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use of systems biology approaches to better understand 
innate immunity.

  Inflammatory disorders or syndromes are readily 
amenable to investigation by systems biology approach-
es, largely because an extensive repertoire of antibodies, 
reagents and assays exists for the evaluation of inflamma-
tory cells and molecules. Moreover, inflammatory disor-
ders often have systemic sequelae such as changes in 
acute inflammatory molecules, which can be measured 
quantitatively in blood, plasma or serum. Rheumatoid ar-
thritis is a chronic inflammatory disease associated with 
damage to joint cartilage and bone, as reviewed by Scott 
et al.  [1] . Tumor necrosis factor and cytokines such as in-
terleukin 6 are known contributors to inflammation in 
rheumatoid arthritis  [1] . In the first article of this the-
matic focus section, Masi et al.  [2]  utilize serum samples 
from a relatively large human cohort to identify host in-
flammatory molecules that might be predictive for rheu-
matoid arthritis. Analysis of the data from the study co-
hort using statistical modeling permitted construction of 
an integrative model of serum inflammatory molecules. 
The model is a step toward a comprehensive understand-
ing of immune networks and patterns of inflammatory 
molecule expression that precede or predict the onset of 
rheumatoid arthritis.

  The complement system is one of the first components 
of the host innate immune system to respond to invading 

 The innate immune system is the first line of host de-
fense against invading microorganisms and is essential 
for maintenance of host health. The innate immune re-
sponse is largely mediated by soluble host factors – such 
as complement – and phagocytic leukocytes. Cells of the 
innate immune system are equipped to recognize a diver-
sity of pathogens through pattern recognition receptors 
present on the cell surface. In addition, deposition of 
complement and antibody on the microbial surface en-
hance the phagocytic process. The ability of phagocytes 
to ingest and kill pathogenic microorganisms is immedi-
ate, nonspecific and not dependent on previous exposure 
to microbes. The innate immune response plays a pivotal 
role in initiating inflammation, and regulation of this 
critical process is highly complex. Over the past decade, 
our understanding of complex biological processes – 
 including the molecular mechanisms of innate host de-
fense – has increased dramatically through the applica-
tion of systems biology-level approaches. For example, 
genome-wide transcript analyses and proteomics studies 
have been instrumental in dissecting complex signal 
transduction pathways involved in recognition and kill-
ing of bacterial and fungal pathogens by cells of the innate 
immune system. In addition, similar strategies have been 
used to elucidate a diversity of host pathways involved in 
defense against viral pathogens. A thematic focus section 
in this issue of  Journal of Innate Immunity  highlights the 
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microorganisms. There are numerous functions of com-
plement proteins, including the opsonization of microbes 
for host recognition and activation of the inflammatory 
response  [3] . Complement activation produces protein 
fragments known as anaphylatoxins – e.g. C5a – which 
are known regulators of inflammation  [3] . C5a receptors 
are present on many cell types, including neutrophils, and 
C5a is a known neutrophil chemoattractant and has been 
reported to either directly activate these leukocytes or 
prime them for enhanced function  [3, 4] . Notably, previ-
ous studies in mice have demonstrated that the C5a re-
ceptor is important for innate host defense against infec-
tion  [5] . The ability of complement components such as 
C5a to diffuse to-and-from bacteria, especially those in 
biofilm matrices, is likely critical for the function of these 
molecules in the context of host defense. However, there 
is limited knowledge of this process. To that end, Conrad 
et al.  [6]  used a mathematical modeling approach to pre-
dict how bacterial biofilm matrices influence production 
and diffusion of C5a. 

  Neutrophils are critical in the defense against bacterial 
infections. These host cells are the most abundant leuko-
cytes in humans and are recruited rapidly to sites of infec-
tion. Most bacteria are ingested and killed readily by neu-
trophils and this process ultimately leads to neutrophil 
apoptosis or phagocytosis-induced cell death, a process 
important for the resolution of the inflammatory re-
sponse. However, some bacteria have evolved means to 
circumvent killing by neutrophils and thereby cause in-
fections. The ability of bacteria to delay neutrophil apop-
tosis and turnover or cause some other form of cell death 
(e.g. cytolysis) is an important component of pathogen-
esis  [7] . Inasmuch as neutrophils have a relatively short 
lifespan (9–10 days, with  ∼ 1 day in circulation), they are 
not especially well suited as hosts for intracellular patho-
gens. Indeed, macrophages, which are long-lived phago-
cytes, are targeted as appropriate host cells by many bac-
terial pathogens. That said, there are a few bacterial 
pathogens that survive and replicate within neutrophils, 
including  Anaplasma phagocytophilium   [8]  and  Fran-
cisella tularensis   [9] . Although progress has been made, 
our understanding of the molecular mechanisms that 
permit these pathogens to prolong neutrophil survival re-
mains incompletely characterized. In this special focus 
section, Schwartz et al.  [10]  use a microarray-based ap-
proach to gain a better understanding of the mechanisms 
used by  F. tularensis  to delay neutrophil apoptosis. The 
authors demonstrate that the pathogen triggers specific 
antiapoptotic and prosurvival mechanisms to survive 
within neutrophils. 

  A comprehensive understanding of the interaction of 
host and pathogen molecules during infection can pro-
vide a potentially important view of the disease process. 
For example, previous work by Shea et al.  [11]  deter-
mined concurrent host and pathogen transcriptomes – 
known collectively as an interactome – during infection 
of non-human primates with  Streptococcus pyogenes . 
Such interactome studies can identify biological process-
es important for both host and pathogen during infec-
tion. Using an interactome approach combined with pre-
vious protein-protein interaction data and mathematical 
modeling, Kuo et al.  [12]  investigated the host and patho-
gen molecules involved in the infection of zebrafish with 
 Candida albicans . Zebrafish are genetically tractable and 
have become widely used as a host model for infectious 
disease research.  C. albicans  is an opportunistic fungal 
pathogen of humans that grows as either a budding yeast 
or filamentous hyphae, and the ability of the yeast to form 
hyphae is important for virulence  [13, 14] . The studies by 
Kuo et al.  [12]  identified a protein-protein interaction 
network that provides new insight into development of 
hyphae during  C. albicans  infection. The findings can be 
used as a springboard for more targeted studies of the 
specific pathways and molecules involved in the fungal 
invasion process.

  It is well established that circadian rhythms regulate 
key daily functions and behaviors, such as metabolism 
and sleep-wake cycles  [15–17] . Indeed, much research fo-
cus has been placed on understanding the influence of 
circadian rhythms on metabolism and dietary health. 
There is also compelling evidence that circadian rhythms 
influence or regulate immune system function. For ex-
ample, a circadian clock in macrophages regulates chang-
es in expression of genes important for pathogen recogni-
tion and the innate immune response  [18] , and phagocy-
tosis is circadian-regulated in  Drosophila   [19] . Plant 
innate defenses against bacterial pathogens are optimal in 
daytime  [20] , a phenomenon related at least in part to 
circadian control of the recognition of pattern-associated 
molecular patterns  [21] . In mammals, REV-ERBα (a nu-
clear receptor and transcriptional repressor) and crypto-
chrome and CLOCK (core clock proteins), have been 
identified recently as important links between circadian 
rhythm and immune function  [22–24] . Given the impor-
tance of circadian rhythms in innate immunity, it is not 
surprising that disruption of the circadian cycle is associ-
ated with inflammatory syndromes  [25] . The confluence 
of innate immunity and circadian cycle is highly complex, 
and it is within this context that Mavroudis et al.  [26]  re-
view the use of systems biology-level approaches as a 
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means to gain an enhanced understanding of the role of 
circadian rhythms in innate immunity. These authors un-
derscore the use of mathematical models to predict func-
tion and mechanisms of clock networks.

  Systems biology and system biology approaches are 
changing rapidly as technology moves forward. As a re-

sult, many areas of basic and applied research, including 
the field of innate immunity, are now poised to under-
go – or have undergone – major scientific breakthroughs. 
The articles presented in this thematic focus section pro-
vide examples of the diverse nature of systems biology 
approaches in innate immunity.
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