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Multiscale Model Predicts
Tissue-Level Failure From
Collagen Fiber-Level Damage
Excessive tissue-level forces communicated to the microstructure and extracellular
matrix of soft tissues can lead to damage and failure through poorly understood physical
processes that are multiscale in nature. In this work, we propose a multiscale mechanical
model for the failure of collagenous soft tissues that incorporates spatial heterogeneity in
the microstructure and links the failure of discrete collagen fibers to the material
response of the tissue. The model, which is based on experimental failure data derived
from different collagen gel geometries, was able to predict the mechanical response and
failure of type I collagen gels, and it demonstrated that a fiber-based rule (at the micro-
meter scale) for discrete failure can strongly shape the macroscale failure response of
the gel (at the millimeter scale). The model may be a useful tool in predicting the macro-
scale failure conditions for soft tissues and engineered tissue analogs. In addition, the
multiscale model provides a framework for the study of failure in complex fiber-based
mechanical systems in general. [DOI: 10.1115/1.4007097]
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1 Introduction

Extracellular matrix proteins are assembled into complex hier-
archical structures in a tissue-specific manner to provide tissue
stability and to enable tissue function. When tissue-level forces
exceed the physiological range, ECM components can be dam-
aged, the stability of the tissue can become compromised, and the
tissue can become nonfunctional. For example, in whiplash inju-
ries, where abnormal head and neck kinematics produce excessive
cervical facet deformation, painful microtears may develop in the
cervical facet capsular ligament [1]. Alternatively, pathological
remodeling can lead to alterations in the tissue microstructure that
progressively weaken it and make it susceptible to catastrophic
failure. Such is the case with aortic aneurysms, where the stress in
the aortic wall exceeds the local tissue strength, and the vessel
ruptures or dissects, often with fatal consequences [2]. In both
cases, there is a fundamental lack of understanding of how tissue-
level loads are communicated to the ECM microstructure and lead
to tissue damage and failure. Because of the lack of understanding
of multiscale failure phenomena, the biomedical community is
limited in its ability to prevent, diagnose, and treat soft tissue inju-
ries and diseases of this nature.

To understand tissue failure better, several important models
have been developed that incorporate aspects of the tissue micro-
structure, often through collagen fiber crimp, fiber orientation, and
strain-based recruitment and failure distributions [3–6]. Although
these models can describe failure phenomena, they are con-
strained in their ability to provide insight into the mechanisms of
failure because the description of the tissue microstructure is lim-
ited or essential elements such as fiber-fiber interactions and real-
istic fiber kinematics are absent. Others have focused on the
importance of these elements as they relate to lung [7], intermedi-
ate filaments in the cytoskeleton [8,9], and nonbiological materials
[10,11], but those models are either two-dimensional or limited to
the behavior of a single network. Zohdi [12] has successfully
modeled multiscale failure in regular lattices of biological fibers,

and Ernst et al. [13] have also explored multiscale fiber network
failure (though in a nonbiological context) using a regular unit
cell with periodic boundaries. Most tissues are much more com-
plex and display regional inhomogeneities in microstructure, fiber
organization, and mechanical properties, such that the mechanical
response of the tissue derives from the integrated deformation and
distribution of load throughout the tissue ECM. Hence, for these
types of tissues, any model predicated on mechanisms of local
fiber failure must contain an explicit three-dimensional descrip-
tion of the ECM microstructure and the spatial heterogeneity of
the tissue. Recent studies support the need for this level of detail,
as they report nonaffine fiber reorganization [14–16] and regional
variations in the mechanical behavior in response to load [17,18],
including an example of complex relationships between the non-
coincident locations of damage and strain [19].

To address these issues, we have developed a multiscale model
that incorporates spatial heterogeneity and links the microscale fail-
ure of discrete collagen fibers to the macroscale material response of
the tissue. We have initiated our development of a failure theory for
soft tissues by examining failure mechanisms in a simpler system
that shares some of the properties of native tissues—a reconstituted
collagen gel. This model system has been used previously to under-
stand multiscale mechanical interactions and to validate model pre-
dictions [20,21]. In the current work, we apply a multiscale scheme
to the question of mechanical damage and failure in reconstituted
type I collagen gels. We have developed a multiscale model for
damage that links the microscale failure of discrete collagen fibers
to the macroscale material response of a collagen gel. First, we fitted
the model to a series of uniaxial strain-to-failure experiments using
a dogbone-shaped sample geometry. Next, we tested the model
against an alternative geometry that varied by design—a notched
dogbone in uniaxial extension—and gauged its ability in predicting
experimental forces, strains, and fiber alignment. In both portions of
the study, we use the same collagen source stock for our gels, recon-
stituted to a specific protein density using the same protocol.

2 Materials and Methods

2.1 Multiscale Model. In our multiscale mechanical model
(Fig. 1), representative volume elements (RVEs) comprised of dis-
crete fiber networks determine the mechanical properties of a finite
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element (FE) continuum at each of its Gauss points (with eight
Gauss points assigned to each element using tri-linear basis func-
tions). Typically, RVEs are on the scale of 10–20 lm, whereas the
FE domain spans several centimeters. A unique, randomly gener-
ated RVE network was assigned to each element in the model. This
model has been successfully used to simulate a range of materials
[20,22,23]. The method by which macroscale strain is coupled to
microscale stress within the model has been described previously
[22]. Briefly, macroscale deformations are mapped to deformations
of microscale RVE boundaries. The RVE network rearranges and
stretches in response to the boundary deformation, generating a
volume-averaged stress at each Gauss point within each finite ele-
ment. The macroscale deformation that balances stress within the
continuum is then determined iteratively.

Several governing equations were used in the model to couple
macroscale and microscale displacement, force, and stress. The

continuum force balance based on the volume-averaged stress
from RVE deformations is given by [22]

rij;j ¼
1

V

þ
@V

ðrL
ij � rijÞuk;inkdS (1)

In this equation, r is the macroscale averaged Cauchy stress, rL is
the local microscale stress, V is the RVE volume, n is the normal
vector to the RVE boundary, u is the displacement of the RVE
boundary, and index notation is employed. The RVE volume-
averaged Cauchy stress was calculated via the following equation
[22]:
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V

ð
V

rL
ijdV ¼ 1

V

X
bc

xifj (2)

Fig. 1 Overview of the damage model used in the multiscale simulations. The
dogbone domain, which exists on the scale of millimeters, is represented with a 3D
finite-element mesh. Within each hexahedral element are eight microscopic fiber
networks (RVEs) centered at the Gauss points that govern the stress-strain
response of the element. As the FE domain stretches, interconnected fibers in the
networks stretch and reorganize to satisfy force equilibrium. Fibers that exceed the
critical fiber stretch ratio are effectively removed by reducing their modulus by 10
orders of magnitude.
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In this equation bc is the set of all RVE boundary fiber cross-
links, x is the boundary fiber cross-link coordinate, f is a compo-
nent of the force acting on the boundary fiber cross-link, r is the
macroscale averaged Cauchy stress, rL is the local microscale
stress, and V is the RVE volume. The collagen density of all ex-
perimental samples (1.8 mg/ml) was matched exactly in the multi-
scale model by using the method outlined in Ref. [23], which
allowed for the accurate unitization of the mechanical stress-strain
response of RVE networks. All model simulations were run on a
32-core parallel cluster at the Minnesota Supercomputing Institute
with wall times between 10 and 12 h.

2.2 Microscale Network Damage. At the microscale, net-
works consist of assemblages of nodes and fibers within a unit
cube. Nodes are freely rotating and freely displaced pivots between
fibers. Fibers are nonlinear springs with the force along the axis of
stretch governed by the nonlinear constitutive equation,

Ff ¼
Ef Af

B
ðexp½BeG� � 1Þ with Ef � 0 for kf > kcrit (3)

where Ff is the resultant force along a fiber, Ef is the Young’s
modulus for a fiber at infinitesimal strain, Af is the fiber cross-
sectional area, eG is the fiber Green strain, B is a fitting parameter,
kf is the fiber stretch, and kcrit is the critical fiber stretch value at
which damage is triggered. The constitutive equation was adapted
from a previous model by Billiar and Sacks [24] for the prefailure
mechanics of a collagenous tissue, and the equation has been pre-
viously used successfully in multiscale models to capture the me-
chanical deformation (from small and large strains) of collagen
tissue analogs [20,25]. The cross-sectional area Af for fibers was
calculated based on a diameter of 100 nm as seen recently in the
work of Lai et al. [25] who performed scanning electron micros-
copy on reconstituted type I collagen gels, and this diameter is
also on the same scale as previous related studies [20,23]. Net-
works were created from Delaunay tessellations of a set of random
points that were originally created in a 2-unit cube and then
clipped from the center to produce a 1-unit cube in order to avoid
edge effects. Networks had a mean of 456 fibers with a standard
deviation of 48 fibers. The chosen number of fibers per RVE net-
work is on the same scale as previous studies using our multiscale
model that successfully captured the mechanics of similar colla-
gen gel tissue analogs [20,23]. The chosen topology of networks
(as constructed from Delaunay triangulations) was previously
compared to alternative topologies of lower nodal degree [26] in
uniaxial strain to failure dogbone simulations, and the chosen to-
pology was found to be the best match for experimental outcomes.
The model and experimental fiber alignment was initially iso-
tropic in the undeformed configuration (confirmed via polarized
light microscopy and then input into the model using isotropic
RVE networks) for all simulations considered. Collagen fiber
alignment changes can be compared relative to this initial starting
point for both model and experiment. Since each macroscale ele-
ment contains a unique fiber network at each of its eight Gauss
points (and simulation FE meshes consisted of several hundred
elements), the physics of approximately 1 to 2� 106 discrete
microscale fibers were tracked in each simulation run necessitat-
ing the use of supercomputing resources. The small-strain modu-
lus Ef of a fiber within the network was reduced by 10 orders of
magnitude (to achieve a near-zero mechanical contribution) if the
fiber exceeded a critical stretch value kcrit. This method of imple-
menting damage effectively removed the mechanical contribu-
tions of the failed fiber within the network but preserved network
topology. This failure model could potentially represent the fail-
ure of a fiber or of a fiber-to-fiber cross-link. Fibers were damaged
at the end of each macroscale displacement step of 0.10 mm,
selected as the minimum displacement step necessary to produce
convergent simulation results via trial and error. Fibers are
allowed to stretch and rotate in each microscale network within

the model (allowing for material reorientation and rearrangement)
at each displacement step within the multiscale simulation. All
intact fibers in each microscale network are load bearing (not only
fibers that span the RVE), and all intact fibers play some role in
contributing toward the single volume averaged stress calculated
for each RVE in the model. However, fibers are connected to one
another only through their original nodal linkages (topology is
preserved) within each RVE network, and fibers do not form new
linkages during the course of the simulation but rather pass
through one another, limiting the manner in which fibers redistrib-
ute and interact in the model.

2.3 Collagen Gels. Type I collagen gels were reconstituted
from a stock solution of 2.2 mg/ml acid solubilized type I bovine
collagen (Organogenesis, Canton, MA) with a final concentration
of 1.8 mg/ml using a similar protocol described previously [21]. A
solution containing 1 M HEPES (Sigma, St. Louis, MO), 1 M
NaOH (Sigma, St. Louis MO) and 10X MEM (Mediatech, Mana-
ssas, VA) was used to reconstitute the gels. Gels were cast into
molds of two different geometries—dogbone and notched (Fig. 1)
each with distinct dimensions—and incubated at 37 �C for approx-
imately 14 h prior to testing. Natural fiber scouring pad strips
(3 M, St. Paul, MN) were used as sample anchors in each mold
(the gels infiltrate the anchors at casting) and were inserted into
molds prior to the addition of the reconstituted gels to facilitate
gripping for uniaxial extension. Spring-loaded sandpaper grips
were then used to attach the anchors directly to the testing appara-
tus, alleviating the need to make contact with or apply direct
forces to the actual collagen gel sample.

2.4 Mechanical Failure Experiments and Simulations. A
series of uniaxial stretch-to-failure experiments were conducted.
The gels were tested in two different geometries: dogbone (n¼ 5)
and notched (n¼ 5). Experiments were conducted on a low-force
planar mechanical tester (Instron, Norwood, MA) in the Univer-
sity of Minnesota Tissue Mechanics Lab. Gels were tested to fail-
ure using a chosen grip displacement rate of 0.05 mm/s to elicit a
quasi-static force-strain response from samples. The mechanical
tester was operated under displacement control at all times. A dig-
ital video camera fitted with a 105 mm macro lens (Canon USA,
Lake Success, NY) was used to image a selected sample of the
notched geometry (speckled with Verhoeff’s stain) for optical
strain tracking via a custom digital image correlation method pre-
viously described in Ref. [27]. Briefly, the strain tracking method
relied on the analysis of a series of still images captured from the
filmed experiment using a custom code that applied an iterative
Newton-Raphson method for pixel displacements based on the
work of Ref. [28]. The collagen fiber alignment in a selected
notched geometry sample was also imaged during experiments
using quantitative polarized light microscopy [21,29,30]. Experi-
mental fiber alignment was quantified using a custom code that
analyzed sample images generated using a specialized optical
train consisting of a series of polarized light filters [29]. Two sepa-
rate samples were chosen for either strain analysis or for fiber
alignment since we are unable to simultaneously capture both ma-
terial parameters with our experimental methods. The grip forces
and displacements for the dogbone geometry were used to fit key
parameters (Ef, the fiber small-strain modulus, B, a nonlinear fit-
ting parameter, and kcrit, the critical fiber stretch for damage)
within our static (time-independent) multiscale damage model.
Parameters were fit in series by first fitting the macroscopic failure
stretch via the critical fiber stretch parameter, next the fiber modu-
lus was fit, and then last, the fiber nonlinear fitting term was fit via
a trial and error approach to minimize computational resources
expended. The same parameter values were then used to simulate
the notched test for comparison against the experimental findings.
Several notched test simulations were run (n¼ 3), each using a
unique set of RVE fiber networks and with the same key parame-
ters fit from the dogbone geometry. All fibers within the model
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were assigned the same material parameters. However, since the
network assigned to each element in the model was randomly gen-
erated and unique, the effective material properties compared
across all elements included some variance.

3 Results

3.1 Dogbone Experiment and Model Fit. Five dogbone
samples were loaded to failure, each demonstrating some yielding

before failure (Fig. 2). Model parameters (critical fiber failure
stretch kcrit¼ 1.42, unitless nonlinear fitting parameter B¼ 0.25,
and small-strain fiber modulus Ef¼ 7.4 MPa) were determined so
that the model peak force and strain at peak force were coincident
with the experiment. Using these parameters, the model matched
the loading response within the 95% confidence interval for grip
force over the entire sample stretch range (Fig. 2), although the
model did not demonstrate yielding, and the grip force was gener-
ally slightly lower than the mean values observed experimentally.
By design, material failure and the bulk of the deformation
occurred in the gauge region, defined as the interior region of the
dogbone sample consisting of the area encompassed by the two
parallel edges within its center. At peak force, the model stretch
between the grips was 1.29 as compared with a maximum single
element stretch of 1.61. Elements in the flared regions near the
grips experienced little stretch in comparison.

A small population of adjoining elements within the gauge
region was responsible for the loss of mechanical integrity within
the sample (Fig. 2). A specific region of localized elements (which
laterally spanned the sample in the center gauge region along two
bands of contiguous elements transverse to the direction of load-
ing) experienced the greatest loss of fibers and incurred the great-
est element stretches (Fig. 3). The rapid stretch in this region
allowed for the retraction of sample regions largely populated by
unfailed fiber networks as catastrophic damage ensued. For all of
our current and previous dogbone failure simulations, these
regions [26] have arisen and expanded within the gauge region of
the sample. Fiber networks within these elements lost percolation
(Fig. 4) (i.e., there was no connected fiber path across network

Fig. 2 Dogbone sample: comparison of the grip force against
the total sample stretch (k) for the experiment (solid line ends at
first sample failure) and model (dashed line). Error bars repre-
sent the 95% confidence interval for the experimental mean
(n 5 5). The quadrant defined by the dotted lines represents the
95% confidence interval for the peak experimental force and the
95% confidence interval for the experimental strain at peak
force. The center of the quadrant is marked with a red circle.
The macroscopic stress in the model for select points (A–D)
along the graph is depicted. Two fiber networks illustrating re-
gional differences in the failure mechanics are also shown and
shaded to indicate fiber stretch.

Fig. 3 Percentage of intact fibers per element varies at different
grip-to-grip sample stretches (k) for the model dogbone
geometry. Percentage of intact fibers were averaged over all RVE
networks within each element.
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faces) along the axis of stretch and experienced a maximum of
85.4% fiber failure at the end of the simulation as compared with
a mean of 4.36% across all elements (Fig. 5). The majority of ele-
ments, 61.5%, experienced no fiber failure during the simulation.
Fibers that were left intact in nonpercolating networks were found
in unconnected clusters attached to RVE network faces or were
contained in isolated fiber islands. Fibers in nonpercolating net-
works were analyzed following catastrophic failure in the dog-
bone sample (at a grip-to-grip macroscopic sample stretch of
1.36) and fibers were distributed according to the mean fiber ori-
entation tensor X (as defined in Ref. [23]) with diagonal terms
[X11 X22 X33] equal to [0.35 0.32 0.33], indicating that remaining
intact fibers were not simply arrayed orthogonal to the axis of
extension and likely retracted upon the failure of the majority of
fibers within the network. For context, all networks were initially
isotropic on average with a mean fiber orientation tensor X con-
taining diagonal terms [X11 X22 X33] equal to [0.33 0.33 0.33]
throughout the system before any strains were applied. It is impor-
tant to note that while we have plotted distributions of intact fibers
and network percolation within the model at different simulation
points, we are unable to investigate the actual microscale

deformation of the experimental collagen fiber network with our
current experimental setup to compare against simulated results.

In the simulation, the single element with the largest Cauchy
r11 stress at peak grip force (loaded in axis 1) was not contained
within the element set that experienced the greatest fiber failure
and that subsequently lost mechanical integrity over the sample
stretch (Fig. 6). Instead, elements that experienced the greatest
strain along the axis of loading at peak grip force (and after) were
elements where macroscale failure initiated within the gauge
region of the sample. Elements coincident with peak strain during
the simulation also experienced the greatest loss of collagen fibers
at the microscale. In all of our previous multiscale simulations of
failure in dogbone samples [26], failure has taken place in the
gauge region of the sample geometry regardless of networks
selected for the model. In the present study, we have not consid-
ered the role of stochasticity in the dogbone simulation case.
Rather, the role of independent simulations with unique networks
(n¼ 3) was considered in the case of the notch validation simula-
tions. A bimodal distribution of element stretches along the axis
of loading arose near the moment of peak grip force (as one popu-
lation of elements had largely failed while another population of
elements was left largely intact) as particular elements already
began to experience stretches that were 35%–40% greater than the
mean element stretch (Fig. 7).

Since RVE networks were generated randomly and were on av-
erage isotropic but included some variance in their mechanical stiff-
ness, we calculated the tangent modulus of all networks used in the
simulation at large deformations (using a uniaxial stretch of 1.4 for
each network) to see if this statistic played a role in macroscale
failure. Elements in the gauge region containing networks with the
largest tangent moduli were, unsurprisingly, not coincident with

Fig. 4 Elements with nonpercolating networks frame areas of
damage for the modeled sample at different grip-to-grip
stretches (k) for the dogbone geometry. A percolating RVE was
defined as a network that contained a connected fiber segment
that spanned both RVE faces normal to the axis of loading.

Fig. 5 Comparison of broken fiber percentages in elements
with and without percolating RVE networks at different grip-to-
grip stretches (k) for the dogbone geometry
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regions of greatest strain and greatest fiber failure in the model.
However, elements which contained networks with the smallest
tangent moduli values did not experience the greatest strains or the
greatest fiber failure in the model, suggesting that while tangent
moduli plays some role in framing damage within the model, there
is an interplay between overall macroscale kinematics, network
stiffness, and network variation that leads to catastrophic failure
within the multiscale system.

3.2 Notched Dogbone Experiment and Model Predictions.
For the failure of samples in the notched geometry simulated with
fitted parameters from the dogbone geometry, we found that the
predicted forces fell within the 95% confidence interval for all
grip forces above a sample stretch of 1.08 (Fig. 8). In this case,
the predicted grip forces were generally higher than those of the
experiment, which featured a shallower toe region as compared to
the dogbone experiment. The mean peak simulated force, and the
mean stretch at peak force fell within 15% of the experimental
values. Failure in the simulated notch case, similar to failure
experiments with notched collagen gels, was characterized by a
propagation of the stress concentrator through the axis perpendic-
ular to the direction of stretch.

At the end of the notch simulation, only 10.0% of elements had
experienced fiber failure as compared to 38.5% for the dogbone
case. Elements experiencing fiber failure were concentrated along
a path parallel to the crack tip (Fig. 9). The maximum fiber failure
percentage for these elements was 89.8%. At the mean peak simu-
lated force, the grip sample stretch along the axis of extension was
1.17 and was compared to an average stretch of 1.30 in the central
region spanning the notch, though the maximum element stretch
was 2.08 near the notch tip.

Percolation in RVE networks across the axis of stretch was lost
for elements for the dogbone and notched case only after the peak
force for these simulations was reached. 89% of elements that lost
percolation along this axis had lost greater than 45% of their fibers
during the simulation (Figs. 10 and 11). Only 5 of 312 elements
for the notch geometry lost percolation while 21 of 473 elements
lost percolation in the dogbone geometry. It is important to note
that in both the notch and dogbone simulations all RVE networks
were similarly generated and began as initially percolating and
isotropic, with the notch modeled in the macroscale FE mesh of
the simulation, not through any microscale RVE network altera-
tions. The loss of percolation in elements was characterized by a
sharp drop in the grip force for each simulation, leading to a cata-
strophic loss of mechanical integrity.

Simulated outcomes for the strain field and fiber alignment at
peak grip force were also compared to the experimental case (as
measured by digital image correlation) for the notched geometry
(Fig. 12). Qualitatively, areas of greatest strain in the sample

Fig. 6 The peak max principal Cauchy stress and the peak max principal Green
strain for the dogbone geometry plotted over the deformed finite element mesh at
the point of greatest grip force in the model

Fig. 7 Element stretch (along the axis of extension) plotted
over the deformed mesh for the model dogbone geometry. The
element stretch is also represented via corresponding histo-
grams at a given sample stretch (k) for the dogbone geometry.
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corresponded between simulation and experiment, centering at the
notch tip. Discounting elements whose networks contained a ma-
jority of failed fibers, the peak Green strain components in the
direction of extension near the notch tip fell within 0.3 and 0.5 for
the model and experimental case. Fibers became highly aligned in
the experimental case (as measured by quantitative polarized light
microscopy) along the axis of stretch over the unnotched region of
the sample. Fibers were left relatively unaligned in regions along
the axis of stretch through the notched region of the experimental
sample. This trend was also seen in the simulated case, but there
was greater realignment of fibers along the edges of the notch

perpendicular to the axis of stretch. There was also less variation
in alignment along the unnotched portion of the experimental
sample as compared with the simulated result.

4 Discussion

The model may be a useful tool in predicting the macroscale
failure conditions for engineered tissue analogs in complex geo-
metries based either on fitted values from simple experimental
geometries or from experimentally derived microstructural values
for fiber failure. For our collagen gel model, we were able to dem-
onstrate that a fiber-based rule (at the micrometer scale) for dis-
crete failure could strongly shape the macroscale failure response
of the gel (at the millimeter level). The agreement between the
model and the experiments demonstrates the ability to predict
tissue-level events based on a microstructural model. The systems
studied were relatively simple in that the samples were of uniform
collagen density and were initially isotropic. The extension to
more complex geometries and architectures, however, as arise in
native tissues [19,31] and bioengineered tissues [32,33], would be
difficult to model at the tissue scale without an underlying struc-
tural description. A major advance of the current work is the
potential to accommodate regional structural variation without
requiring a change in the failure criteria.

In order for us to realize that potential, however, a better under-
standing of fiber-level failure mechanisms is needed. One might
well argue that we have replaced the intractable problem of

Fig. 8 Notched sample: comparison of the grip force against
the total sample stretch (k) for the experiment (solid line ends at
first sample failure) and model prediction (dashed line is the
mean result and gray area represents the 95% confidence inter-
val for n 5 3 independent simulations). Error bars represent the
95% confidence interval for the experimental mean (n 5 5). The
quadrant defined by the dotted lines represents the 95% confi-
dence interval for the peak experimental force and the 95% con-
fidence interval for the experimental strain at peak force. The
center of the quadrant is marked with a red circle. The macro-
scopic stress in the model for select points (A–D) along the
graph is depicted. Two fiber networks illustrating regional dif-
ferences in the failure mechanics are also shown and shaded to
indicate fiber stretch.

Fig. 9 Percentage of intact fibers per element varies at differ-
ent grip-to-grip sample stretches (k) for the notched geometry
model. Percentage of intact fibers were averaged over all RVE
networks within each element.
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modeling failure at the tissue level with the merely difficult prob-
lem of modeling it at the fiber level. The current work used the
simplest possible failure model—no damage until a critical strain
is reached, at which point the fiber fails catastrophically—which
is appropriate for a single strain-to-failure experiment as per-
formed here but would not be able to capture a fatigue mechanism
in which repeated loading cycles contribute to the failure of the
tissue. Advances in single-collagen-fiber mechanical analysis [34]
are steadily increasing our understanding of fiber behavior and
will be particularly informative on this point. Direct comparisons
to previous studies of single-fiber failure in type I collagen (both
experimental and simulated) while useful for context, are limited
by differences in fiber diameter, intrafibrillar cross-linking, hydra-
tion, and collagen source. Shen et al. [34] experimentally strained
type I collagen fibrils (native to sea cucumbers with diameters
ranging from 150 to 470 nm) uniaxially and observed a mean
yield stretch of 1.21 6 0.13 with observed fiber failure occurring

over a broader range with select fibers stretching well beyond this
range without failure. Buehler [35] has predicted, using purely at-
omistic modeling, tropocollagen molecule (subfibrillar) failure
stretches between 1.4 and 1.6 via reactive force modeling. Pins
et al. [33] experimentally found failure stretches for uncrosslinked
reconstituted type I collagen fibers ranging from approximately
1.2 to 1.7 for much larger hydrated diameters falling between 120
and 330 lm. Our chosen fiber failure parameter of 1.42 for all of
our simulations falls within the range of these previous findings
for fiber-level or sub-fiber-level failure stretch values. However,
since fiber failure in our model may represent either the mechani-
cal failure of fibers or potentially the failure of fiber-to-fiber link-
ages, direct comparisons are elusive. The small variance in our
simulated outcome for the notched geometry (measured via the
simulated grip force or sample stretch) relative to the experiment
suggests that we may need to consider the possibility of stepped
fiber failure or that we need to include greater variability in our
model networks (perhaps by utilizing fiber diameter distributions)
or by employing probabilistic rules for fiber failure. Furthermore,
better understanding of network structure, and of what parameters
are needed to characterize the network structure and to develop re-
alistic network geometries [36], is also necessary to strengthen the
model.

There is a growing body of work exploring the role of network
structure in damage. Important two-dimensional examples include
the work of Bates et al. on elastic fiber networks in the lung
[37,38] and Keten et al. [8] on protein networks, all of which used
structured networks with random variations in fiber properties to
capture variability. Black et al. [39] have successfully used a zip-
per network model to add context to their experimental findings

Fig. 10 Elements with nonpercolating networks frame areas of
damage for the modeled sample at different grip-to-grip
stretches (k) for the notched geometry. A percolating RVE was
defined as a network that contained a connected fiber segment
that spanned both RVE faces normal to the axis of loading.

Fig. 11 Comparison of broken fiber percentages in elements
with and without percolating RVE networks at different notched
model grip-to-grip stretches
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on the failure of engineered extracellular matrices. However, none
of these studies, nor any other to our knowledge, have linked sub-
failure microscale damage to the macroscale failure properties of
tissue analogs as we have demonstrated in the present study. The
analysis of the loss of percolation in the three-dimensional Delau-
nay networks employed in our model also adds to existing work
on quantifying percolation thresholds for various instances of
Delaunay triangulation lattices such as the recent study by Becker
and Ziff [40] that numerically calculated an edge percolation
threshold between 0.33 and 0.35 for two-dimensional random
Delaunay lattices. In our three-dimensional networks, we find that
when a fraction of nearly 0.55 fibers (edges) are connected in me-
chanical networks extended along a single axis, in most instances,
percolation is preserved along the same axis.

Finally, we note that most tissues involve multiple fiber net-
works (e.g., fibrin and collagen) and/or a significant quantity of
nonfibrillar macromolecules (e.g., proteoglycans), which could be
extremely important in understanding the failure and subfailure
behavior of a tissue. Gross tissue failure obviously must include
failure of all components and might reasonably be expected to
include (and, in many cases, be dominated by) the failure of a col-
lagen network, but subfailure damage may well involve other
components in nonobvious ways.
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