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Abstract
In this paper, we present a segmentation scheme that automatically and accurately segments all the
cartilages from magnetic resonance (MR) images of nonpathological knees. Our scheme involves
the automatic segmentation of the bones using a three-dimensional active shape model, the
extraction of the expected bone-cartilage interface (BCI), and cartilage segmentation from the BCI
using a deformable model that utilizes localization, patient specific tissue estimation and a model
of the thickness variation. The accuracy of this scheme was experimentally validated using leave
one out experiments on a database of fat suppressed spoiled gradient recall MR images. The
scheme was compared to three state of the art approaches, tissue classification, a modified semi-
automatic watershed algorithm and nonrigid registration (B-spline based free form deformation).
Our scheme obtained an average Dice similarity coefficient (DSC) of (0.83, 0.83, 0.85) for the
(patellar, tibial, femoral) cartilages, while (0.82, 0.81, 0.86) was obtained with a tissue classifier
and (0.73, 0.79, 0.76) was obtained with nonrigid registration. The average DSC obtained for all
the cartilages using a semi-automatic watershed algorithm (0.90) was slightly higher than our
approach (0.89), however unlike this approach we segment each cartilage as a separate object. The
effectiveness of our approach for quantitative analysis was evaluated using volume and thickness
measures with a median volume difference error of (5.92, 4.65, 5.69) and absolute Laplacian
thickness difference of (0.13, 0.24, 0.12) mm.
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I. INTRODUCTION
QUANTITATIVE analysis of healthy cartilage joints can improve our understanding of
cartilage morphology and physiology. In particular, by examining the influence of
demographics [1], [2] and monitoring physiological effects [3]. This allows the factors that
influence normal cartilage variation to be determined, which is an important prerequisite to
improving our understanding of cartilage diseases like osteoarthritis (OA) and allowing the
development and refinement of cartilage-dedicated therapeutic strategies and surgical
treatments.

Magnetic resonance (MR) imaging is the most promising imaging modality to detect
structural changes in cartilage tissue, as it provides direct and noninvasive images of the
whole knee joint, including the cartilage tissue [4]. Obtaining accurate and reproducible
quantitative cartilage measures from MR images is still an open problem and has been the
focus of significant research. In the literature several measures are commonly used,
including volume, thickness, surface area, and curvature [5]–[7]. These measures require the
cartilages to be segmented, a task whose accuracy significantly influences the error and
precision of the quantitative analysis. Unfortunately due to the structure and morphology of
the cartilages as well as the nature of MR acquisition, obtaining accurate segmentations can
be problematic.

As MR could allow more accurate monitoring of cartilage-dedicated therapeutic strategies
and surgical treatments, a significant amount of research has been focused on improving the
automation, accuracy and precision of the quantitative analysis by improving: the MR
sequence, the segmentation process, and the quantitative measures. The rest of this section
provides a brief overview of all these areas, however this paper only examines two:
automatic cartilage segmentation and quantitative analysis.

A. MR Imaging for Cartilage Assessment
The cartilages consist of several layers, each with different water and protein content and
varying collagen fibre orientation. Acquired MR images of the cartilages often exhibit
varying signal due to these natural changes in local tissue properties and from various MR
artifacts (susceptibility, magic angle, and partial volume effects).

The MR sequence that is most commonly used for cartilage quantification is fat suppressed
(FS)T1-weighted spoiled gradient recall (SPGR) [6], [8]. It provides good spatial resolution,
contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). Fat suppression potentially
increases the dynamic range of signal acquisition and removes the chemical shift artifact. In
FS SPGR the boundary between the bone and the cartilage [i.e., the bone-cartilage interface
(BCI)] is particularly well delineated. However, low contrast between the cartilage-meniscus
and cartilage-synovial fluid interfaces, often cause poor delineation of cartilage defects [9].

In recent years, several cartilage-specific sequences have been developed that exhibit less
imaging artifacts, improved CNR, SNR, and often permit higher resolutions [9]–[11]. Two
promising modalities are water-selective excitation double echo in the steady state
(weDESS) [10] and multiecho data image combination (MEDIC) [12]. In this paper, we use
T1 weighted FS SPGR images, weDESS, and MEDIC MR images.

B. Prior Work on Segmentation of Cartilages
To perform quantitative analysis requires the cartilages to be segmented. Due to the small
changes that are required to be detected this must be performed with a high level of accuracy
and precision. Difficulties in non pathological knees are due to the thin variable morphology
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of the cartilages, variable intensity homogeneity, MR artifacts, and low contrast areas in the
joint surface.

C. Semi-Automatic Cartilage Segmentation
In clinical studies, due to the lack of accurate and robust automated algorithms, fully manual
or 2-D slice by slice semi-automated segmentation approaches are usually used [8]. This is
time consuming and requires trained operators (often three months of training [13]), who
interact with the algorithm on a slice by slice basis: initializing, correcting and validating the
segmentation. When rigorous procedures are used, these approaches can take several hours
per knee [13]. Semi-automatic segmentation approaches previously used include region
growing [14], active contours [5], B-spline snakes [6], [11], and live-wires [15]. In
longitudinal studies, significantly improved follow up segmentation times have been
achieved by assuming the bones only undergo rigid changes and utilizing edge detection and
thresholding on the propagated baseline cartilage segmentations [13].

D. Automatic Cartilage Segmentation
In recent years, there have been several interesting approaches which allow automated
segmentation of the cartilages; Folkesson used an approximate nearest neighbor framework
to perform tissue classification on various derived image features and the absolute position
[16], Grau used a modified watershed metric which utilized prior information [17] and
Glocker used a statistical atlas in a registration scheme to segment the patellar cartilage by
deforming the atlas so that the conditional posterior of the atlas density is maximized with
respect to the image [18].

Folkesson's approach was validated on a large database of low field (0.18 T) non-FS T1
weighted MR images acquired from healthy and OA subjects, with a segmentation accuracy
for the tibial (Sens. 0.868±0.077, Spec. 1.00±0.01, DSC 0.810±0.06) and feromal (Sens.
0.803 ± 0.116, Spec. 0.999 ± 0.03, DSC 0.770±0.08) cartilages. Glocker's segmentation
accuracy for the patellar cartilage (Sens. 0.941, Spec. 0.999, DSC 0.840) was obtained from
a reasonably large database of T2 weighted MRs acquired from healthy subjects. Grau
segmented cartilage tissue from a small database of healthy subjects, and is the most
accurate approach that has been reported (Sens. 0.900 ± 0.03, Spec. 0.999 ± 0.00, DSC
0.895 ± 0.01), however, it is semi-automatic, requiring around 10 min of user seeding and it
can only segment the individual cartilages as a single object.

E. Bone Segmentation, BCI Extraction, and Cartilage Segmentation
As direct cartilage segmentation is difficult, several approaches have been presented which
first segment the bone and use this segmentation as a basis for cartilage segmentation and
analysis [19]–[21]. Bone segmentation of FS SPGR images is nontrivial because the adipose
(fat) tissue, background, and tendons all have essentially the same intensity distribution with
poor delineation at these interfaces (see Fig. 1).

An early work by Kapur (on non-FS MRIs), used a model-based approach that utilized the
geometric relation of the cartilage to the underlying bone to obtained cartilage
segmentations with a mean distance error of 1.25 pixels [19]. Tamez-Pena [20] used image
fusion and multispectral classifier segmentation to augment the different discrimination
provided by two different sequences (FS T1 weighted and non-FS T2 weighted 3-D gradient
recall echo acquisitions). This approach required the acquisition of two MRs, with around 5
min of manual merging to obtain accurate bone segmentations, while the cartilages required
a further 30 min of interactive correction. If only a single FS image is acquired, the bone
segmentation takes four times longer as there is not “enough information to separate the
bone tissue from surrounding fatty tissue and the background.”
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An almost fully automatic approach based on graph searching has been used on eight
isotropic MR images of the ankle [21]. In this approach the bones were presegmented using
a level set based algorithm with a deformable shape and texture model driven by
deformations produced using cubic B-spline based free form deformation. The bone
segmentation is then converted into a mesh surface which is used to build a local graph from
which the two (bone and cartilage) surfaces are extracted simultaneously using two separate
cost functions. This approach obtains good results for the ankle and only requires a simple
manual initialization of seed points for the bone segmentation.

F. Prior Work on Quantitative Analysis
Quantitative analysis has been the focus of significant research, with measures of volume,
thickness, surface area and curvature investigated [5]–[7], [22]. Volume (and area)
measurements usually involve the direct numerical integration of the voxels (or triangles)
attributed to each segmented cartilage. As the acquired images are usually highly
anisotropic, resampling using shape based interpolation (SBI) is often performed in
preprocessing [23]. Surface area and curvature measurements are commonly performed by
fitting B-spline [7] and m-rep surfaces [24]. Thickness measurements can be defined in
numerous ways and require a unique association between two points and some definition of
the distance between them. Definitions previously used in the literature include normal
vectors from the BCI [5], Euclidean distance [6], offset map differences [22], and Laplacian
distance [25].

G. Outline and Aims
In this paper, we present a model based scheme that is designed to segment all the bones and
cartilages in the knee. Our approach is compared to three state of the art approaches, a tissue
classification scheme inspired by Folkesson [16], a modified semi-automatic watershed
algorithm [17] and non-rigid registration (NRR, B-spline based free form deformation [26]).
These approaches were trained and validated against expert manual segmentations of a
heterogeneous database of FS SPGR MR images. Validation of the obtained quantitative
measures was performed using volume and thickness.

II. MATERIALS AND METHODS
A. MR Image Acquisition

We used an anonymised database of 20 healthy volunteers who were not known to have OA
or knee pain. They were imaged using a FS SPGR MR sequence (Fig. 1). Demographic
information was not available, however no exclusion criteria based on age or gender was
used. Each of the acquired images were manually segmented by an expert using 3-D Slicer
[27], resulting in labeled images of the patella, tibia, and femoral bones and cartilages.

The MR images were acquired using three different sets of parameters. Several parameters
were common, with all images acquired in the sagittal plane with a field of view (FOV) 120
mm, slice thickness 1.5 mm, and repetition time (TR) 60 ms. A flip angle of 40° was used on
all cases except case 7 which used 30°. Six scans were acquired at 3 T with in-plane spacing
0.23 × 0.23 mm and echo time (TE)7 ms. A birdcage coil was used for 5 of these scans
(cases 1, 6, 14, 15, 16) and a head coil was used on case 3. Fourteen scans were acquired at
1.5T using two different extremity array coils. A G.E. coil was used for five of the scans
with image matrix with in-plane spacing 0.46 × 0.46 mm, TE5 ms used for four cases (cases
17, 18, 19, 20), while case 7 was acquired with in-plane spacing 0.23 × 0.23 mm, TE3.2 ms,
and flip angle 30°. A MEDRAD coil was used for the other nine images with in-plane
spacing 0.23 × 0.23 mm, TE 7 ms (cases 2, 5, 8, 10, 12, 13), and 12 ms (cases 4, 9, 11).
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To investigate the consistency of the segmentation algorithm against partial volume and
repositioning effects, we were kindly provided the MR image and manual segmentations
used in [17]. This single patient was scanned four times with a FS SPGR sequence (in-plane
spacing 0.23 × 0.23 and slice thickness 1.5 mm) with Scan 1 taken before “a half-voxel shift
was applied and Scan 2 was acquired. After moving the volunteer out of the scanner for 20
min and repositioning the knee, Scans 3 and 4 were acquired, again with a half-voxel shift
applied after Scan 3.” To further consider the consistency of the segmentation algorithm, we
obtained several weDESS (TE = 8.6 ms, TR = 25 ms, 0.41 × 0.41 mm, and slice thickness
1.5 mm) and MEDIC (TE = 22 ms, TR = 44 ms, 0.41 × 0.41 or 0.3 × 0.3 mm and slice
thickness 1.5 mm) MR sequences. These images were acquired from three young volunteers
(ages 27, 30, and 46) on a 1.5 T Siemens scanner.

B. Validation Methodology
All the experiments presented were performed using a leave one out approach. The cartilage
segmentations automatically obtained were compared to the expert binary manual
segmentations using sensitivity = TP/(TP + FN), specificity = TN/(TN + FP) and Dice
similarity coefficient (DSC) = 2TP/(2TP+FP+FN) where TP is true positive, TN is true
negative, FP is false positive, and FN false negative count for the voxels. The sensitivity is
the “true positive fraction” and specificity the “true negative fraction,” while DSC is a
spatial overlap index [28].

C. Quantitative Analysis
In this paper, we used volume and thickness quantitative measures to compare the
segmentation results from our scheme to those obtained with manual segmentations. These
measures were performed on isotropically resampled segmentations (SBI [23]). The volume
measurements were performed by direct numerical integration of the voxels attributed to
each segmented cartilage. To allow direct comparisons, all volumes were calculated with the
voxelized segmentations.

The thickness was evaluated using two different approaches. The first approach defines the
thickness as the distance from the outer cartilage surface to the BCI calculated from the
voxelization using a 3-D exact Euclidean distance transform (EEDT) [29]. For this, a 3-D
EEDT is calculated from the outer cartilage interface to the BCI. This transform is not a
bijective mapping, and reflects the shortest distance between points on the interfaces.
Similar types of approaches are commonly used in the cartilage quantitative analysis
literature [6].

The second approach uses Laplace's equation to define the thickness [25], [30]. For this, the
top (other tissues) and bottom (BCI) surfaces are set to fixed potentials, which meet around
the edges of the cartilages. The Laplace equation is then solved in the cartilage volume to
obtain a scalar field which divides the cartilage into a set of equipotential sublayers. The
length of streamlines that connect pairs of points on the inner and outer interfaces are used
to define the cartilage thickness. The advantage of this approach is that the thickness
obtained is a bijective mapping, so each outer cartilage point maps to a unique BCI point.

D. Segmentation Approaches
Our segmentation scheme is based on using a segmentation hierarchy, where easier objects
are segmented first to aid the initialization and provide constraints on the segmentation of
harder objects. In the knee there is a strong spatial relationship between the bones and
cartilages. Our fully automatic scheme utilizes this relationship to perform cartilage
segmentation from the BCI. This interface is determined adaptively using image information
and prior knowledge from training. The scheme consists of using a bone statistical shape
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model, augmented with cartilage thickness statistics, to obtain a coupled but elastic bone-
cartilage model. Using this model, the three main bones in the knee joint (femur, tibia, and
patella) are segmented after which the BCI is extracted and used to initialize and constrain
the segmentation of the articular cartilages. The statistical shape model creation, bone
segmentation and initial BCI extraction have previously been presented in [31] with the
focus of this paper being on the cartilage segmentation.

A schematic of our approach and the affine registration, non-rigid registration (NRR, B-
spline based free form deformation [26]) and the tissue classification scheme are presented
in Fig. 2.

1) Affine Registration—A global transformation Tg between case i; i = 1,2,…,N and the
atlas is estimated by an affine transformation determined from correspondences between
very similar areas in both images using a block matching strategy. This procedure has
previously been described in [32] for use in the registration of anatomical sections. The atlas
case used in this work was simply another labeled MR case which had been manually
segmented.

2) Nonrigid Registration (NRR)—NRR uses local transformations to match the case i; i
= 1,2,… and the atlas and has been used previously to segment the patellar cartilage [18].
There are many NRR approaches; in this paper we use the free form deformation approach
first proposed by Rueckert (see [26] for full details). In this approach, a mesh of B-spline
control points is used to parameterize the deformation field, which is optimized using a
gradient descent search with normalized mutual information (NMI) used as a similarity
measure. To reduce the computational cost a five-level hierarchical multiresolution approach
is used to perform the segmentation propagation, with control point spacing 20 mm, 10 mm,
5 mm, 2.5 mm, and 1 mm. The computational load is further reduced to approximately 18 h
by using dilated masks (20, 15, 10, 10, and 5 radius kernel) to restrict the set of active
control points.

3) Tissue Classification—The tissue classification approach was inspired by the work of
Folkesson [16] and used to segment each individual cartilage compartment. Differences to
Folkesson's work include the use of a support vector machine [33], [34] for training and
classification, a reduced set of features and instead of using absolute cartilage position, we
use the Euclidean distance from each bone. The full set of features we use are the
normalized image, the Euclidean distance from each of the presegmented bones, then using
three different scales (σ = 0.5, 1.0, and 2.0 mm) we generate recursive Gaussian images,
with first- and second-order derivatives in (x, y, and z) and the three eigenvalues of the
Hessian image. Unlike Folkesson, we did not use the third-order derivatives, structure tensor
or the eigenvectors of the Hessian image. Both the automatic and expert manual
segmentations were used as presegmentations of the bones. Training was performed in two
different ways; leave one out was performed using the consensus [35] of the automatic bone
segmentations, while five training sets each of nine images were used with the manual bone
segmentations. The computational load of the classification was approximately 5–10 min
per cartilage, and was performed in a localized region within 8 mm of the BCI using a three-
level image classification pyramid.

4) Our Approach: Bone Segmentation and Extraction of Initial Bone Cartilage
Interface—In FS SPGR images, both the bones and cartilages have interfaces with other
tissues which are poorly delineated. The FS in the SPGR sequence removes most of the
signal from the bone, which primarily consists of fat, and increases the dynamic range of the
cartilage tissue, which primarily consists of water. As a result, the bones are similar in
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appearance to the background, tendons, and other fat tissue, with little contrast between
these tissues. However, the interface between the bone and cartilage is very well delineated,
moreover, the intensity distribution of the voxels in MR images that belong to the bone can
be modeled by a Gaussian distribution. To handle missing boundaries or poorly delineated
objects, the use of active shape models [36] has proved to be successful in many
applications.

The bone segmentation approach used in this work is presented in [31] and is based on using
3-D active shape models (ASMs), built from a training set of triangulated surface
representation of each of the bones in the knee. Prior knowledge about the probability of
having cartilage tissue and its thickness was also embedded in the ASM and was used to
estimate the location of the BCI.

Initialization of the 3-D ASM was provided by an affine registration of an atlas (another
labeled MR case with surface) to the case. After segmenting the bones, the points in the
ASM with a probability of more than 90% of having cartilage are extracted and treated as
the initial estimate of the BCI. This is then refined in the following way.

a) Model the cartilage tissue parameters by a Gaussian distribution.

• Extract tissue samples along a 4 mm 1-D profile normal to the BCI
(samples extracted at twice the in-plane resolution using cubic B-spline
interpolation).

b) Consider points with at least two neighbors on the BCI (via triangulation).

• If a point has 25% of its extracted samples with intensity above the
estimated cartilage tissue mean then add it to the BCI.

c) Converge if the number of points on the BCI unchanged else Goto b).

5) Our Approach: Cartilage Segmentation—The cartilage segmentation algorithm
further refines the bone segmentation, BCI extraction and estimated thickness profile.
Localized estimates of tissue properties and classification is incorporated, while the BCI and
thickness maps (Euclidean distance) from the training database are used to build a principal
component model of thickness variation for the points on the BCI. The number of modes
used was constrained to account for 90% of the variation in the training data. These are
combined and used in a 3-D active surface model approach to segment the cartilages.

The first stage of the cartilage segmentation process refines the estimate of the tissue
properties used in the BCI extraction and generates a distance image for each of the bones.
This is achieved by first creating a binary mask of voxels that are above and within 8 mm of
the BCI. Using this mask a localized estimate of the tissue properties is obtained using an
expectation maximization Gaussian mixture model [three classes, initialized using previous
estimate of bones, cartilage and other (tissue between bone and cartilage intensities)]. Once
the tissue properties have been estimated, a probability image for cartilage tissue is
generated (Gaussian based with any value above the mean value assigned a probability of
one). This information is then used as input to the cartilage segmentation algorithm, which
operates as follows.

Until range is 0:

a) For each point i on BCI find thickness ti.

• Extract profile along a 8 mm 1-D profile normal to the BCI (k samples
extracted at twice the in-plane resolution using cubic B-spline
interpolation).
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• Assume that the position j along the profile that maximizes the MR
image gradient g and internal tissue probabilities (p) (F(gj,pj) = max(|
δgj|/max(|δg|) + 1/kΣkpj–k) corresponds to the correct outer cartilage
edge.

b) Parameterize and reconstruct likely thickness using model of thickness variation
(trained from normal patients).

c) Enforce BCI boundary constraints.

d) Set ti to 0 for points that do not have internally more than 60% of samples with p
≥ 95%.

e) Decrease capture range by reducing search range around ti.

After convergence the coupled bone–cartilage model is voxelised and the distance map is
used to relabel any overlapping voxels as the nearest cartilage interface. Similarly any
voxels along the outer cartilage surface with intensity close to the bone are discarded. The
computational time for the cartilage segmentation is approximately 15 min.

III. RESULTS
A. Segmentation Validation

The block matching strategy used to estimate the affine transformation between the patient
image and the atlas qualitatively obtained robust results and provided a good estimate of the
“global” affine deformation between the images. However, although it was sufficient to
initialize subsequent approaches, it has only limited sensitivity and specificity for cartilage
segmentation (see Table I). The use of NRR to perform cartilage segmentation propagation,
obtained significantly improved results compared to it's affine initialization. However, the
accuracy of the final NRR results were often closely related to the accuracy of the initial
affine registration.

As can be seen in Table I and Fig. 3, our approach and the tissue classifier obtained
significantly better DSC than NRR (significance was found using a paired t-test with p <
0.05 for the patellar and femoral, although only the HDM was found to be significant for the
tibial). There was no statistical difference in DSC between our approach and the tissue
classifier.

The results obtained by our approach, NRR and the tissue classifier followed a similar trend
across the cases (Fig. 3) varying mainly depending on the image quality. A qualitative
illustration of the difference between our approach, manual segmentation and NRR is given
in Fig. 4. The low resolution (cases 17–20) images were much noisier with less contrast
between the cartilages and surrounding tissue. This was especially true for cases 17 and 19
where low contrast resulted in none or very poor delineation of the outer cartilage interfaces.
None of the approaches investigated performed well on these images.

Qualitatively, the tissue classifier slightly outperformed our approach when segmenting the
femoral cartilage, but our approach was slightly better at segmenting the patellar and tibial
cartilages. One reason for this is that our model approach finds it more difficult to accurately
model regions of high curvature without causing under-segmentation. For the tissue
classifier, the synovial fluid and cruciate ligament regions and the cartilage–cartilage
interfaces were found to be more difficult to segment correctly. Overall we found that the
tissue classifier slightly oversegmented the cartilages, hence its higher specificity (higher
true positive and lower false negatives), while our approach tended to under-segment (lower
false positive).
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Overall the primary cause of segmentation errors were regions affected by partial voluming
and other signal decreases. This occurred primarily around the edges and thin regions of the
cartilages, and was also observed in regions of high curvature (in slice thickness direction).
In a few cases small errors were also observed between the femoral and tibial cartilages
(e.g., Slice 48 in Fig. 4). Small errors were also observed at the femoral and patellar
cartilage interface. The overall approach was quite robust to initialization (atlas choice) with
failures in the cartilage segmentation only occurring in case 17 and the patellar of case 4,
except when the previous bone segmentation had already failed (which occurred in 3.60% of
the segmentations [31]).

We further validated this approach using the data of the fourth subject from [17]. This
subject was scanned four times to evaluate the effect of partial voluming and repositioning,
with the ground truth of each scan obtained using STAPLE on 10 manual segmentations
performed by two experts (five times each). As can be seen in Table II, the values of
sensitivity, specificity and DSC for the total cartilage (patellar, tibial and femoral) were
similar, with the lower sensitivity and higher specificity of our approach indicating it
slightly under-segments compared to the modified watershed algorithm. The primary
advantage of our approach is that it does not require any user interaction and each cartilage
is segmented and labeled separately, which is essential for quantitative analysis.

B. Quantitative Analysis
1) Volume—Fig. 5(a) presents a scatter graph of the volume calculated from the (manual,
automatic) segmentations, which had an average volume of (4047, 3912), (6026, 6056), and
(14703, 14463) mm3 and median absolute volume difference error of (5.92%, 4.45%, and
5.69%) for the patellar, tibial and femoral cartilages respectively (excluding case 17 which
failed). The correlation between the volume measured from manual segmentation and the
automatic algorithm using Pearsons was (0.89, 0.95, 0.97). Although the patellar results
appear low, after removing the more problematic results of case 4, this increases to 0.97.

2) Thickness—The difference in the distance images obtained using the Laplacian and
EEDT definition of thickness is illustrated in Fig. 6, with the average thickness calculated by
integrating the value of all the voxels on BCI. A scatter graph comparing the Laplacian
thickness calculated from our algorithm and that of the manual segmentations is presented in
Fig. 5(b). The Laplacian thickness measure was generally larger than the EEDT (which
obtains the shortest 3-D distance) with a Pearson coefficient of (0.92, 0.86, 0.93) compared
to (0.94, 0.92, 0.94) for (patellar, tibial, femoral), respectively. In Fig. 7, a volume rendering
of the Laplacian thickness provides a qualitative illustration of the results obtained from
both manual and our automated segmentations.

C. Reproducibility of Quantitative Analysis
To validate that our segmentation and quantitative analysis is consistent we calculated the
quantitative measures for each of the four scans of the same patient. As can be seen in Table
III the quantitative analysis measures are quite consistent between scans, with only one of
the patellar segmentations exhibiting a large variation in volume. A general variation of
about 5% in mean thickness was observed, with a significant amount of this variation
observed between the repositioned “pairs” of scans, with scan 1 similar to 2 and 3 similar to
4.

Although our scheme was designed for FS SPGR images, it can be applied to MRs that
exhibit similar anatomical appearance (Fig. 8). This and the consistency of the quantitative
analysis was further evaluated by scanning three volunteers (A to C) using weDESS and
MEDIC MR sequences, with one volunteer (A) scanned twice (two weeks apart). The
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MEDIC scans for volunteer C and one of the scans for volunteer A were acquired with in-
plane resolution 0.3 × 0.3 mm, all other scans were acquired with in-plane resolution 0.41 ×
0.41 mm. All scans were automatically segmented and quantitative measures calculated
(Table IV).

IV. CONCLUSION AND FUTURE WORK
Quantitative analysis of healthy cartilage joints allows a greater understanding of the natural
variation, influence of demographics and physiological effects on cartilage morphology and
physiology. In this paper we have presented a fully automatic segmentation scheme that
obtains cartilage segmentation results for FS SPGR images of nonpathological knees that are
comparable or superior to other published automatic algorithms. This is particularly true for
the patellar and tibial cartilages, although, the tissue classifier was found to obtain slightly
better results for the femoral cartilage. The decrease in accuracy of all algorithms on lower
resolution images (with decreased SNR and CNR) indicate fully automated cartilage
segmentation requires MR images with as high resolution, SNR and CNR as possible.

Our scheme is based on using a segmentation hierarchy where easier objects initialize and
constrain the segmentation of harder objects. It uses trained information in the form of bone
shape and cartilage thickness, with patient specific tissue properties used instead of trained
appearance models as these varied too much between patients, position and scans. The
advantage of our scheme over previous approaches is that we utilize a very good automatic
segmentation of the bone to extract the BCIs, from which local appearance and edge
information is used to perform the segmentation while being constrained by global tissue
appearance and trained thickness constraints. This allows us to obtain highly accurate
segmentations of each cartilage in the knee, where the average error is less than half the in-
plane spacing. The use of the Laplacian thickness measure to perform quantitative measure
was found to be precise, however, on the non pathological knees examined, it was not found
to provide any advantages over other techniques. In the future we intend to investigate
whether it may be more sensitive to pathological changes like lesions.

The primary limitation of this paper is that it has only been validated on nonpathological
knees, and may require changes to adapt this to OA subjects. That being said, there is still
significant clinical and research interest in the segmentation of healthy cartilage tissue. We
also believe the use of a larger cohort with more specific demographic (age and sex),
acquired at high field strength (3 T) with homogeneous MR parameters will further improve
the segmentation results.
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Fig. 1.
Labelled (P—Patella, T—Tibia, F—Femur, with arrows pointing towards Articular cartilage
tissue) Sagittal fat suppressed SPGR MR images of the knee: (a) case 2 (1.5T, 60/7 (TR/TE),
40° flip angle, 512×512 matrix, 120 mm FOV) (b) case 20 (1.5 T, 60/5, 40° flip angle,
256×256, 120 mm FOV). The cartilage displays high signal intensity, while bone, tendons,
and adipose tissue have low signal intensity.
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Fig. 2.
Flow diagram of the different segmentation schemes used to automatically segment the
bones, extract the BCIs and segment the cartilages. The surface rendering results presented
are of case 12 with case 6 used as the atlas.
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Fig. 3.
DSC results obtained for the (a) Patellar, (b) Tibial, and (c) Femoral cartilages with nonrigid
registration (1 mm), tissue classification and our hybrid deformable model approach. The
results are sorted based on patellar cartilage DSC of our approach.
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Fig. 4.
Overlayed segmentations (gray contour on patellar and tibial cartilages) for case 9 (case 15
as atlas, slices 16 and 48). From left to right: MR, Manual, NRR (DSC = 0.82,0.79,0.82),
our approach (DSC = 0.87, 0.85, 0.86), and the texture classifier initialized using our bone
segmentation (DSC = 0.84, 0.83, 0.87). Note: Areas of interest used 1.5 × zoom.
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Fig. 5.
Scatter graph of the (a) volume and (b) average Laplacian thickness measured for the
cartilages of each case using manual and automated segmentations.
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Fig. 6.
(a) Laplacian and (b) EEDT thickness map (mm) calculated from the automatic
segmentation of case 3 overlayed on the MR slice, with the distance calculated on the BCI.
Note: Area of interest used a 1.5 × zoom.
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Fig. 7.
Volume rendering of the Laplacian thickness map (mm) obtained for the (patellar, tibial)
cartilages of case 9 using (a) manual (2.38 ± 1.04, 2.17 ± 0.94 mm) and (b) automatic
segmentations (2.25 ± 1.06, 1.85 ± 0.90 mm).
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Fig. 8.
Automatic segmentation results for the (a) weDESS and (b) MEDIC MR images of
volunteer B visualized at approximately the same anatomical location. Note: Areas of
interest used 1.5 × zoom.
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TABLE I

Mean (Standard Deviation) of Validation Measures

Affine Sensitivity Specificity DSC

 - (Patellar) 0.450 (0.163) 0.998 (0.001) 0.422 (0.164)

 - (Tibial) 0.460 (0.170) 0.998 (0.001) 0.473 (0.166)

 - (Femoral) 0.418 (0.143) 0.994 (0.002) 0.427 (0.138)

Non-Rigid Sensitivity Specificity DSC

After 10mm

 - (Patellar) 0.506 (0.178) 0.998 (0.001) 0.479 (0.186)

 - (Tibial) 0.652 (0.153) 0.999 (0.001) 0.671 (0.139)

 - (Femoral) 0.664 (0.154) 0.997 (0.002) 0.682 (0.144)

After lmm

 - (Patellar) 0.803(0.119) 0.999 (0.001) 0.732 (0.156)

 - (Tibial) 0.781 (0.156) 0.999 (0.001) 0.785 (0.095)

 - (Femoral) 0.795 (0.162) 0.997 (0.002) 0.758 (0.148)

Tissue Classifier Sensitivity Specificity DSC

 - (Patellar) 0.903 (0.126) 0.998 (0.001) 0.810 (0.116)

 - (Tibial) 0.908 (0.093) 0.996 (0.001) 0.793 (0.068)

 - (Femoral) 0.867 (0.120) 0.996 (0.001) 0.849 (0.075)

Leave one out (auto bone)

 - (Patellar) 0.895 (0.040) 0.998 (0.001) 0.817 (0.105)

 - (Tibial) 0.867 (0.067) 0.997 (0.001) 0.812 (0.050)

 - (Femoral) 0.844 (0.147) 0.997 (0.001) 0.862 (0.040)

Our Approach Sensitivity Specificity DSC

 - (Patellar) 0.821 (0.135) 1.000 (0.000) 0.833 (0.135)

 - (Tibial) 0.829 (0.207) 0.999 (0.000) 0.826 (0.083)

 - (Femoral) 0.837 (0.162) 0.999 (0.000) 0.848 (0.076)
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TABLE III

Cartilage Quantitative Analysis Using Volume and Mean (STD) (Maximum) Thickness for Each Scan of The
Same Patient [17]

Scan Volume (mm3) Laplacian BCI (mm) EEDT BCI (mm)

Patellar (1) 2717 2.32 (0.94) (4.34) 2.16 (0.97) (4.22)

(2) 2684 2.34 (0.96) (4.49) 2.17 (0.99) (4.25)

(3) 3093 2.47 (0.88) (4.32) 2.13 (0.99) (4.09)

(4) 2808 2.30 (0.95) (4.42) 2.12 (0.99) (4.12)

Tibial (1) 4471 1.68 (0.83) (4.18) 1.58 (0.80) (3.96)

(2) 4395 1.72 (0.80) (4.05) 1.62 (0.78) (3.98)

(3) 4225 1.77 (0.82) (4.11) 1.67 (0.79) (3.99)

(4) 4323 1.74 (0.86) (4.41) 1.63 (0.83) (4.15)

Femoral (1) 10277 1.87 (0.69) (4.01) 1.80 (0.70) (3.96)

(2) 10246 1.86 (0.69) (4.08) 1.78 (0.70) (4.05)

(3) 10644 1.90 (0.69) (4.05) 1.82 (0.71) (3.99)

(4) 10634 1.87 (0.69) (4.12) 1.79 (0.70) (4.15)
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TABLE IV

Cartilage Quantitative Analysis Using Volume and Mean (STD) Laplacian Thickness for Wedess and Medic
Images of the Three Volunteers (A to C)

weDESS MEDIC

Scan Volume Laplacian Volume Laplacian

Patellar (Al) 4493 3.45 (1.48) 4734 3.67 (1.58)

Patellar (A2) 4679 3.54 (1.53) 4924 3.66 (1.62)

Patellar (B) 4182 3.45 (0.98) 3971 3.35 (1.00)

Patellar (C) 3031 2.57 (1.53) 3486 2.56 (1.49)

Tibial (Al) 4264 1.94 (0.68) 4909 2.23 (0.86)

Tibial (A2) 5023 2.12 (0.90) 5454 2.08 (0.98)

Tibial (B) 6473 2.35 (0.81) 5966 2.38 (0.74)

Tibial (C) 5759 2.04 (1.01) 4765 1.77 (0.97)

Femoral (Al) 13422 2.42 (0.89) 13490 2.52 (0.98)

Femoral (A2) 13219 2.44 (0.94) 13590 2.40 (0.93)

Femoral (B) 14929 2.61 (0.87) 13523 2.48 (0.88)

Femoral (C) 13947 2.28 (0.87) 12130 2.15 (0.89)
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