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Regulation of Cell Death by Transfer RNA
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Abstract

Significance: Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA
decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c
functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes.
Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis,
activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both
tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. Recent Advances:
A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death
pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to
regulate cell death, beyond its role in gene expression. Critical Issues: The nature of the tRNA–cytochrome c
binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular
metabolism, and apoptotic sensitivity are unanswered. Future Directions: Investigations into the critical issues
raised above will improve the understanding of tRNA in the fundamental processes of cell death and metab-
olism. Such knowledge will inform therapies in cell death-related diseases. Antioxid. Redox Signal. 19, 583–594.

Apoptosis and Caspases

Apoptosis is a physiological process by which unwanted
or damaged cells are eliminated. It occurs extensively in

developing animals, functioning in processes as diverse as
sculpting organs, deleting structures that are no longer useful,
eliminating nonfunctional or self-reactive lymphocytes, and
matching the number of neurons with the target cells (53, 81).
In adult animals, apoptosis has a fundamental role in the
maintenance of homeostasis and the quality control of cells,
including removal of cells infected by viruses, harboring ex-
tensive damages, or expressing oncogenes. Deregulation of
apoptosis is linked to various devastating diseases. Defective
apoptosis is closely linked to autoimmune disorders, viral
infection, and the formation and therapeutic resistance of
cancer cells, whereas excessive apoptosis is associated with
various neurodegenerative diseases, myocardial infarction,
and immunodeficiencies, including AIDS (105, 117).

Apoptotic cells undergo characteristic changes in their
morphology, including plasma membrane blebbing, cell body
shrinkage, nuclear condensation and fragmentation, and for-

mation of membrane-bound apoptotic bodies (61). In vivo, ap-
optotic cells and the bodies formed by them are normally
engulfed by healthy cells to prevent the release of intracellular
contents. Apoptosis is also accompanied by characteristic bio-
chemical changes, notably the appearance of discrete DNA
fragments on conventional gel electrophoresis (due to cleavage
between nucleosomes), the flipping of phosphatidylserine from
the inner leaflet to the outer leaflet of the plasma membrane,
and limited cleavage of a large number of cellular proteins.

The stereotypic changes in cell morphology and intracel-
lular biochemistry are caused by a group of intracellular,
cysteine-dependent aspartate-specific proteases or caspases
(4). In healthy cells, caspases are generally kept in their inac-
tive forms. However, caspases can also be activated to limited
extents in the cells to perform diverse functions, such as
proliferation, suppression of necrosis, and induction of in-
flammation. During apoptosis, caspases become fully active
and cleave a wide array of intracellular targets. Caspase tar-
gets include other apoptotic proteins, cellular structural and
survival proteins, transcriptional factors, signaling molecules,
and proteins involved in DNA and RNA metabolism. These
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targets are cleaved by caspases in a limited manner, usually
once or twice at the interdomain linker regions rather than
being fully degraded. These cleavages lead to the activation of
some targets and the inactivation of others (15, 70, 99).

Mechanisms of Caspase Activation

As with many other proteases, caspases are produced as
latent precursors (procaspases). The activation of procaspases
involves proteolytic processing at critical aspartate residues,
which conform to the consensus substrate recognition sites of
these enzymes. Consequently, caspases can be activated by
proteolytic processing either by themselves or by another
caspase. Both occur during apoptosis, where caspase activation
proceeds in a cascade, with the upstream or initiator caspases
(e.g., caspase-8 and 9) being activated by autoprocessing and
the downstream or executioner caspases (e.g., caspase-3 and 7)
being activated by initiator caspases (15, 70, 99).

The activation of the initiator caspases, a key step in apo-
ptosis, is induced by death adapter proteins. These adapters
form caspase-activating platforms, either bound to the cell
membrane or in the cytoplasm, in response to the extracellular
and intracellular lethal cues, respectively. These cues activate
two major apoptosis pathways in mammalian cells: the ex-
trinsic and intrinsic pathways. The extrinsic pathway is me-
diated by a group of cell surface receptors, such as Fas/CD95
and tumor necrosis factor receptor. Upon binding to their
cognate ligand, these receptors recruit an adaptor protein
FADD. FADD then recruits an initiator procaspase, procas-
pase-8, to form an oligomeric death-inducing signaling com-
plex (DISC) that leads to caspase-8 activation (6, 66) (Fig. 1).
The intrinsic pathway, on the other hand, is activated by
intracellular signals, including developmental lineage infor-
mation, DNA damage, oncogenic stresses, and nutrient dep-
rivation. These signals converge on mitochondria, leading to
the release of cytochrome c to the cytoplasm. Cytochrome c is
an essential component of the mitochondrial electron trans-
port chain that drives ATP production. However, once in the
cytoplasm, cytochrome c becomes a proapoptotic ligand. It
binds to the death adapter apoptotic protease-activating fac-
tor-1 (Apaf-1), and in the presence of (d)ATP, this binding
leads to the formation of an oligomeric complex known as the
apoptosome. The apoptosome recruits the initiator caspase,
caspase-9, leading to its activation (55, 98, 122) (Fig. 2).

Activation of procaspase-8 and procaspase-9 is induced by
their oligomerization (12, 76, 78, 87, 113, 130, 131). Procaspase
molecules such as procaspase-8 and procaspase-9 exist in
healthy cells as monomers, which have no appreciable pro-
tease activity and cannot be cleaved into an active form. Upon
oligomerization either in the DISC or on the apoptosome,
these monomers acquire protease activity (7, 13). For caspase-
8, these precursor dimers, although proteolytically active,
show poor activity toward executioner caspases, and have to
be first self-processed (13). A notable observation is that the
dimerization also renders the caspase-8 zymogen molecules
highly susceptible to cleavage to yield fully active initiator
caspases (13). Thus, procaspase-8 activation likely occurs
through cleavage between dimerized procaspase-8 (13). This
interdimer processing mechanism provides a new paradigm
for oligomerization-induced signaling, analogous to the pre-
viously established oligomerization-induced activation of
receptor tyrosine kinases, in which the activation occurs

through cross-phosphorylation between individual receptors.
The interdimer processing mechanism minimizes caspase
activation in healthy cells, yet it still permits rapid activation
upon apoptosis induction. Because it requires at least four
caspase-8 precursor molecules present in close proximity to
initiate proteolytic processing, the interdimer processing
mechanism minimizes the chance of accidental activation, as
opposed to a mechanism whereby procaspase is activated by
cleavage between individual caspases. At the same time, it
allows for effective activation because caspases are oligo-
merized (not merely dimerized) during apoptosis, permitting
formation of multiple dimers near one another to facilitate
their cross processing. In other words, the interdimer pro-
cessing mechanism enables a switch-like response of caspase
activation to the apoptotic stimuli (13) (Fig. 3).

The interdimer processing mechanism also engenders a
new mode of regulating caspase activation. The fact that the
dimerized procaspase-8, not monomeric caspase-8, is the ac-
tive form permits the functional divergence of the two dimeric
partners, one taking on the role of catalysis, whereas the other
being a dedicated regulatory subunit. This prediction was

FIG. 1. The extrinsic apoptosis pathway. Engagement of
death receptors (e.g., Fas, also known as CD95) by their
cognate ligands (e.g., Fas/CD95 ligand) leads to the recruit-
ment of the adaptor protein FADD. FADD in turn recruits
procaspase-8, procaspase-10 (not shown), and a caspase-8/
10-like molecule c-FLIP. These proteins form the DISC, in
which procaspase-8 (and procaspase-10) becomes activated
through an autoproteolytic cleavage. The active caspase-8
then cleaves and activates the effector caspases, caspase-3
and caspase-7. DISC, death-inducing signaling complex.
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first confirmed by an unexpected finding that c-FLIPL, a
proteolytically inactive homolog of procapase-8, can promote
caspase-8 activation (14). The interdimer processing mecha-
nism was instrumental in understanding the control of
caspase-8 activation during lymphocyte proliferation. Here,
caspase-8 is heterodimerized with MALT1, a protease that
bears similarity to caspases (paracaspase). This hetero-
dimerization enables partial caspase-8 activation, and at the
same time promotes the activity of procaspase-8 toward
proliferative substrates, but not apoptotic substrates (59).

In contrast to initiator procaspases, the effector procaspases
exist as dimers, although enzymatically inert. Their cleavage
by active initiator caspases allows for the formation of a
partially active dimer, which undergoes an autocleavage
event through interdimer processing to become proteolyti-
cally fully competent (73). Thus, the interdimer processing
mechanism applies to the activation of both the initiator and
effect caspases. Effector caspases are the workhorse of apo-
ptosis, responsible for the vast majority of the proteolytic
events associated with apoptosis.

Regulation of Cytochrome c-Mediated
Caspase-9 Activation

The intrinsic apoptosis is evolutionarily more ancient than
the extrinsic pathway. It is also engaged in the extrinsic

pathway in some cells to execute apoptosis. While the en-
gagement of death receptors such as Fas sometimes can
generate a proliferative signal (16), the engagement of the
intrinsic pathway is almost always detrimental to a cell. In the
intrinsic pathway, the release of cytochrome c from the mi-
tochondria marks the defining step (74). The discovery that
cytochrome c, a critical molecule for cell survival, is a potent
death ligand came as a shock to the emerging field of apo-
ptosis research where cell life and death were considered to be
controlled by separate sets of proteins. Cytochrome c is a
death inducer in vertebrates, but not in invertebrates such as
Caenorhabditis elegans and Drosophila. This dichotomy of cy-
tochrome c reflects an ingenious invention of evolution. Given
the massive amount of cell death occurring normally in ver-
tebrate cells as part of normal physiological processes, it
would be challenging to ensure that, virtually, all cells retain
the ability to commit suicide. By engaging cytochrome c for
both cell death and survival, this provides a mechanism to
coordinate the two processes by one molecule.

The release of cytochrome c follows mitochondrial outer
membrane permeabilization (MOMP). MOMP is largely
controlled by the pro- and antiapoptotic members of the
Bcl-2 family proteins, which contain one to four Bcl-2
homology (BH) domains (1, 25). Functionally, Bcl-2 proteins
are divided into three subfamilies: (i) antiapoptotic multiple-
domain proteins (e.g., Bcl-2, Bcl-XL, and Mcl-1), (ii) proa-
poptotic multidomain proteins (mainly Bax and Bak), and
(iii) proapoptotic BH3-only proteins (e.g., Bim, Puma, and
Bid). Upon apoptosis induction, some BH3-only proteins
(called activators) directly bind to and oligomerize the Bax/
Bak protein. This leads to the formation of large channels on
the outer membrane of mitochondria, allowing cytochrome
c, as well as other cell death inducers, to be released from
mitochondria. Other BH3-only members (called sensitizers)
neutralize antiapoptotic members and sensitize cells to ap-
optosis stimuli. The activation of the BH3-only subfamily of
proteins involves various strategies. For example, expression
of Puma is induced by p53 upon severe DNA damage. Bid is
activated by caspase-8-mediated proteolytic cleavage; this
links the extrinsic pathway with the intrinsic one.

After MOMP, cytochrome c-mediated caspase-9 activa-
tion is also subject to intricate regulation. Effective formation
of the apoptosome by Apaf-1 requires at least three addi-
tional proteins: HSP70, cellular apoptosis-susceptibility
protein, and the tumor suppressor PHAPI. These proteins
inhibit the aggregation of Apaf-1 into a nonfunctional com-
plex and promote Apaf-1 assembly into the apoptosome (54,
63). The formation of apoptosome is inhibited by the onco-
protein prothymosin-a, although the underlying mechanism
is unclear (54). Activation of caspase-9 and the downstream
effector caspases is also regulated by inhibitors of apoptosis
protein (IAPs) (38, 106). IAPs were first identified as bacu-
lovirus-encoded proteins that were able to block apoptosis of
infected cells, hence their name. These cellular homologs
were subsequently found in various species, each containing
at least one, but often two to three, copies of the character-
istic BIR sequence (baculovirus IAP repeat). In mammalian
cells, the X-chromosome-linked IAP (XIAP) plays a major
role in preventing caspase activation after cytochrome c re-
lease. XIAP can bind to both partially processed caspase-9
and partially processed caspase-3/7 through its BIR do-
mains or the linker sequence, preventing the full maturation

FIG. 3. Interdimer processing mechanism of initiator
caspase activation. Top: An intermonomer processing
mechanism would generate graded caspase activation in
response to the strength of the apoptotic stimuli. Bottom: An
interdimer processing mechanism yields a switch-like acti-
vation of caspases. This would minimize accidental caspase
activation while still permitting rapid caspase activation
upon apoptosis induction.

FIG. 2. The intrinsic apoptosis pathway. Various intra-
cellular death stimuli lead to the MOMP in a manner that is
directly controlled by the Bcl-2 family proteins. This leads to
the release of cytochrome c and other death inducers, in-
cluding Smac/Diablo from the mitochondria. In the cyto-
plasm, cytochrome c binds to the death adapter Apaf-1 and
promotes the formation of the oligomeric apoptosome. The
apoptosome recruits procaspase-9, which becomes activated
by autoproteolytic processing. Active caspase-9 then cleaves
caspase-3/7. Apaf-1, apoptotic protease-activating factor-1;
MOMP, mitochondrial outer membrane permeabilization;
tRNA, transfer RNA.
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of these proteases. During apoptosis, XIAP is incapacitated
through the binding of apoptotic inducers such as Smac/
Diablo, which is released from mitochondria to the cyto-
plasm along with cytochrome c.

A notable feature of caspase-9 activation is its regulation by
nucleotides. Either ATP or especially (d)ATP is required for
the assembly of the apoptosome. In fact, the ability of (d)ATP
to activate caspase in HeLa S100 cell lysates provided the
biochemical assay that led to the identification of cytochrome
c and other components (i.e., Apaf-1 and caspase-9) of the
intrinsic pathway (71, 74, 133). In healthy cells, Apaf-1 binds
to a (d)ATP molecule, which keeps it in an inactive confor-
mation. Upon binding to cytochrome c, Apaf-1 hydrolyzes
this (d)ATP molecule, releases the product (d)ADP, and then
binds to another (d)ATP molecule. These steps are accompa-
nied by a conformational change that permits the assembly of
Apaf-1 into the apoptosome (62). In contrast, (d)NDP and
(d)NMP inhibit apoptosome formation (74). In an interesting
twist in the long line of research on cytochrome c-mediated
caspase activation, transfer RNA (tRNA) was recently iden-
tified as a direct inhibitor of cytochrome c-mediated caspase
activation.

The Structure and the Decoding Function of tRNA

Matured tRNAs are highly differentiated nucleic acids
comprised of 70–90 nucleotides that are folded into a compact
cloverleaf secondary structure through base-pairing interac-
tions within internal self-complementary regions. The clo-
verleaf structure is further folded into an L-shaped globular
tertiary structure that brings the secondary elements dis-
persed in the sequence into close proximity. The folding into
the L-shape is achieved by tertiary base-pairing interactions
among a set of conserved nucleotides. This enables the ac-
ceptor stem to be coaxially stacked with the T stem to form
the horizontal arm, whereas the dihydrouridine (D) stem
and the anticodon stem to be coaxially stacked to form the
vertical arm. This L-shaped arrangement places the amino
acid attachment site to the conserved 3¢-CCA sequence at one
end of the L, while the anticodon triplet at the other end of
the L (Fig. 4). This arrangement is believed to accommodate
most known tRNA sequences (65), and the sequence
framework in the arrangement is defined according to the
sequence of yeast tRNAPhe, which was the first tRNA for
which a high-resolution X-ray crystal structure was obtained
(64, 100). Based on this sequence framework, the CCA
sequence is at positions 74–76, while the anticodon triplet is
at positions 34–36.

The tRNA molecules are differentiated from each other
based on the amino acid that is attached (44). This attach-
ment is determined in the aminoacylation reaction whereby
an amino acid is activated by the hydrolysis of ATP, cata-
lyzed by its cognate aminoacyl-tRNA synthetase, and is then
transferred to the terminal ribose in the 3¢-CCA sequence of
the cognate tRNA. After this, each aminoacyl-tRNA (aa-
tRNA) forms a ternary complex with a GTP-bound elonga-
tion factor (EF-Tu in bacteria and eEF-1a in eukaryotes) and
is selected by a ribosome-A site for its anticodon base-pairing
match with the codon of an mRNA (102). Correct pairing
promotes accommodation of the aa-tRNA to the A site, along
with the release of the factor and GDP. This is followed by
the ribosome-catalyzed peptidyl transfer from the P site to

the A site, resulting in the extension of the peptidyl group
by the amino acid on the A site. After a ribosomal translo-
cation, catalyzed by the factor EF-G and hydrolysis of
GTP, the A-site tRNA is moved to the P site, and the dea-
cylated P-site tRNA is moved to the E (exit) site (101). This
cycle repeats until a stop codon enters the A site, which is
followed by peptide release from the P site catalyzed by
release factors.

Within the constraints of the cloverleaf and L-shaped
structures, tRNA sequences can vary. The diversity in tRNA
sequences provides the option to use specific sequences for
peak performance in response to specific environmental de-
mands. The diversity can arise from two mechanisms. In one,
because of the degeneracy of the genetic code, there often exist
several isoacceptor tRNAs for the same amino acid. Within
one family of isoacceptors, while individual tRNA members
differ in their anticodon sequences to read different codons;
they also differ in other parts of the respective sequences.
In the second, tRNAs are customized with many post-
transcriptional modifications to introduce diverse chemical
groups (e.g., a methyl or a sulfur group) to their bases and
backbone ribose 2¢-OH groups. With the exception of a few
conserved modifications (e.g., s4U at position 8 before the D
stem, ribothymidine at position 54 in the T loop, and
C [pseudouridine] at position 55 in the T loop), all other
modifications are tailored to the activity of each tRNA. These
modifications, each synthesized by a specific enzymatic
pathway, enhance the overall structural and cellular stability
of tRNA (86). Many of these modifications are concentrated at
positions 34 (the wobble position of the anticodon) to expand
the capacity of wobble base pairing during decoding. The
modifications at position 34, alone or together with those at
position 37 (on the 3¢-side of the anticodon), play an important
role in the overall accuracy of tRNA in the process of decoding
and maintenance of the reading frame (2, 3). Free energy
calculations indicate that modifications are essential for fide-
lity, because simple base-pairing interactions between codon
and anticodon are insufficient to achieve the fidelity required
for life (92, 102).

FIG. 4. Secondary and tertiary structures of Escherichia
coli tRNACys.
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Nuclear-Encoded tRNAs

Nuclear-encoded tRNAs are synthesized by RNA poly-
merase III (Pol III) in the nucleus (9). Pol III is also responsible
for the synthesis of 5S rRNA and several small noncoding
RNAs. When yeast cells grow under a favorable growth
condition, it was estimated that Pol III synthesizes 3–6 · 106

tRNA molecules per cell at a rate of 2–4 transcripts per gene
(11). This high level of transcription is achieved in two
mechanisms: (i) Pol III reinitiates many rounds of transcrip-
tion on a DNA-bound initiation factor TFIIIB (29), and (ii) Pol
III couples termination at the end of each round with initiation
of the next round (28). The transcription activity of Pol III is
tightly coordinated with the environmental growth condi-
tions. When stress conditions occur, tRNA transcription is
rapidly repressed through the action of Maf1, a negative
regulator of Pol III with homologs in all eukaryotes (96). Re-
pression of Pol III by Maf1 is the major form of transcription
regulation and is initiated by adverse conditions, such as
starvation or stress associated with replication, respiratory,
and oxidative growth (20, 88, 126).

Recent studies have identified key aspects of Maf1 regula-
tion. In optimal growth conditions, Maf1 is inactivated by
phosphorylation, which operates at several levels; for exam-
ple, phosphorylation decreases direct binding of Maf1 to Pol
III, facilitates Maf1 export from the nucleus, and blocks import
of cytoplasmic Maf1 to the nucleus (47, 91). By partitioning
Maf1 predominantly into the cytoplasm, this reduces the
probability of the factor to inhibit the Pol III elongation
complex. While different protein kinases phosphorylate Maf1
for different effects (e.g., Protein kinase A and Sch9-kinase)
(47, 84), two central cellular kinases, casein kinase 2 (CK2) and
target of rapamycin TOR complex 1 (TORC1), are most rele-
vant for regulation of tRNA transcription (37, 58, 83, 109, 124),
based on their location directly on chromatins that contain
tRNA genes. CK2 is conserved in organisms from yeast to
humans as a key signaling protein in many cellular processes
(34, 45, 46, 56), whereas TORC1 is the mammal-specific met-
abolic kinase operating on Pol III (8). Upon a shift to repres-
sive conditions, however, CK2 is dissociated from chromatins
of the tRNA genes (34), preventing Maf1 from repho-
sphorylation and enabling the dephosphorylated Maf1 to stay
bound with Pol III. Thus, tRNA transcription is down-
regulated, and there is a retrograde transport of tRNAs into
the nucleus (43). As shown by the recent crystal structure of
Maf1 and cryo-EM structure of the Maf1-Pol III complex (121),
the binding by Maf1 rearranges the subunit structure of Pol III
such that the recruitment of Pol III to the promoters is im-
paired, and transcription initiation is inhibited. The regulation
of Maf1 through phosphorylation provides a mechanism for
immediate adjustment of Pol III activity according to the
changes in environmental conditions.

All tRNAs are synthesized as precursors with 5¢-leader and
3¢-trailer sequences, and some with introns. In the nucleus, the
first protein that binds to all newly synthesized pre-tRNAs is
the La autoantigen, a highly abundant nuclear phosphopro-
tein that protects the 3¢-terminus from exonuclease digestion
(33, 72, 132). The La protein–pre-tRNA complex is the sub-
strate for RNase P to remove the 5¢-leader sequence. The
processing of the 3¢-trailer sequence in eukaryotes, where pre-
tRNAs are synthesized without the CCA sequence, is
achieved by a single endonucleolytic cleavage by RNase Z at

position 73 (before the CCA position, known as the discrim-
ination position) (30). The product of RNase Z is then a sub-
strate for CCA addition. For pre-tRNAs that contain introns,
the removal of the introns occurs primarily after CCA addi-
tion (132); the quality of the removal is inspected by the
aminoacylation reaction inside the nucleus (75). The use of
nuclear aminoacylation as a quality control is a mechanism to
ensure that only properly processed tRNAs are exported to
the cytoplasm. The locations where the extensive base and
backbone modifications occur remain poorly understood and
may be specific to each modification; for example, analysis of
the location of the modification enzymes suggests that the
modifications m2

2G26 in many tRNAs (32), m5C34 in tRNALeu

(10), and J55 in the conserved T loop (110) occur in end-
matured, but intron-containing, pre-tRNAs, while the i6A37
modification in some tRNAs occur after intron removal (89).
Some modifications, such as yW37 in tRNAPhe, may involve
tRNA trafficking between the nucleus and the cytoplasm (93).

Mitochondrion-Encoded tRNAs

The mammalian mitochondrial organelles each contain a
circular genome that encodes 22 tRNA genes, 2 rRNA genes,
and 13 protein-coding genes. The mitochondrion-encoded
tRNAs and rRNAs (mt-tRNAs and mt-rRNAs) are supple-
mented by nuclear-encoded protein enzymes and factors to
constitute the specialized mitochondrial translation appara-
tus that is used to translate the 13 mitochondrion-encoded
proteins, all of which are subunits of the electron transport
chain (19). In contrast to the large number of nuclear-encoded
tRNA genes, up to *270 distinct sequences (36), the rather
small number of the mt-tRNA genes implies a limited ca-
pacity for decoding. Indeed, of the 22 mt-tRNAs, only mt-
tRNASer and mt-tRNALeu have two isoacceptors, while each
of the remaining mt-tRNAs represents a single species for one
amino acid (42). In this limited decoding capacity, where one
tRNA may be responsible for decoding up to four codons, the
use of modified nucleotides in the tRNA anticodon and the
application of wobble base pairing to read codon sequences
must be extensively exploited.

The sequence and structure of mt-tRNAs have been greatly
affected by the rapid evolution and genome economization of
the mt-DNA sequence. To compensate for the deleterious ef-
fects caused by such pressure, mammalian mt-tRNAs appear
to have created various structural motifs not present in their
cytoplasmic counterparts (42, 115). Noncanonical structural
features include the absence of the entire D stem–loop in
mt-tRNASer (AGY) (which reads the codon AGY, where Y = C
or U), the shortened D loop and V loop in mt-tRNASer (UCN)
(where N = A, C, G, U), and the lack of tertiary interactions
between the D and T loops in mt-tRNAPhe, mt-tRNAAsp, etc.
Nonetheless, isolated mammalian mt-tRNAs having these
noncanonical structural features are shown to maintain an
approximate L-shape and to function in an in vitro translation
system (26), indicating that they have the flexibility to ac-
commodate the unusual features into a standard tRNA
structure. However, in the case of mt-tRNALys, this accom-
modation is strictly dependent on the presence of an m1A9
modification located at the junction between the acceptor
stem and D stem (41).

Transcription of the mt-tRNA genes is initiated by mito-
chondrial RNA polymerase (mt-RNAP) in complex with
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transcription factors Tfam and mt-TFB (35). The terminator
factor mTERM recognizes both the promoter and terminator
sequences to promote recycling of the transcriptional
machinery (48). Transcription produces long polycistronic
transcripts that are processed to generate separate mt-tRNAs,
mt-rRNAs, and mt-mRNAs. Because mt-tRNAs contain no
introns, the removal of the 5¢-leader and 3¢-trailer sequences
by mt-RNaseP and mt-RNase Z, respectively, constitutes the
basic steps of processing (103).

A Direct Interaction Between Cytochrome c
and tRNA That Impacts Caspase Activation

From the beginning of research on cytochrome c-mediated
caspase activation, a puzzling observation was that although
the intracellular concentration of (d)ATP is only in a 10 lM
range, up to 1 mM concentration of (d)ATP is needed to in-
duce caspase-9 activation in cell lysates (74, 82). One possible
explanation was that an inhibitor was present in the cell ly-
sates, which decreased the effectiveness of (d)ATP. Because
(d)NMP can inhibit caspase-9 activation, it seemed possible to
us that RNA, which is essentially a polymer of nucleoside
monophosphates, might have an inhibitory effect. To inves-
tigate the role of RNA in caspase activation, we removed RNA
in HeLa S100 extracts by RNases. This strongly increased
cytochrome c-induced caspase-9 activation. Conversely, the
addition of RNA to the extracts impaired caspase-9 activation.
These results suggested that one or more RNA species inhibit
a factor required for caspase-9 activation. Systematic evalua-
tion of the steps leading to caspase-9 activation revealed that
cytochrome c is bound by an RNA species, which blocks cy-
tochrome c from interacting with Apaf-1. To identify the RNA
species, we stabilized the RNA–protein complexes inside in-
tact cells with a low formaldehyde concentration and lysed
cells in a buffer containing a strong detergent to prevent the
nonspecific interaction during cell lysis. Analysis of the cross-
linked complexes showed that several cytoplasmic and mi-
tochondrial tRNAs specifically associate with cytochrome c.
Microinjection of tRNA ablated the ability of cytochrome c to
induce apoptosis, while treatment with Onconase, which
preferentially degrades tRNA, enhanced apoptosis via the
cytochrome c-dependent intrinsic pathway. Together, these
findings suggested a direct role for tRNA in regulating apo-
ptosis (80) (Fig. 2).

Both tRNA and cytochrome c are ancient molecules with
fundamental roles in biology. The previously unexpected,
direct interaction between them and the consequence of their
interaction on caspase activation raise interesting questions as
to how the interaction between tRNA and cytochrome c
modulates apoptosis, metabolism, and the redox state of the
cells. Below we discuss the implications of this finding in the
context of apoptosis regulation, production of reactive oxygen
species (ROS), and cancer pathogenesis and therapy.

Potential Regulation of the tRNA–
Cytochrome c Interaction

Major inhibitors for the intrinsic apoptosis pathway appear
to be counteracted upon apoptosis induction. For example,
the antiapoptotic members of the Bcl-2 family proteins are
inhibited by the BH3-only proteins, and IAPs by the mito-
chondrial death inducer Smac/Diablo. Emerging evidence
suggests that tRNA metabolism is tightly linked to cellular

responses. A conserved response to a variety of cellular stress
conditions is cleavage of tRNAs near the anticodon by en-
donucleolytic ribonucleases (120). While this cleavage is not
limited to specific tRNAs, it appears to target a small fraction
of tRNAs, because full-length tRNA levels do not decline
significantly (68, 118, 129). The cleavage generates approxi-
mately tRNA half-fragments, which have been found in sev-
eral large-scale small RNA-sequencing projects (21, 40, 69).
The existence of tRNA fragments in cells indicates their sta-
bility and argues that they are not produced by a mechanism
to degrade misprocessed tRNA, which would have been de-
graded rapidly (17, 18, 23). Rather, the stable existence of
tRNA fragments suggests that they may have cellular activi-
ties. Indeed, a recent study has shown that some tRNA frag-
ments can inhibit protein synthesis by displacing eukaryotic
initiation factors eIF4G/eIF4A from capped mRNAs and by
displacing eIF4F from an isolated cap (52), thus inducing the
formation of stress granules, which are essential components
of the stress response program. Others show that tRNA
fragments can guide RNase Z to target sequences (31), sug-
gesting a mechanism to target specific mRNAs for degrada-
tion. In a third function, tRNA fragments are found in the
argonaute and piwi complexes (60, 67), suggesting that they
could have functions similar to siRNAs or miRNAs.

The endonucleases that generate tRNA fragments, Rny1 in
yeast and angiogenin in mammals, are normally secreted or
sequestered, but are released to the cytosol during stress (119,
129). As mentioned above, although mature nuclear-encoded
tRNA functions predominantly in the cytoplasm, some
mature tRNAs may return to the nucleus in response to
particular stresses (108). It would be of great interest to in-
vestigate whether stress-induced tRNA processing or retro-
grade transport to the nucleus impacts cellular sensitivity to
apoptosis.

tRNA–Cytochrome c Interaction
and Post-MOMP Survival

Although the release of cytochrome c after MOMP is the
defining event in the intrinsic apoptosis pathway, cells
sometimes recover from MOMP if caspase activation can be
blocked (116). Both sympathetic neurons and cardiac myo-
cytes are capable of recovery after MOMP in a physiological
setting and are resistant to both endogenous cytochrome c
release as well as exogenous cytochrome c injection (27, 79, 97,
128). The survival of these postmitotic cells after MOMP is
highly advantageous, as these cells are essentially irreplace-
able. Proliferating cells are also able to recover from MOMP. A
genetic screen in the HeLa cells identified glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as being capable of
protecting cells from death after MOMP when caspase acti-
vation is prevented by chemical inhibitors (22). GAPDH in-
creases glycolysis in HeLa cells. Unexpectedly, GADPH also
has a nuclear function in stimulating the expression of the
genes involved in autophagy (22), which also contributes to
the post-MOMP survival of HeLa cells. The inhibition of
caspase activation in both postmitotic and tumor cells would
be made possible in part through the downregulation of
Apaf-1 or the upregulation of XIAP, as suggested by some
experiments (111). We speculate that tRNA in these cells may
contribute to caspase inhibition through the binding to cyto-
chrome c (Fig. 5).
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Potential Effects of tRNA on Cytochrome c’s Function
in the Electron Transport Chain

In most mitochondrion-containing eukaryotes, cytochrome
c has an ancient and essential function in the electron trans-
port chains. Cytochrome c resides in the mitochondrial inter
membrane space carrying electrons from the coenzyme Q:
cytochrome c-oxidoreductase (cytochrome bc1 complex/
complex III) to cytochrome c oxidase (COX or complex IV).
The proton gradient built by the electron transport chain
creates the mitochondrial transmembrane potential (DJm),
which powers the synthesis of ATP via ATP synthase (Fig. 6).
COX uses oxygen as the electron receptor for reduced cyto-
chrome c, generating water as the end product. COX accounts
for the vast majority of oxygen usage in our body, and is also a
major source of ROS. Although highly speculative, we envi-
sion below two scenarios where the tRNA–cytochrome c in-
teraction could influence the electron transport chain and ROS
production.

In the first scenario, mitochondrial function has been
shown to be compromised after MOMP and decrease of DJm.
The mechanism for DJm decline is still unclear, but the loss of

cytochrome c from the mitochondria is likely a main con-
tributing factor. The addition of exogenous cytochrome c
alone to post-MOMP mitochondria could restore electron
transport and maintain DJm (85, 123). It is possible that upon
MOMP, cytoplasmic tRNA gains access to the intermembrane
space, where it may inhibit the function of cytochrome c. This
might contribute to the decline in DJm and influence ROS
production.

In the second scenario, the interaction between cytochrome
c and tRNA may occur in healthy cells. This is suggested by
our previous work. To capture the cytochrome c–tRNA in-
teraction in cells and to prevent their association after cell
lysates, we fixed the HeLa cells in low concentrations of
formaldehyde, which fixes the tRNA–protein interaction, and
then the lysed cells were in a buffer containing zwitterionic
detergent Empigen BB, which disrupts the noncovalent RNA–
protein interactions. Under these conditions, we detected the
cytochrome c–tRNA interaction in healthy cells. This associ-
ation needs to be further verified. If it indeed occurs,
the function of cytochrome c inside mitochondria could be
regulated by tRNA. Of note, although the mammalian
mitochondrial genome encodes tRNAs for all amino acids,
nuclear-encoded tRNAs are still imported into mitochondria
(104). This raises the possibility that the cytochrome c–nuclear
tRNA interaction in healthy cells, if it occurs, may represent a
way of communication between mitochondria and the rest of
the cells.

tRNA–Cytochrome c Interaction in Cancer Biology
and Therapy

Evasion of apoptosis is a hallmark of cancer cells (39). It
contributes to both the formation and therapeutic resistance of
cancer cells. Relative to normal cells, cancer cells increase
proliferation and elevate protein synthesis levels by altering
the regulation of individual components of the translation
machinery (125, 127). Deregulation of Pol III and its products
is observed in a wide range of transformed cells, and this
deregulation itself can also drive transformation. For exam-
ple, moderate overexpression of initiator tRNA drives cell
proliferation, resulting in malignant transformation of im-
mortalized mouse fibroblasts (77). While initiator tRNA is
important for controlling the initiation phase of protein

FIG. 5. Possible role of tRNA in cell survival after
MOMP. The release of cytochrome c from the mitochondrial
IMS is facilitated by proapoptotic multidomain Bcl-2 proteins
(e.g., Bax) and BH3-only proteins (e.g., truncated Bid or tBid).
The inhibitory effect of tRNA on the apoptotic function of
cytochrome c may promote cell survival after the release of
cytochrome c. BH, Bcl-2 homology; I–IV, complex I–IV of the
electron transport chain; IM: mitochondrial inner membrane;
IMS, inner membrane space; OM, mitochondrial outer
membrane;.

FIG. 6. Role of cytochrome c
in the electron transport
chain. Cytochrome c is nor-
mally located to the mito-
chondrial IMS. During electron
transport, it carries electrons
from the coenzyme Q: cyto-
chrome c oxidoreductase (cy-
tochrome bc1 complex/
complex III) to COX or com-
plex IV. The proton gradient
built by this and the other steps
of the electron transport chain
creates the DJm, which pow-
ers the synthesis of ATP
through ATP synthase. COX or
complex IV, cytochrome c oxi-
dase; DJm, mitochondrial
transmembrane potential.
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synthesis, elongator tRNAs have the ability to regulate the
speed of translation during the elongation phase, suggesting
that both initiator and elongator tRNAs at elevated levels are
relevant to cancer development and progression. Indeed, a
genome-wide analysis of tRNA expression has shown an in-
crease by up to threefold for nuclear-encoded tRNA and by up
to fivefold for mitochondrion-encoded tRNA in cancer-
derived versus noncancer-derived breast cell lines, and an
increase by up to 13–20-fold for both types of tRNAs in tu-
mors versus normal breast tissues (95).

Further analysis in the above study has shown that the
tRNA overexpression in cancer cells is not random (95); cer-
tain individual tRNAs are more strongly overexpressed than
others. For example, among the nuclear-encoded tRNAs,
those specific for Ser, Thr, and Tyr are the most strongly
overexpressed. These amino acids are targets for protein ki-
nases, suggesting that tRNA overexpression can provide a
mechanism to regulate the proteins involved in signal trans-
duction. Additionally, tRNA overexpression is specific to
certain isoacceptors. For example, while tRNAArg, tRNALeu,
tRNASer are known to have a greater number of isoacceptors
than other tRNAs, only two isoacceptors of tRNAArg (those
with the anticodon UCU and CCU), one isoacceptor of
tRNALeu (with the anticodon UAA), and one isoacceptor of
tRNASer (with the anticodon CGA) are among those most
highly expressed. The selectivity among isoacceptors suggests
a correlation between tRNA overexpression and codon usage.
This correlation has been confirmed in the cancer-related
genes, such as those involved in cell cycle control, in extra-
cellular matrix formation, and in transcription regulation,
but not found in cell-line-specific or in house-keeping genes
(95). These data suggest that the elevated tRNA expression
in breast cancer cells can fine-tune the translation efficiency
of specific codons in specific genes that are important for
cancer. This notion is consistent with the general concept
developed from studies of bacteria and yeast, in that the
amount of tRNA isoacceptors during active cell growth is
correlated with the codon usage of the most highly expressed
genes (49, 50, 57, 90).

New work also suggests that stress-induced tRNA cleav-
age and release of RNases into the cytosol may be involved in
cancer, as well as other diseases. For example, tRNA frag-
ments are found in the serum and urine of humans and mice
with certain tumors (112), suggesting that tRNA cleavage
occurs in tumors in situ. Further studies are necessary to
elucidate the functional consequence of elevated tRNA ex-
pression and apoptosis resistance of cancer cells.

The effects of current chemo- and radiation therapies are
largely directed at DNA in tumor cells. In contrast, few ther-
apeutics, either being developed or being used in the clinic,
target RNA. Of note, a few RNase drugs have a specific an-
titumor activity dependent on their ribonucleolytic cleavage
activities (5, 24). Onconase/Ranpirnase, the furthest devel-
oped, is in clinical trials for various cancers (5, 24). Onconase
preferentially cleaves tRNA in a manner consistent with ap-
optotic sensitivity (51, 107, 114). Compared to traditional
chemotherapy, Onconase has a low systemic toxicity. Because
Onconase potentially disables an apoptosis resistance mech-
anism downstream of cytochrome c release, it kills tumors
cells independently of the p53 status. Similarly, inhibition of
the cleavage by antagonists of angiogenin (a member of the
RNase A family) has been shown to delay or to prevent tumor

development in vivo (94). A clearer understanding of the ad-
vantage tRNA provides tumor cells beyond supporting pro-
tein synthesis, and why tumor cells particularly are sensitive
to tRNA hydrolysis may lead to the improvement of Onco-
nase and other RNase therapeutics.

Summary

tRNA is present in all known forms of life. While its role in
mRNA translation has been extensively investigated, the
functions of tRNA beyond gene expression are rarely ex-
plored. Cytochrome c is similarly evolutionarily ancient. It is
an essential component of the mitochondrial electron trans-
port chain that powers ATP synthesis, and is required for life
in mitochondrion-containing eukaryotes. Cytochrome c also
has a critical role in cell death in vertebrates, and its release
from mitochondria is a defining step in the intrinsic apoptosis
pathway that leads to the formation of the apoptosome and
the activation of caspase-9. The finding that tRNA directly
binds to cytochrome c and diminishes its proapoptotic activity
presents a unique paradigm for the innate and dynamic
connections of the RNA and protein worlds. Further investi-
gation of the structural basis of this interaction, its regulation,
and its role in apoptosis, metabolism, and tumorigenesis will
likely enrich our understanding of tRNA biology and life and
death in both dividing cells and in postmitotic cells. This
understanding will provide a basis for therapies of a range of
cell death-related diseases.
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Abbreviations Used

DCm ¼mitochondrial transmembrane
potential

C¼pseudouridine
aa-tRNA¼ aminoacyl-tRNA

Apaf-1¼ apoptotic protease-activating
factor-1

BH¼Bcl-2 homology
CK2¼ casein kinase 2

COX or complex IV¼ cytochrome c oxidase
DISC¼death-inducing signaling

complex
GAPDH¼ glyceraldehyde-3-phosphate

dehydrogenase
IAPs¼ inhibitors of apoptosis protein
I–IV¼ complex I–IV of the

electron-transport chain
IMS¼ inner membrane space

MOMP¼mitochondrial outer membrane
permeabilization

mt-RNAP¼mitochondrial RNA polymerase
mt-tRNA and mt-mRNA¼mitochondrion-encoded tRNA

and mRNA
Pol III¼RNA polymerase

ROS¼ reactive oxygen species
TORC1¼Tor complex 1

tRNA¼ transfer RNA
XIAP¼X-chromosome-linked IAP
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