levels, a value of 0.32 gives optimal
results. It may be possible to change this value data-
adaptively, but so far results have not shown this to be
required.

We calculate 4, based on a perfectly conserved motif
model having a mean information content per column of
2 bits. We define the ‘best case’ background column as
having an information content of 1 bit (equivalent to a
PWM column such as (0.5,0.5,0.0,0.0)7, where any two
nucleotides are split equally). It is then possible to cal-
culate the ‘best case’ IC/col ratio between two models of
any given widths. If the actual IC/col ratio is less than the
calculated ‘best case, we deem the longer model to have
unwanted background positions and do not discard the
shorter model in favour of the longer model. The follow-
ing example illustrates how the ‘best case’ IC/col ratio is
calculated.

Example

Assume that the width-12 model 91(12) represents the
motif we are hoping to discover. It follows that mod-
els 91@ (i < 12) are ‘sub-model’s 0f01(12) and that 91(13)
is the same as 91(12), but with 1 additional background

column. Models 91@ (i < 12) will have an average
IC/col of ~ 2; however, the average IC/col of 91(13)
will be less. If we define the additional background
column in 491(13) as having 1 bit of information as

above, we can calculate the theoretical IC/col ratio:

1
IC/col(6™) ~ 73 112X 241 x 1] = 1.9231 bits

1C/col(6)

IC/col(0")
From this, we define Z;,1,(12/113) = 0.9615: if the actual
IC/col(8")
IC/col(8"?)
assume that we have already found the full motif at
width 12 and that the loss in information content
is due to the addition of a background position. In
1C/col(0?) . .
———5-, we find that this
IC/eol(6™D)

value is ~ 1 and therefore discard 91(11) in favour of
o1,

~ 0.9615

IC/col ratio is less than 0.9615, then we

contrast, if we calculate
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The calculation for the information threshold ;,, can
be generalised as:

2wy + (wy — wq)

, W2 > Wi (8)
2wy

Linfo(wi |lwa) =

This is equivalent to adding the required number of
columns wy — wj at 1 bit/col. MCOIN is outlined below.

procedure MCOIN
Define the similarity threshold Zg;y,.
for a = Wy, to Wyuy — 1 do
for b = a+ 1to wy,, do
Calculate information threshold ¢,/ (/|5
_ 2a+((b—a)
- 2b
for offset =0to b — a do
Calculate similarity (mean root Jensen-
Shannon divergence per column) using:

1 a
S § (@) ¢(b)
Sim = ; ]S(f}q |m+0fﬁ99t),
j=1

Calculate mean information content per
column ratio using:

IC/col(0?)
" IC/eol0@)
Remove ¢@ from the set of candidate
models IF:
sim < tsm AND inf > tinfo(a||b)-

end
end
end
Return the remaining model with the lowest BIC
as the best estimate of motif width.
end MCOIN

Table 2 Prokaryotic ChIP motifs

Species Name w* N
E. coli CRP 22 34
E. coli LexA 20 25
E. coli PurR 16 28
E. coli RutR 16 19
V. cholerae Fur 21 55
V. cholerae RpoN 15 37
M. tuberculosis DosR 18 24
M. tuberculosis LexA 18 23
B. subtilis Spo0A 12 94

Summary of known prokaryotic TFBS motifs used in tests with real data. For each
motif, the species and transcription factor name is given, along with known
width (w*, bp) and number of motif occurrences (N).



Kilpatrick et al. Algorithms for Molecular Biology 2013, 8:16 Page 6 of 12

http://www.almob.org/content/8/1/16

Table 3 Tests without motif discovery: classification-based results
MCOIN (w* £ 4)

Conservation Known width (w*) E-values (w* £ 4)

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC
2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.49 0.98 0.94 1.00 0.98 0.94 1.00 0.97 0.93 1.00
1.08 0.80 0.93 1.00 0.80 0.93 1.00 0.82 0.79 1.00
0.76 049 0.89 0.99 049 0.89 0.99 0.56 0.71 0.99
0.51 0.23 0.79 0.99 0.23 0.79 0.99 023 0.77 0.98

Mean site-level sensitivity (sSn), positive predictive value (sPPV) and area under the ROC curve (AUC) for five collections of realistic synthetic data at varying levels of

motif conservation. In these tests, the motif discovery phase of the algorithm was removed and the set of candidate models constructed as if the motif discovery

algorithm had performed as well as possible at each candidate width.

E-value of the resulting multiple alignment

The E-value of the multiple alignment of predicted motif
occurrences [14] is an approximate p-value for testing the
hypothesis that the predicted motif occurrences were gen-
erated from the predicted model against the null hypoth-
esis that the predicted occurrences were generated by the
background model. The E-value is then an estimate of
the expected number of multiple alignments with statis-
tical significance as great or greater than the observed
alignment. Briefly, the E-value is calculated by comput-
ing the log-likelihood ratio of each column of the resulting
multiple alignment of predicted sites and computing the
p-value for each. The p-value of the product of column
p-values is computed and then multiplied by the number
of possible ways to select positions for the given number
of sites in the set of input sequences to give the E-value.
The E-value is calculated for models at each candidate
width and minimised to select the best estimate of motif
width [4,12].

Data

Realistic synthetic data

Five data collections, each consisting of 1,000 datasets,
were created in order to test MCOIN. Each dataset
contained 20 input sequences of length 200 bp. Input

Table 4 Tests without motif discovery: mean error in motif
width

Conservation

MCOIN (w* £ 4) E-values (w* % 4)

(mean bits/col) MAE RMSE MAE RMSE
2.00 0.00 0.00 0.00 0.00
1.49 0.00 0.00 0.12 0.50
1.08 0.00 0.06 1.55 1.84
0.76 0.01 0.09 1.79 2.04
0.51 0.07 0.39 333 3.60

Mean absolute error (MAE) and root mean squared error (RMSE) for five
collections of realistic synthetic data at varying levels of motif conservation. In
these tests, the motif discovery phase of the algorithm was removed and the set
of candidate models constructed as if the motif discovery algorithm had
performed as well as possible at each candidate width.

sequences were created by extracting 200bp from the
EcoGene [15] database of E. coli intergenic sequences,
representing ‘background’ positions. Datasets were cre-
ated so that each data collection had different mean levels
of motif conservation, ranging from 0.51 to 2.00 bits/col:
Motif positions within each sequence were chosen at ran-
dom and a synthetic motif inserted. Synthetic motifs were
created by choosing nucleotides (A, C, G, T) at random
and randomly mutating positions in the motif occurrences
so that the levels of conservation at each position could be
controlled. Motif width was chosen to be 12bp each time.
A comparison of methods for determining motif width in
[12] used datasets containing real (human) motifs with a
minimum mean information content of 0.76 bits/col; the
realistic synthetic data used in this study contains many
motifs at lower levels of motif conservation, as analysis of
known E. coli TFBS motifs indicated that significant num-
bers of motifs had mean conservation levels of less than
0.76 bits/col.

E. colidata

Twenty datasets incorporating known E. coli TFBS
sequences were created (Table 1). Background sequences
were created as for realistic synthetic data. Positions
within each 200 bp input sequence were chosen at random
and a known TFBS sequence inserted. Known E. coli TFBS
sequences were extracted from RegulonDB [16] for inser-
tion in the background positions. We were concerned
not to reproduce computationally predicted results. TFBS
data from RegulonDB is supported by literature with
experimental evidence; in the majority of cases this evi-
dence stems from classical experimentation such as DNA
footprinting and/or site mutation expression analysis and
is not supported solely by human or computational infer-
ence. The experimental evidence for the data sequences
used in this study is provided in Additional file 1.

The number of motif occurrences in RegulonDB defined
the number of input sequences; the mean number of
input sequences was 15, ranging from 2 to 99 input
sequences. The median number of input sequences was
9. Using known motif occurrences allows realistic motif
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Table 5 Realistic synthetic data: classification-based results
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Conservation Known width (w*)

MCOIN (w* % 4) E-values (w* £ 4)

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC
2.00 0.84 0.25 0.99 0.93 042 1.00 091 0.79 0.99
1.49 0.26 0.07 0.98 0.28 0.15 0.99 0.21 045 0.98
1.08 0.02 0.01 0.96 0.01 0.01 0.96 0.01 023 0.96
0.76 0.00 0.00 0.94 0.00 0.00 093 0.00 0.12 0.94
0.51 0.00 0.00 0.93 0.00 0.00 0.93 0.00 0.09 0.93

Mean site-level sensitivity (sSn), positive predictive value (sPPV) and area under the ROC curve (AUC) for five collections of realistic synthetic data at varying levels of
motif conservation. In these tests, the motif discovery algorithm was allowed to run as it would normally.

conservation. The mean motif conservation was 1.13
bits/col, ranging from 0.49 to 2.00 bits/col. The median
motif conservation was 1.04 bits/col. The mean motif
width was 16 bp, ranging from 10 to 21bp. The median
motif width was 17 bp.

The data collection was split into two groups based
on mean information content per column. The split was
made at a value of 1 bit/col, producing a ‘high conserva-
tion’ group containing 12 datasets and a low conservation’
group containing 8 datasets. In the ‘high conservation’
group, the mean number of input sequences was 7, rang-
ing from 2 to 20 input sequences. The median number
of input sequences was 4. The mean motif conservation
was 1.36 bits/col, ranging from 1.02 to 2.00 bits/col. The
median motif conservation was 1.31 bits/col. The mean
motif width was 16 bp, ranging from 10 to 21bp. The
median motif width was 17bp. In the ‘low conservation’
group, the mean number of input sequences was 28, rang-
ing from 7 to 99 input sequences. The median number
of input sequences was 18. The mean motif conserva-
tion was 0.78 bits/col, ranging from 0.49 to 0.99 bits/col.
The median motif conservation was 0.79 bits/col. The
mean motif width was 16 bp, ranging from 10 to 20 bp.
The median motif width was 17 bp. Table 1 illustrates
some of the diversity within the chosen E. coli motifs.
The sequence logos of selected motifs (Figure 1) illustrate
this further.

Table 6 Realistic synthetic data: mean error in motif width

Conservation MCOIN (w* £+ 4) E-values (w* + 4)

(mean bits/col) MAE RMSE MAE RMSE
2.00 1.60 2.06 1.80 228
1.49 1.59 2.08 246 2.82
1.08 1.97 242 2.16 2.51
0.76 2.38 2.74 1.84 222
0.51 2.38 2.71 1.95 232

Mean absolute error (MAE) and root mean squared error (RMSE) for five
collections of realistic synthetic data at varying levels of motif conservation. In
these tests, the motif discovery algorithm was allowed to run as it would
normally.

Prokaryotic ChIP data
Nine datasets incorporating known prokaryotic motifs
discovered by ChIP methods were also created (Table 2).
Motifs from diverse species including E. coli [17-20], V.
cholerae [21,22], M. tuberculosis [23,24] and B. subtilis [25]
were used. Background sequences for the E. coli datasets
were created as above. Background sequences for other
species were created by randomly choosing nucleotides,
altering the weighting to reflect GC-content as required.
Again, positions within each 200 bp input sequence were
chosen at random and a known TFBS sequence inserted.
The number of motif occurrences for each motif defined
the number of input sequences; the mean number of input
sequences was 38, ranging from 19 to 94 input sequences.
The median number of input sequences was 28. Again,
using known motif occurrences allows realistic motif con-
servation. The mean motif conservation was 0.99 bits/col,
ranging from 0.56 to 1.25 bits/col. The median motif
conservation was 1.04 bits/col. The mean motif width
was 16 bp, ranging from 10 to 22 bp. The median motif
width was 16 bp.

Measuring performance
The performance of the heuristic on a data collection is
assessed through its mean site-level sensitivity (sSu), mean
site-level positive predictive value (sPPV) and the area
under the receiver operating characteristic (ROC) curve
(AUC). Following [26], we define a predicted site as a ‘true
positive’ result if it overlaps the true site by at least a quar-
ter of the true width. sSu (also known as recall in machine
learning literature) measures the proportion of true posi-
tive sites which are correctly predicted as such. sPPV (also
known as precision) measures the proportion of predicted
positive sites which are actually true positives. For our
purposes, sSu is defined as the fraction of true sites which
are predicted and sPPV is defined as the fraction of pre-
dicted sites which are known to be true (see also [27]); that
is: sSn = % and sPPV = STIS,?;FP.
AUC is the integral of the ROC curve plotting
sSn against the site-level false positive rate (sFPR =
SED )). The ROC curve is constructed by computing

(SFP+sTN
the probability of each possible site being an occurrence
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Conservation Known width (w*) MCOIN (w* £ 4) E-values (w* % 4)
(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC
‘high’ (1.36) 0.81 0.22 0.96 0.72 0.29 0.96 0.70 0.17 0.95
‘low’ (0.78) 0.63 0.41 0.96 0.69 0.51 0.98 0.66 032 0.97
overall (1.13) 0.74 0.30 0.96 0.71 0.38 0.96 0.68 0.23 0.96

Mean site-level sensitivity (sSn), positive predictive value (sPPV) and area under the ROC curve (AUC) for 20 datasets created using real E. coli data.

of the motif p(Z;; = 1|X;;,6) and ranking each possible
site based on this value. sSu and sFPR are plotted for all
possible thresholds of p(Z;; = 11X;;,60) and AUC calcu-
lated using the trapezoid rule. This is implemented using
the ROCR R package [28].

While the above classification statistics provide an indi-
cation of how well the predicted sites associated with a
motif model match the true sites, they give no indication
of how well a heuristic estimates motif width. This perfor-
mance is assessed here through the mean absolute error
(MAE) and root mean squared error (RMSE), comparing
the predicted motif width to the known width. RMSE is a
commonly used measure but tends to exaggerate the effect
of estimations which are further from the true value; in
contrast, MAE treats all error sizes equally according to
their magnitude. In most practical situations, the best esti-
mator remains the best regardless of which error method
is used [29].

Results and discussion

In general, mean site-level sensitivity (sS») and positive
predictive value (sPPV) decrease with decreasing motif
conservation. The decrease in sSu is a result of the motif
discovery algorithm predicting fewer sites overall. That
is, at lower motif conservations, fewer sites score highly
enough such that s(x;) > ¢ (see Equation 3). This leads
to an increase in the number of false negative results
(sites incorrectly classified as ‘background’) and therefore
a decrease in sSn. The decrease in sPPV is attributable to
background sites better matching the weaker motif model;
as the model becomes weaker, the difference in scores
between true motif occurrences and spurious background
sites decreases. This can lead to an increase in the number
of false positive results (sites incorrectly classified as motif
occurrences) and therefore a decrease in sPPV.

Table 8 E. coli data: mean error in motif width

Conservation MCOIN (w* % 4) E-values (w* % 4)
(mean bits/col) MAE RMSE MAE RMSE
‘high’ (1.36) 2.08 243 292 312
‘low’ (0.78) 1.75 2.06 3.00 320
overall (1.13) 1.95 2.29 295 3.15

Mean absolute error (MAE) and root mean squared error (RMSE) for 20 datasets
created using real E. coli data.

Width determination without discovery

MCOIN was initially evaluated without the motif dis-
covery phase of the algorithm. That is, for each realistic
synthetic dataset, the heuristic was tested using a set
of candidate models which were constructed as if the
motif discovery algorithm had discovered the motif in that
dataset as well as possible at each candidate width. For
each dataset, all candidate widths from w* — 4 to w* + 4
were tested. MCOIN is compared against the E-values
estimator and also (following [12]) evaluations using the
known width (equivalent to having a set of candidate mod-
els consisting only of w*). Results of these evaluations are
summarised in Tables 3 and 4.

We first note from Table 4 that the width predicted by
MCOIN closely matches the true width in almost all cases;
the error in the predicted width increases slightly as mean
motif conservation is decreased. The E-values estimator
initially matches MCOIN but quickly begins to underes-
timate motif width, leading to a much larger increase in
the error in predicted width. MCOIN shows a clear per-
formance advantage in terms of predicted width at all
conservation levels.

Given that the widths predicted by MCOIN gener-
ally match the known width, it is unsurprising that the
classification-based results (Table 3) match those in the
case where the width is known. As noted above, sSn
decreases with decreasing motif conservation. A similar,
but less sharp, decrease is seen in sPPV. Although the E-
values estimator slightly outperforms MCOIN in terms of
sSn for the data collections with mean motif conserva-
tion of 1.08 bits/col and 0.76 bits/col (0.82 compared to
0.80 and 0.56 compared to 0.49, respectively), the corre-
sponding values of sPPV are outperformed by MCOIN
(0.93 compared to 0.79 and 0.89 compared to 0.71,
respectively). Combining these results with the results
presented in Table 3, this is likely a result of the E-values
estimator choosing models at non-optimal widths which
predict more sites overall at the expense of more false
positive predictions.

Realistic synthetic data

Subsequent evaluations use models computationally dis-
covered by a MEME-based algorithm; the motif discovery
phase of the algorithm is run as it would normally. Again,
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Conservation Known width (w*)

MCOIN (w* % 4) E-values (w* £ 4)

(mean bits/col) sSn sPPV

AUC sSn

sPPV AUC sSn sPPV AUC

0.99 0.75 067 0.99 0.75

0.68 0.99 073 067 0.99

Mean site-level sensitivity (sSn), positive predictive value (sPPV) and area under the ROC curve (AUC) for 9 datasets created using real prokaryotic data determined

through ChIP experiments. The datasets used are summarised in Table 2.

for each estimator, all candidate widths from w* — 4 to
w* 44 are tested. Results of evaluations on each of the five
data collections are summarised in Tables 5 and 6.

We note that the results for predictions at the known
width are generally lower than when the motif discovery
phase of the algorithm was removed. These results illus-
trate the fact that the core motif discovery algorithm is far
from perfect: even when the true motif width is known,
classification-based results may be low. In all data collec-
tions, both MCOIN and the E-values estimator are shown
to have a performance similar to or better than that at the
known width in terms of classification-based measures.
As noted by [12], this may be attributed to the fact that
predicted sites are only required to overlap the known site
by a quarter in order to be counted as a true positive.

As noted above, results for all three classification-based
measures generally decrease as mean motif conservation
also decreases (Table 5). At higher levels of motif con-
servation, MCOIN is shown to outperform the E-values
estimator in terms of sSu. In this test, MCOIN gener-
ally chooses models which increase sSn, at the expense
of sPPV. That is, MCOIN chooses models which tend to
predict more false positive sites. While we would prefer
to have few false results (that is, higher values for both
sSn and sPPV) overall, it may be preferable to increase
sSn at the expense of sPPV. For example, when search-
ing for putative binding sites to be verified experimentally,
it may be more useful to have more false positives than
false negatives. The E-values estimator is shown to achieve
a higher sPPV in all cases; this matches the findings of
[12], where the E-values estimator was shown to achieve
a slightly higher sPPV than other estimators on datasets
containing human TFBS motifs. At higher levels of motif
conservation, MCOIN is also shown to outperform the
E-values estimator in terms of AUC.

While MCOIN generally matches the E-values estima-
tor in terms of overall correctness based on AUC values,

Table 10 Prokaryotic ChIP data: mean error in motif width

Conservation MCOIN (w* £+ 4) E-values (w* % 4)
(mean bits/col) MAE RMSE MAE RMSE
0.99 144 1.86 233 273

Mean absolute error (MAE) and root mean squared error (RMSE) for 9 datasets
created using real prokaryotic data determined through ChIP experiments. The
datasets used are summarised in Table 2.

this does not represent the full picture. It follows from the
above that an estimator may appear to perform well even
if the chosen width does not match the true width [12].
Errors in the predicted width are presented in Table 6.
We note from these results that the error in width pre-
dicted by both estimators generally increases as mean
motif conservation is decreased. However, at higher levels
of motif conservation, MCOIN outperforms the E-values
estimator using both error measures.

E. coli and prokaryotic ChIP data

MCOIN was then evaluated in the same manner
using diverse prokaryotic TFBS sequences as described
above. The results of this evaluation are summarised in
Tables 7, 8, 9, 10.

The heterogeneity of the motifs in both data collec-
tions may suggest that results for these datasets could be
equally varied. However, both MCOIN and the E-values
estimator are reasonably robust in terms of predicted sites
(Tables 7 and 9). While the sSu results for the low con-
servation group in the E. coli data collection are lower
than that for the high conservation group, sPPV increases
with decreasing motif conservation. This is a result of the
smaller set of predicted sites containing fewer false pos-
itive results and can be attributed to the small number
of datasets tested. When combined, the reduction in the
number of false positive predictions and the consistently
high AUC values suggest that models are chosen where
true motif occurrences are predicted with greater con-
fidence. For both the E. coli and prokaryotic ChIP data
collections, MCOIN outperforms the E-values estimator
in terms of classification-based results. The prokaryotic
ChIP data collection shows a slight improvement in sSn
and sPPV values (Table 9); this improvement is greater in
the E. coli data collection (Table 7). It is also noted that
the classification-based results for MCOIN better match
those at the known width than the results of the E-values
estimator.

Tables 8 and 10 present the mean error in motif width
based on both data collections. MCOIN is shown to
outperform the E-values estimator for both data collec-
tions. Although the mean error in motif width for models
predicted by MCOIN appears to decrease with decreas-
ing motif conservation in the E. coli data collection, this
is explained by the small number of datasets tested. The
small number of datasets tested also accounts for the
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Figure 3 E. coli: RcsB motif ROC curves. ROC curves (plotted for 0 < sFPR < 0.5) for the most likely £.coli RcsB motif, as chosen using the known
width (left), MCOIN (centre) and E-values based estimator (right). The curve colour illustrates the threshold of p(Z;; = 11Xj;,0), from 1.0 (red) to 0.0
(blue). Although MCOIN and the E-values estimator both underestimate the known motif width, site-level predictions are improved as the true
motif is relatively weakly discovered at the true width. Performance in terms of AUC may be increased by choosing stronger and/or unshifted motif
models at non-optimal widths. MCOIN displays improvement over the known motif width and the E-values estimator in all three classification
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fact that the error in motif widths predicted by the E-
values estimator is relatively high for both real data col-
lections, given the results previously obtained on realistic
synthetic data.

We noted earlier that performance in terms of AUC
may be improved by choosing a better motif model at a
non-optimal width. The E. coli RcsB motif provides an
example of this (Figure 3 illustrates some of the observa-
tions made here). At the true width (w* = 14bp), the motif
is discovered relatively poorly (sSn = 0.27, sPPV = 0.21,
AUC = 0.88). Both MCOIN and the E-values based
estimator improve AUC by choosing models at shorter
widths. The E-values estimator chooses the model at
w* —2 (sSn = 0.27, sPPV = 0.09, AUC = 0.97) and MCOIN
chooses the model at w* — 4 (sSn = 0.64, sPPV = 0.39,
AUC = 0.99). MCOIN displays improvement in all mea-
sures; it may be concluded that, although the chosen width
is not the true motif width, the model chosen by MCOIN

is a better model overall. Similar results are noted in the
CaiF, FruR and PurR motifs in the E. coli data collection
and the B. subtilis SpoOA motif in the prokaryotic ChIP
data collection. As noted above, the model at the optimal
width need not be the closest match to the biologically
known motif. The results presented in Figure 3 also show
that the model chosen by MCOIN gives more predictions
at higher values of p(Z;; = 11X;;,6), compared to the
model chosen by the E-values estimator and the model at
the true width. Similar results are noted for some other
E. coli motifs, although this cannot be guaranteed for all
motifs.

Comparing Tables 7 and 9 to Table 5, MCOIN is shown
to give excellent classification-based results (particularly
on the prokaryotic ChIP datasets) given the overall
mean motif conservation and the results on realistic syn-
thetic data. This is due to the conservation of individual
positions within each motif: while the conservation of
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Figure 4 E. coli: GntR motif ROC curves. ROC curves (plotted for 0 < sFPR < 0.1) for the most likely E.coli GntR motif, as chosen using the known
width (left), MCOIN (centre) and E-values based estimator (right). The curve colour illustrates the threshold of p(Z;; = 1]Xj;,0), from 1.0 (red) to 0.0

(blue). All three estimators predict the GntR motif much better than expected, considering the low conservation of the motif and the results of the
experiments using realistic synthetic data.
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positions in each synthetic motif is uniform and inde-
pendent, this pattern of conservation is not mirrored
in real TFBS motifs. Analysis of the previously charac-
terised motifs used in this study indicates that motifs
with low mean conservation may have several positions
which are very well or even perfectly conserved. This
matches well with previous studies (e.g. [30]), which
propose that the conservation of a given motif posi-
tion is correlated with the conservation of surrounding
motif positions, producing clusters of well-conserved
positions, which may aid TFBS motif discovery algo-
rithms. This phenomenon is clear in a number of E.
coli motifs, particularly GntR (Figure 4), which has a
mean conservation of 0.74 bits/col; the synthetic data
results suggest relatively low values of sSn and sPPV
for this motif. However, the GntR motif has a cluster of
reasonably well-conserved positions, with a maximum
conservation of 1.61 bits/col and is discovered well at the
known width (sSn = 0.82, sPPV = 0.70, AUC = 0.99), with
similar results for both the MCOIN and E-values based
estimators (sSn = 0.71, sPPV = 0.71, AUC = 0.99 and
sSn =0.71, sPPV = 0.48, AUC = 1.00, respectively).

Conclusions

Determining the width of a TFBS motif is an important
and challenging problem with direct relevance to compu-
tational motif discovery. MCOIN is a novel heuristic for
determining the width of a motif, based on motif con-
tainment and information content. Results of tests on two
data collections of previously characterised prokaryotic
motifs show that MCOIN outperforms the E-value of the
resulting multiple alignment (currently the most widely
used estimator) as a predictor of motif width, using mean
absolute error and root mean squared error. MCOIN is
also shown to choose models which improve the overall
correctness of predicted motif sites, based on site-level
sensitivity, positive predictive value and the area under the
ROC curve.

MCOIN also has a clear advantage over methods based
on cross-validation with limited numbers of folds, as all
available data is used for motif discovery, improving dis-
covery results. Further, the results of experiments which
removed the motif discovery phase of the algorithm show
that, as the performance of this phase improves, the per-
formance of MCOIN as a predictor of motif width also
improves: as the discovered model becomes stronger and
better models the true motif, the error in the width esti-
mated by MCOIN will decrease.

Additional file

Additional file 1: Summary of experimental evidence for each TFBS
sequence used in the E. coli data collection.
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