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Abstract

Significance: The intrinsic apoptosis pathway is conserved from worms to humans and plays a critical role in the
normal development and homeostatic control of adult tissues. As a result, numerous diseases from cancer to
neurodegeneration are associated with either too little or too much apoptosis. Recent Advances: B cell lym-
phoma-2 (BCL-2) family members regulate cell death, primarily via their effects on mitochondria. In stressed
cells, proapoptotic BCL-2 family members promote mitochondrial outer membrane permeabilization (MOMP)
and cytochrome c (cyt c) release into the cytoplasm, where it stimulates formation of the “apoptosome.” This
large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the
cysteine protease, caspase-9. Recent studies suggest that proteins involved in the processes leading up to (and
including) formation of the apoptosome are subject to various forms of post-translational modification, including
proteolysis, phosphorylation, and in some cases, direct oxidative modification. Critical Issues: Despite intense
investigation of the intrinsic pathway, significant questions remain regarding how cyt c is released from mi-
tochondria, how the apoptosome is formed and regulated, and how caspase-9 is activated within the complex.
Future Directions: Further studies on the biochemistry of MOMP and apoptosome formation are needed to
understand the mechanisms that underpin these critical processes, and novel animal models will be necessary in
the future to ascertain the importance of the many posttranslational modifications reported for BCL-2 family

members and components of the apoptosome. Antioxid. Redox Signal. 19, 546-558.

Introduction

APOPTOSIS 1S A PROGRAMMED FORM of cell death, charac-
terized by the activation of cysteinyl aspartate-specific
proteases (caspases) and the systematic breakdown of dying
cells into easily phagocytized apoptotic bodies. Depending
upon the stimulus, apoptosis is generally executed through
activation of either the extrinsic (death receptor) pathway or
the intrinsic (mitochondrial) pathway. Both pathways initially
activate an apical caspase (i.e., caspase-8 or caspase-9), which
in turn activates the downstream effector caspases-3 and -7,
resulting in cell death. The intrinsic pathway is activated in
response to intracellular stressors, induced by a litany of
stimuli including DNA damage and growth factor with-
drawal. These stress signals ultimately trigger mitochondrial
outer membrane permeabilization (MOMP), wherein the
outer mitochondrial membrane (OMM) undergoes permea-
bilization, generally as a result of the activation of certain
proapoptotic BCL-2 family members (142). MOMP then fa-
cilitates the release of several proapoptotic factors, including
cytochrome c (cyt c), from the mitochondrial intermembrane

space (IMS) into the cytoplasm, where they promote cell
death. In particular, cyt ¢ interacts with apoptotic protease-
activating factor-1 (Apaf-1) and stimulates (d)ATP-dependent
oligomerization of Apaf-1 into a caspase-activating complex
known as the “Apaf-1 apoptosome.” The apoptosome sub-
sequently recruits the initiator procasapase-9 through caspase
recruitment domains (CARDs) present in the N-termini of
both Apaf-1 and procaspase-9. Once bound, active caspase-9
then processes the effector caspase-3 and induces death (16).

The goal of this review is to cover recent discoveries related
to the apoptosome, and more generally, the impact of reactive
oxygen species (ROS) on the intrinsic pathway. However, as
one might expect, ROS can potentially impact this pathway in
many ways. For those familiar with pop culture, there is a
trivia game known as the “Six Degrees of Kevin Bacon,” in
which players attempt to connect any person in Hollywood
with the actor, Kevin Bacon, in less than six steps. Similarly,
there are numerous ways, both direct and indirect, to connect
oxidative stress with the intrinsic pathway, far more than can
be adequately addressed here. Thus, we shall focus primarily
on those events that immediately impact cyt c (or its release),
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Apaf-1, or caspase-9—or to keep with the analogy, we will not
stray more than two degrees from the apoptosome.

BCL-2 Family Members and MOMP

Arguably, the key step in the intrinsic pathway is per-
meabilization of the OMM, an event that is regulated by
members of the BCL-2 family (Fig. 1). BCL-2 proteins are
characterized by the presence of one to four BCL-2 homology
(BH) domains and the ability to regulate apoptosis, at least in
part, through the regulation of MOMP. The proapoptotic
family members include a BAX-like subfamily (BAX, BAK,
and BOK), as well as a “BH3-only” subfamily (BIM, BID,
PUMA, BAD, NOXA, etc.). BAX and BAK proteins contain
BH 1-3 domains, but lack a BH4 domain, and when activated,
are thought to stimulate MOMP and the release of cyt c by
forming pores in the OMM (Figs. 1 and 2). BH3-only proteins
such as truncated BID (tBID), on the other hand, promote
apoptosis by antagonizing antiapoptotic BCL-2 family mem-
bers and/or by directly activating BAX-like family members
(Figs. 1 and 2). Antiapoptotic family members (BCL-2, BCL-
Xt, MCL-1, BCL-W, and Al) contain all four BH domains
(with the exception of MCL-1 and A1) and neutralize BAX-
like and/or BH3-only family members, thereby preventing
BAX/BAK oligomerization and pore formation (128, 142)
(Figs. 1 and 2).

In terms of the direct effects of ROS on BCL-2 family
members, hydrogen peroxide (H,O,) reportedly induces BAX
dimerization through direct formation of a Cys-62/Cys-126
disulfide bond that promotes its translocation from the cyto-
plasm (where it normally resides) to the OMM (30) (Fig. 2B).
However, in most cases, oxidative stress alters the function of
BCL-2 family members by regulating the kinases that phos-
phorylate them. Broadly speaking, ROS are capable of acti-
vating p38 mitogen-activated protein kinase (MAPK), c-Jun
N-terminal kinase (JNK), extracellular signal-regulated ki-
nase (ERK), and Akt pathways, depending upon the context
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FIG. 1. Anti- and proapoptotic BCL2 family members.
Antiapoptotic BCL-2 family members (BCL-2, BCL-xL, BCL-
W, MCL-1, and Al) keep the multidomain proapoptotic
family members (BAX, BAK, and BOK) in check through
heterodimerization. BH3-only family members stimulate
MOMP and cell death, either by directly activating BAX,
BAK, and/or BOK, or by binding to and neutralizing the
antiapoptotic family members, although these mechanisms
are not mutually exclusive. To see this illustration in color,
the reader is referred to the web version of this article at
www.liebertpub.com/ars
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(132). However, a detailed discussion of all the mechanisms
whereby ROS alter kinase function, and consequently BCL-2
function, are beyond the scope of the current review. Suffice it
to say, these kinases have established roles in the regulation of
many pro- and antiapoptotic BCL-2 family members, often
converging upon them and regulating their expression or
function in highly complex ways, as in the case of MCL-1
regulation by ERKs, ]NKs, and glycogen synthase kinase-3f
(GSK-3p) (32, 53, 83, 86).

Cyt ¢ and ROS

Oxidants are thought to play important roles in the release
of cyt ¢ from mitochondria following MOMP and in the ability
of cyt c to stimulate formation of the apoptosome. However,
cyt c release also disrupts the electron transport chain (ETC)
and stimulates the production of ROS. In the next section, we
discuss these mechanisms in greater detail.

Role of ROS in cyt c release

Cardiolipin is a unique phospholipid found in the inner
mitochondrial membrane (IMM), where it associates with
several enzymes required for oxidative phosphorylation, in-
cluding cyt ¢ (108, 109). Since mitochondria are the main in-
tracellular source of ROS, especially at Complexes I and III,
cardiolipin is directly exposed to relatively high concentra-
tions of ROS in stressed mitochondria. Moreover, cardiolipin
contains four typically unsaturated fatty acyl chains (com-
pared with two in most phospholipids) and is therefore more
vulnerable to oxidation. Cardiolipin-bound cyt c also serves
as a cardiolipin-specific peroxidase that can oxidize cardioli-
pin in an H,O,-dependent manner (54). Once oxidized, car-
diolipin dissociates from enzymes in the IMM, including cyt c,
and becomes enriched in the OMM (91, 117). tBID appears to
target the OMM, at least in part, due to its strong binding
affinity for cardiolipin and then promotes BAX oligomeriza-
tion, which ultimately leads to pore formation and cyt c re-
lease (43, 44, 66, 72, 73). Thus, in short, cyt c release is a
cardiolipin-dependent process in which cardiolipin oxidation
plays an important role (Fig. 2).

Notably, the vast majority of cyt c (>85%) is present within
cristae—folded structures formed by the IMM—and it ap-
pears that crista junction opening (CJO) is required to liberate
oxidized cyt ¢ from the intra-cristae space into the IMS (115).
Optic atrophy 1 (OPA1), a dynamin-related GTPase located
on the IMM, regulates mitochondrial fusion and CJO. OPA1 is
proteolytically cleaved, most likely by OMA1 and Ymel (and
possibly PARL), and the truncated form of OPA1 reportedly
oligomerizes with noncleaved OPA1 to form a complex at the
crista junction that regulates its “tightness” (29, 33, 36, 48, 97,
121). Remarkably, CJO and MOMP are separable but required
events for cyt c release and apoptosis. Indeed, while tBID and
other BH3-only proteins induce the disassembly of OPA1
complexes in a BAX/BAK-dependent manner, unlike MOMP,
CJO does not require oligomerization of BAK. Moreover, cells
expressing a disassembly-resistant OPA1 mutant (Q297V)
undergo normal MOMP, but fail to release significant
amounts of cyt ¢ (140). Finally, it is worth noting that some
antiapoptotic BCL-2 family members, once thought to reside
only in the OMM, have recently been observed in the IMM
and appear to regulate mitochondprial fission/fusion dynam-
ics, cristae ultrastructure, membrane potential and/or F,F;-
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FIG. 2. Regulation of MOMP by BCL-2 family members and ROS. (A) Cartoon of a mitochondrion prior to MOMP. In
resting cells, BAX is located in the cytoplasm in an inactive state, while BAK is located in the OMM, where it is directly
inhibited by antiapoptotic BCL-2 family members. The convoluted IMM forms functional cristae that meet at crista junctions
through the action of OPA1 complexes. Cyt c is bound to cardiolipin within the cristae and engages the ETC, transferring
electrons between complexes III and IV. The proton gradient generated from the ETC drives ATP production via the F;F,-
ATP synthase (complex V). (B) Cartoon of a mitochondrion during MOMP. BH3-only family members (e.g., tBID), antagonize
antiapoptotic family members and/or directly activate BAX and BAK, resulting in the formation of BAX/BAK pores in the
OMM through which cyt ¢ may pass. There is some evidence that ROS may also oxidize BAX, resulting in the formation of
BAX dimers (connected via a disulfide bond), which subsequently translocate to the OMM. At the crista junctions, tBID and
non-oligomerized BAX/BAK induce OPAl-dependent opening of the junction through mechanisms that remain unresolved.
Within the cristae, ROS disrupt the interaction of cyt ¢ with cardiolipin by directly oxidizing cardiolipin. Cyt c then freely
passes out of the intra-cristae space into the IMS and subsequently into the cytoplasm through BAX/BAK pores, where it can
activate the Apaf-1 apoptosome. Loss of cyt ¢ from the ETC then triggers the production of O,°~ as electrons are transferred
to O,, rather than complex IV. Notably, cyt ¢ can also be directly oxidized, particularly at Met-80, which disrupts its
interaction with heme iron. The absence of heme alters the conformational shape of cyt ¢ and inhibits its ability to stimulate
activation of the apoptosome. Once caspases are activated, they can cross the permeabilized OMM and target subunits in
complexes I and II, further disrupting the ETC, and forcing complex V to run in reverse in a futile effort to re- estabhsh a
proton gradient and membrane potential. Finally, in some cases, particularly following exposure to ROS and Ca®*, mito-
chondria can undergo the permeability transition, wherein the IMM becomes permeable to water and solutes (perhaps
through activation of a PT pore). In this case, the matrix begins to swell, and because the surface area of the IMM vastly
exceeds that of the OMM, the OMM eventually ruptures and cyt c escapes into the cytoplasm. To see this illustration in color,
the reader is referred to the web version of this article at www .liebertpub.com/ars

ATP synthase activity (3, 25, 90). Thus, collectively, it appears
that cyt c release occurs through a two-step process: in the
first step, CJO, along with cardiolipin oxidation, allows for cyt
¢ to be released from the intra-cristae space into the IMS;
and in the second step, cyt c is released into the cytoplasm
through an oligomerized BAX/BAK pore in the OMM (88,
140) (Fig. 2B).

While formation of a BAX/BAK pore in the OMM is the
most widely accepted model for MOMP, an alternative model
involves BAX/BAK-dependent activation of a permeability
transition pore (PT pore), comprised of the voltage-dependent
anion channel (VDAC), the adenine nucleotide transporter
(ANT), and cyclophilin D (Fig. 2). Unlike the OMM, the IMM
is charged and impermeable to water and solutes, but in re-
sponse to certain proapoptotic stimuli, the PT pore opens,
resulting in catastrophic matrix swelling, rupture of the
OMM, and ultimately cyt c release (40) (Fig. 2B). Importantly,

most well-known inducers of the permeability transition in-
volve oxidative stress and/or the influx of Ca®* (70). While
there is little debate regarding the permeability transition
per se, there is significant disagreement as to the existence of
the PT pore (as defined) and its role in cyt c release, as well as
the mechanisms whereby pro- and antiapoptotic BCL-2 fam-
ily members regulate the permeability transition. Indeed,
many studies invoke a role for the PT pore in oxidative stress-
induced apoptosis, and both BID and BAX reportedly interact
with the PT pore, promote its formation, and/or regulate its
opening (74, 82, 107, 118, 119, 145). However, other studies
have demonstrated that cells deficient in all isoforms of
VDAC, ANT or cyclophilin D are still capable of releasing cyt
¢ and undergoing apoptosis in response to most stimuli,
though some do show defects in the permeability transition
(7, 65). Thus, the specific mechanisms underpinning the per-
meability transition and its role in MOMP remain unresolved.
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Direct effects of ROS on cyt ¢

The notion that the redox state of cyt c affects apoptosis is
also controversial. On the one hand, replacing iron in the
heme group of cyt ¢ with copper or zinc dramatically inhibits
its capacity to transfer electrons, but only partially inhibits its
ability to induce apoptosome formation in vitro (63). Cyt c is
also rapidly reduced in cytosolic extracts and in the cytoplasm
of stressed cells following MOMP (46, 104), implying that the
redox state of cyt ¢ has no major impact on apoptosome for-
mation or apoptosis. Other studies, however, suggest that
only oxidized cyt ¢ (Fe>*) possesses pro-apoptotic activity (13,
89,127). This controversy notwithstanding, it is clear that ROS
can directly modify specific amino acids in cyt ¢ (Fig. 3A).
Superoxide anion (O,°"), H,O,, hydroxyl radicals (HO®),
and peroxynitrite (ONOO™) oxidize methionine residues,
particularly Met-80 (26, 61, 87, 129) (Fig. 3B), and singlet
oxygen (*O,) not only oxidizes the ferrous form of cyt ¢, but
also modifies several residues including His-26, His-33, Met-
65, Met-80, and Phe-82 (60) (Fig. 3A). Importantly, oxidative
modification of Met-80 dissociates it from its heme group
and inhibits cyt c-dependent apoptosome formation (42, 78,
79, 127). Cyt c is also susceptible to nitration by ONOO™ at
Tyr-67, Tyr-74, and Tyr-97 (Fig. 3A), resulting in disruption
of the heme iron-Met-80 bond (2, 21, 42), and NO-dependent
nitration of Tyr-46 (human), and Tyr-48 (Fig. 3A) reportedly
causes cyt c to assemble into a nonfunctional apoptosome
(39). Finally, in addition to generating ROS, some redox-
cycling quinones have been shown to directly arylate key
lysines in cyt ¢, including Lys-72, thereby disrupting its in-
teraction with Apaf-1 and preventing formation of the
apoptosome (34, 35, 47, 62).

Impact of cyt c release on ROS production

In general, when cyt c is released, electron transport is
disrupted, and free electrons are donated to oxygen to pro-
duce O,°" (18) (Fig. 2B). Studies have shown, however, that
generation of O,°~ precedes the loss in IMM potential (A¥ ,,)
(18), and that even following cyt c release, a fraction of cyt ¢
can diffuse back across the permeabilized OMM, reengage the
ETC, and maintain some level of ETC function (138). Mi-
tochondria may also utilize ATP, generated through glycol-
ysis, to help maintain a near normal A¥,, by allowing the
F1Fo-ATP synthase (complex V) to operate in reverse, hydro-
lyzing ATP to help generate a proton gradient (137) (Fig. 2B).
Indeed, in many cellular systems, A%, can be maintained for
many hours, so long as caspases are inhibited and not allowed
to attack the ETC. If caspase-3 gains access to the ETC, it can
cleave the p75 NDUFSI subunit in complex I, which in turn
disrupts electron transport and promotes ROS production
(102) (Fig. 2B). Other more recent studies argue that caspases-
9 and -3 may have opposite effects on the ETC, in that caspase-
9 activity promotes ROS production, whereas caspase-3 ac-
tivity inhibits it (22). These studies underscore an important
question, as it relates to the intrinsic pathway: at what point
can a cell no longer survive, or more succinctly, when is the
point of no return? Is it MOMP, loss of ETC function, loss of
AW, apoptosome formation, or effector caspase activation?
Antiapoptotic BCL-2 family members inhibit all of these
events and promote clonal growth, implying that one of these
downstream events is likely the final lynch pin to guarantee
cell death.
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FIG. 3. Oxidative modifications in cyt c. (A) Crystal
structure of cyt ¢ with the coordinated heme group (PDB
2B47). Shown in green are residues oxidized by 10,, 0,°7,
H,0,, and/or *OH; whereas those shown in orange are sus-
ceptible to nitration by ONOO ™. (B) Met-80 (shown in yellow
in the crystal structure) is particularly susceptible to either
le™ or 2e” oxidations to methionine sulfoxide (114). To see
this illustration in color, the reader is referred to the web
version of this article at www .liebertpub.com/ars

The Apoptosome and ROS

In this last section, we will provide basic information on the
structure and function of Apaf-1, caspase-9, and the apopto-
some. Where applicable, we will also discuss how this com-
plex and its individual components are regulated directly
and/or indirectly by ROS.

Structure and function of Apaf-1

The adapter protein Apaf-1 possesses an N-terminal CARD
domain, through which it binds to caspase-9; a nucleotide
binding and oligomerization domain (NBD/NOD) that
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FIG. 4. Cyt c/dATP-dependent formation of the Apaf-1 apoptosome. Apaf-1 is initially present in an inactive form in the
cytoplasm, bound with (d)ATP/ATP. Upon its interaction with cyt ¢, most likely through its WD-40 repeats, (d)ATP is
hydrolyzed to (d)ADP, and Apaf-1 assumes a semi-open conformation. At this stage, if (d)ADP is replaced with (d)ATP,
Apaf-1 undergoes oligomerization through its NBD/NOD domain to form a fully functional apoptosome. If nucleotide
exchange does not occur, Apaf-1 instead undergoes aggregation into a nonfunctional complex. To see this illustration in color,
the reader is referred to the web version of this article at www liebertpub.com/ars

contains a AAA + ATPase cassette, with Walker’s A and B
boxes that bind to (d)ATP and Mg2 *, respectively; and a series
of C-terminal WD40 repeats that form seven and eight-blade
B-propellers (101, 103, 149) (Fig. 4). In normal cells, mono-
meric Apaf-1is likely present in an autoinhibited state, bound
to (d)ATP (50, 101, 103). Cyt ¢, following its release from mi-
tochondria, is thought to bind Apaf-1 between its 8-propellers
and induce (d)ATP hydrolysis, providing the energy neces-
sary to adopt a semi-open conformation (10, 49, 57). At this
stage, in the absence of nucleotide exchange, cyt c-bound
Apaf-1is prone to aggregation that results in the formation of
inactive apoptosome complexes (57) (Fig. 4). Thus, nucleotide
exchange is critical, and a nucleotide exchange factor com-
plex, composed of PHAPI, Hsp70, and cellular apoptosis
susceptibility (CAS), has recently been identified for Apaf-1
(58). Following nucleotide exchange, the NBDs are exposed,
and Apaf-1 undergoes proper oligomerization to form the
functional complex (19, 111, 150). Based upon cryo-electron
microscopy and structural modeling techniques, the func-
tional complex appears to contain seven Apaf-1 molecules,
arranged in a wheel-like structure with the NBDs forming a
central hub and the CARDs forming a ring that is situated
directly above the hub (143, 144). The WD-40 repeats then
form spokes that radiate outward from the hub and end
in a two-pronged fork that stabs cyt ¢ (143, 144) (Fig. 4).
Once formed, the Apaf-1 apoptosome then sequentially re-
cruits and activates the initiator caspase-9 and the effector
caspase-3 (17).

Direct and indirect effects of ROS on Apaf-1

How or if ROS directly regulate Apaf-1 remains unclear.
However, in one study, ROS were found to be required for
Fas-mediated apoptosome formation. Using in vitro trans-
lated Apaf-1 and caspase-9 (and purified cyt c), the authors
reported that apoptosome formation was inhibited by the
addition of antioxidants or reducing agents, and that oxida-
tion of Apaf-1 in particular was essential for the activation of
caspase-9 in their reconstituted system (112). In complete
contrast, others report that ROS can indirectly inhibit apop-
tosome function through the activation of certain kinases. For
example, one study found that JNKs, activated in response to
ROS, bound to Apaf-1 and cyt ¢ in a catalytically inactive
~1.4-2.0MDa complex, which the authors referred to as a

“preapoptosome complex” (133). Interestingly, we previously
reported the formation of active ~700kDa and inactive
~1.4MDa apoptosome complexes following cyt c¢/dATP
activation of lysates (19). Given that similar inactive com-
plexes are formed as a result of inadequate nucleotide ex-
change (57), it will be interesting to determine if JNK binding
(or perhaps JNK-dependent phosphorylation of Apaf-1) in-
terferes with nucleotide exchange. More recently, 90-kDa ri-
bosomal S6 kinase (Rsk) has been reported to phosphorylate
Apaf-1 at Ser-268 and Ser-357 (59). Phosphorylation at these
sites results in Apaf-1 sequestration by 14-3-3¢ and decreases
cellular responsiveness to cyt c. Though not examined in the
study, H,O, reportedly activates Rsk (1), raising the possi-
bility that ROS might suppress apoptosis in certain contexts
via RSK-mediated phosphorylation of Apaf-1.

Structure and function of caspase-9

Procaspase-9 is generated as a single-chain 46 kDa protein
with an N-terminal prodomain (CARD), followed by large
(~20kDa) and small (~12kDa) subunits, connected via an
intersubunit linker (16) (Figs. 5 and 6). Following apoptosome
formation, procaspase-9 is recruited to the complex through
CARD-CARD interactions with Apaf-1 (95). Procaspase-9
then undergoes autocatalytic processing within its inter-
subunit linker (Asp-315) to generate a two-chain (p35/p12)
enzyme (122) (Fig. 5A). Importantly, unlike other initiator
caspases, the prodomain in caspase-9 is generally not re-
moved at any step in its activation. Thus, caspase-9 is unique
in that it must remain bound to its caspase-activating com-
plex, the apoptosome, in order to sustain significant catalytic
activity (17, 105, 125). Once formed, the Apaf-1-caspase-9
complex activates the downstream effector procaspases-3
and -7 (17, 105, 141). In some cases, active caspase-3 can then
feedback on and cleave unbound procaspase-9 or p35/p12
caspase-9 at Asp-330 to generate p37/12 or p35/p10 caspase-
9 proteins, respectively (15, 123, 124, 151).

Apoptosome-bound caspase-9: an active
monomer or a dimer?

One of the more highly debated topics in caspase biology
has been the question of how caspase-9 is activated following
its interaction with the apoptosome? Two models have been
proposed: in the currently more well-accepted dimerization
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FIG. 5. Proposed mechanisms of caspase-9 activation within the Apaf-1 apoptosome. (A) The Apaf-1-caspase-9 apop-
tosome functions as a “molecular timer.” Once the apoptosome is formed, it can recruit and activate procaspase-9 through
dimerization (shown) and/or induced conformational changes in the enzyme (step 1). Importantly, caspase-9 must be bound
and remain bound in order to exhibit significant catalytic activity. While procaspase-9 is capable of activating the down-
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activates the vast majority of caspase-3 (step 4). This is important, because unlike procaspase-9, which has high affinity for the
apoptosome, the processed form of caspase-9 has low affinity for the complex and dissociates over time to be replaced by a
new procaspase-9 molecule (step 5). Thus, the Apaf-1 apoptosome functions like a proteolytic-based molecular timer, wherein
the intracellular concentration of procaspase-9 sets the overall duration of the timer, the autoprocessing of procaspase-9
activates the timer, and the rate at which p35/p12 caspase-9 dissociates from the complex (and thus loses its capacity to
activate procaspase-3) dictates how fast the timer “ticks” over (75). (B) Is active caspase-9 a dimer or a monomer? The
apoptosome is thought to activate caspase-9, either by increasing its local concentration and facilitating dimerization (top), or
by inducing a conformational change in monomeric caspase-9 that promotes its activation (botton). To see this illustration in
color, the reader is referred to the web version of this article at www liebertpub.com/ars

model, the apoptosome serves merely as a structural platform
to recruit caspase-9 and increase its local concentration,
thereby promoting its dimerization and subsequent activation
(12, 92) (Fig. 5B). Indeed, unlike effector caspases, which
are constitutive dimers, caspase-9 possesses a relatively low
affinity for itself and is normally present as a monomer in
solution. However, crystal structures of caspase-9 strongly
suggest that it is a dimer, and mutations along the proposed
dimerization interface kill the enzyme’s activity (100) (Fig.
6). In addition, caspase-9 can be activated by artificially en-
forcing its dimerization (12, 92), and if one swaps the pro-
domain of caspase-8 for the CARD in caspase-9, the
apoptosome then activates caspase-8, arguing that there is
nothing special about the apoptosome, other than its ability
to concentrate caspases (12, 92).

Proponents of the competing holoenzyme model argue in-
stead that the apoptosome functions as a positive allosteric
regulator of caspase-9, inducing conformational changes in
the enzyme that are necessary for its activation (24, 105) (Fig.
5B). They insist that the seven-fold (rather than eight-fold)
symmetry of the apoptosome is inconsistent with the idea that
caspase-9 would form dimers and point out that caspase-9 has
never been shown to dimerize in a wild-type Apaf-1-caspase-
9 apoptosome complex. Moreover, while enforced dimeriza-
tion of truncated caspase-9 (artificially lacking its prodomain)
activates the enzyme, the observed activity appears to be
significantly lower than that observed in a complex recon-

stituted with full-length Apaf-1 and caspase-9 (24). It is also
notable that swapping the putative dimerization domain in
caspase-9, with that found in caspase-3, produces a constitu-
tive caspase-9 dimer, which is structurally indistinguishable
from the wild-type enzyme. However, this caspase-9 dimer
still exhibits significantly less activity than apoptosome-
bound caspase-9 (24). Finally, a very recent cryo-electron
microscopy structure of the apoptosome suggests that a single
catalytic subunit of caspase-9 is bound near the hub of the
apoptosome (143) (Fig. 5B). Thus, future studies are needed to
assess not only the stoichiometry and dimerization status
of caspase-9 within the apoptosome, but their requirements
for activity.

The apoptosome as a molecular timer
for caspase activation

We have recently demonstrated that procaspase-9 pos-
sesses higher affinity for the apoptosome and can displace
processed p35/pl2 caspase-9 from the complex, thereby fa-
cilitating a continuous cycle of procaspase-9 recruitment/
activation, processing, and release from the complex (75) (Fig.
5A). Importantly, we found that procaspase-9 undergoes
autoprocessing so rapidly upon its recruitment to the complex
that the proform of the enzyme contributes little to the activa-
tion of procaspase-3. Consequently, our results led us to the
conclusion that the apoptosome functions as a proteolytic-based
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FIG. 6. Oxidative modifications in caspase-9. In this
crystal structure of dimerized caspase-9 (PDB code 1JXQ),
the enzyme contains two large subunits (dark green) and two
small subunits (light green) that contain the dimerization in-
terface (blue). This dimerized caspase-9 possesses only one
active site, as indicated by the presence of inhibitor (red).
ROS are proposed to activate caspase-9 through oxidation of
Cys-403 and formation of a stable dimer, resulting from
disulfide bond formation. Conversely, ROS may also inacti-
vate the enzyme through oxidation of its catalytic cysteine,
Cys-287. To see this illustration in color, the reader is re-
ferred to the web version of this article at www.liebertpub
.com/ars

“molecular timer” (Fig. 5A). In our proposed model, the intra-
cellular concentration of procaspase-9 sets the overall duration
of the timer, the autoprocessing of procaspase-9 activates the
timer, and the rate at which p35/p12 caspase-9 dissociates from
the complex (and thus loses its capacity to activate procaspase-
3) dictates how fast the timer “ticks” over (75). Our in vitro
studies suggest that noncleavable caspase-9 should disengage
the timer and result in an apoptosome complex that, once
formed, cannot be “turned off” (75). However, in cellular sys-
tems it is important to note that processing of procaspase-9 to
p35/p12 caspase-9 also produces a form of the enzyme that can
be inhibited by X-linked IAP (XIAP), a potent endogenous in-
hibitor of caspases-9, -3, and -7 (15, 124). Indeed, XIAP specifi-
cally binds to a neo-epitope on the N-terminus of the small p12
subunit of processed caspase-9. Thus, in future studies, it will be
important to determine the interplay between XIAP and the
molecular timer, as well as the relative importance of these two
mechanisms for regulating apoptosome function in vivo.

Direct and indirect effects of ROS on caspase-9

Regarding the direct effects of oxidative stress on caspases,
several studies have shown that caspase-3 activation and/or
activity can be negatively regulated by oxidants. In fact, sev-
eral cysteines in caspase-3, including Cys-73, Cys-220, and its
catalytic cysteine, Cys-163, undergo oxidation, nitrosylation,
and/or glutathionylation (11, 51, 69, 76, 84, 106, 147). The
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reported effects of ROS on caspase-9, however, are more in-
consistent. One study found that exposure of caspase-9 to
H,0O, promoted its interaction with Apaf-1, through a dis-
ulfide bond involving Cys-403 (152). Another study reported
the presence of active homodimerized caspase-9 within H,O»-
treated mitochondria and suggested that multiple cysteines
(including Cys-403) were sites of disulfide bond formation
(55) (Fig. 6). While these studies are intriguing and warrant
further investigation, some aspects are surprising. For exam-
ple, a few studies have reported the presence of caspase-9 in
mitochondria (67, 126, 148), but procaspase-9 does not possess
a typical mitochondrial targeting sequence and others find
that most of the caspase-9 that localizes to mitochondria does
so following MOMP (23). The purpose of mitochondrial cas-
pase-9 is also unclear, as it would presumably be released
from the IMS along with cyt ¢ during apoptosis. Given the
consensus that far more procaspase-9 exists in the cytoplasm
than in mitochondria, one might expect that apoptosome-
driven activation of cytoplasmic caspase-9 would be far more
active and plentiful. Finally, Cys-403 is one of the five amino
acids that constitute the dimerization domain in caspase-9
(Fig. 6), and mutations along this interface often kill enzyme
activity (100, 120). By contrast, other studies suggest that ROS
inhibit caspase-9 activation. H,O, reportedly blocks caspase-9
activation through oxidation of cysteine residues, including
its catalytic cysteine (Cys-287) (Fig. 6), and this process ap-
pears to be iron-dependent, implying that Fenton chemistry
and the production of HO® is involved (8). Similar to caspase-3,
the caspase-9 active site cysteine is also susceptible to
S-nitrosylation (131), and nitric oxide donors have been
shown to block formation of the Apaf-1-caspase-9 complex by
disrupting normal CARD-CARD interactions (146).

In addition to the direct effects of oxidative stress on cas-
pase-9, there are also a few potential indirect effects, many of
which involve the activation of kinases. Over the last decade,
there have been several reports that phosphorylation of
caspase-9 regulates its activity. Most prominently, human
caspase-9 is phosphorylated at Thr-125 by ERK2, DYRKIA,
and CDKI1/cyclin Bl kinases during survival signaling and
mitosis, and phosphorylation at this site directly inhibits the
activity of procaspase-9 following its recruitment to the
apoptosome (4, 5, 80, 81, 116). PKC{ and Akt also phosphor-
ylate human caspase-9 at Ser-144 and Ser-196, respectively,
leading to its inhibition (14, 20), but interestingly, neither of
these sites is conserved in the mouse. Finally, and perhaps
most surprising, c-Abl appears to activate caspase-9 through
phosphorylation at Tyr-153 (98). It remains unclear how any
of the aforementioned phosphorylation sites regulate caspase-
9 activity, since none are located in the active site or putative
dimerization domain. Thus, in the coming years, it will be ex-
citing to determine, mechanistically, how phosphorylation im-
pacts caspase-9 structure and function, as well as to test the
importance of phosphorylation in vivo. For additional insight into
ROS-independent regulation of the Apaf-1-caspase-9 apopto-
some, the reader is directed to the following reviews (16, 113).

Other effects of ROS on apoptosis in vitro and in vivo

As previously noted, in light of the pleiotropic effects of
ROS on apoptosis, we have chosen to focus the majority of this
review on the more immediate effects of ROS on the intrinsic
pathway. However, we wish to emphasize that oxidative
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modification of DNA, proteins, and lipids can impact a vari-
ety of signaling pathways, both upstream and downstream of
the intrinsic pathway. For example, ROS can activate the ki-
nase ATM, either through direct modification or as a conse-
quence of DNA damage, resulting in the activation of p53, a
transcription factor that drives expression of proapoptotic
BCL-2 family members, including NOXA, PUMA, and BAX
(27, 45, 68, 85, 136). ROS also regulate the upstream produc-
tion of sphingolipids through direct oxidative modification of
the acidic sphingomyelinase at Cys-629, or through oxidation
of glutathione (GSH), which normally serves as an endoge-
nous inhibitor of neutral sphingomyelinases (71, 96). In an
elegant biochemical study, Green and colleagues have re-
cently shown that two sphingolipid metabolites, sphingosine-
1-phosphate and hexadecenal, directly promote BAK and
BAX-induced MOMP, respectively (28). ROS may also pro-
mote apoptosis via the extrinsic pathway through upregula-
tion of death receptors or by serving as intermediates in the
activation of kinases, such as JNKs, which promote MOMP
through direct phosphorylation of BCL-2 family members (52,
53, 56, 93, 110, 130, 139).

How ROS mediate apoptosis in vivo has been more
challenging, in part due to difficulties in monitoring cell
and tissue-specific generation of ROS, as well as isolating
oxidatively-modified macromolecules, which can be short-
lived or artificially introduced from the isolation procedure.
There is little doubt, however, that ROS play important roles
in apoptosis in vivo, as transgenic and knockout mice for
various antioxidant genes, including superoxide dismutases
(SOD1 and SOD2), catalase, and glutathione peroxidases,
exhibit the expected decreases or increases in apoptosis in
response to ischemic injury and other pro-death stimuli (37,
38, 41, 64,94, 99, 134, 135). Moreover, the recent development
of various genetically-encoded fluorescent probes and imag-
ing techniques can now be used to monitor the production of
ROS in a spatiotemporal manner (6, 9, 31, 77). Thus, it should
be possible to establish the relative importance of ROS-
induced apoptosis versus inflammation, mutagenesis, etc. in
the development of disease and to determine the relative
importance of a given oxidative modification.

Concluding Remarks

After many years of research, the intrinsic pathway re-
mains an important area of investigation. Each step in the
pathway is regulated by various modulators and posttrans-
lational modifications. However, while the importance of
many of the genes in this pathway (e.g., BCL-2, cyt ¢, Apaf-1,
caspase-9, and XIAP) have been verified in transgenic and
knockout animal models, particularly during development,
many of these gene products and their post-translational
modifications, including oxidative modifications, have not
been thoroughly vetted in animal models of disease. This is
certainly true in cancer where most studies have been limited
to hematopoietic malignancies. Thus, in the future, it will be
critical to fully characterize in detail not only how the apop-
tosome is formed and regulated at the biochemical level, but
to assess its importance in vivo.
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APAF-1 = apoptotic protease-activating factor-1
BCL-2 =B cell lymphoma-2
BH =BCL-2 homology domains
CARD = caspase recruitment domain
Caspases = cysteinyl aspartate-specific proteases
CJO = crista junction opening
Cyt-c = cytochrome c
ERK = extracellular signal-regulated kinase
GSK-3f = glycogen synthase kinase-3/8
H,O, =hydrogen peroxide
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MAPK = mitogen-activated protein kinase
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O,°*” =superoxide anion
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OMM = outer mitochondrial membrane
ONOO = peroxynitrite
PT pore = permeability transition pore
ROS =reactive oxygen species
SOD = superoxide dismutase
tBID = truncated BID
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