Skip to main content
. Author manuscript; available in PMC: 2013 Jul 21.
Published in final edited form as: Neural Comput. 2012 May 17;24(9):2473–2507. doi: 10.1162/NECO_a_00321

Table 3.

Average Performance Comparison for ISVM, 1-Versus-All and Weston-Watkins Using 14 Data Sets and Running LOO on 100 Random Samples for Each Data Set.

Data Set NS Inhibitory SVM
1-Versus-All
Weston-Watkins
10% 25% 50% 10% 25% 50% 10% 25% 50%
Abalone 50 61.43% 60.69% 60.09% 60.83% 59.69% 58.85% 60.07% 59.47% 59.10%
Abalone 100 66.55 65.91 65.16 65.47 64.13 63.12 64.18 64.12 64.06
Abalone 200 67.00 66.61 66.08 65.97 65.07 64.08 63.63 63.61 63.58
Abalone 500 67.77 67.48 67.09 67.63 66.87 65.79 64.24 64.23 64.22
DNA 50 49.59 49.25 49.14 49.28 49.13 49.08 49.77 49.18 47.99
DNA 100 54.08 54.04 54.02 54.04 54.04 54.01 52.78 52.29 52.02
DNA 200 56.24 56.19 56.16 56.20 56.18 56.13 53.33 53.18 52.66
DNA 500 60.90 60.87 60.82 60.92 60.90 60.84 53.57 53.57 53.56
E. coli 50 82.05 81.24 80.25 80.60 79.04 78.44 81.02 80.83 80.58
E. coli 100 84.06 83.60 82.78 83.23 81.56 80.55 82.97 82.90 82.78
E. coli 200 87.02 86.52 85.78 86.32 84.85 83.41 85.34 85.32 85.30
Glass 50 64.52 64.36 64.13 63.82 63.29 62.83 61.00 60.97 60.92
Glass 100 71.92 71.80 71.35 71.08 70.79 70.41 63.99 63.97 63.94
Glass 200 75.23 74.78 74.37 75.27 74.79 74.12 65.79 65.79 65.76
Iris 50 89.45 89.37 89.26 89.31 89.14 88.91 87.19 86.54 85.81
Iris 100 91.94 91.86 91.65 91.88 91.55 91.38 90.88 90.20 89.13
Iris 140 93.16 93.03 92.81 92.95 92.71 92.54 92.39 92.27 91.95
L. Sat 50 82.43 82.24 81.99 81.91 81.56 81.44 82.37 82.30 82.24
L. Sat 100 83.00 82.88 82.64 82.61 82.33 82.24 83.00 82.97 82.93
L. Sat 200 85.49 85.38 85.16 85.17 84.86 84.75 84.81 84.80 84.79
L. Sat 500 89.08 88.74 88.47 88.58 88.34 88.26 85.94 85.93 85.93
Letter 50 30.68 30.65 30.61 30.64 30.64 30.63 30.00 30.00 30.00
Letter 100 40.69 40.57 40.27 39.95 39.93 39.91 39.98 39.98 39.98
Letter 200 51.53 51.46 51.35 50.96 50.95 50.94 52.41 52.41 52.40
Letter 500 66.54 66.45 66.27 64.57 64.44 64.39 68.09 68.08 68.08
MNIST 50 53.76 53.76 53.38 53.80 53.80 53.72 51.88 51.86 51.85
MNIST 100 67.22 67.22 66.50 67.18 67.18 67.03 64.58 64.58 64.58
MNIST 200 77.53 77.53 76.76 77.51 77.51 77.34 75.40 75.40 75.40
MNIST 500 85.82 85.80 85.08 85.62 85.61 85.44 83.65 83.65 83.65
Segment 50 77.72 77.63 77.53 77.71 77.58 77.46 75.35 75.02 74.65
Segment 100 83.74 83.71 83.61 83.90 83.82 83.67 81.86 81.82 81.77
Segment 200 87.86 87.79 87.63 87.85 87.82 87.74 85.48 85.46 85.44
Shuttle 50 90.85 90.84 90.83 90.76 90.76 90.72 90.22 90.15 90.08
Shuttle 100 94.31 94.29 94.18 93.95 93.94 93.92 93.91 93.89 93.84
Shuttle 200 97.02 97.01 96.95 96.88 96.85 96.81 96.29 96.28 96.28
Shuttle 500 98.60 98.53 98.41 98.40 98.30 98.25 97.68 97.68 97.67
Vehicle 50 61.06 61.02 60.70 60.91 60.89 60.69 58.13 57.86 57.56
Vehicle 100 66.28 66.28 65.99 66.14 66.14 66.03 63.36 63.14 62.86
Vehicle 200 70.13 70.07 69.85 70.01 69.97 69.88 67.63 67.58 67.51
Vehicle 500 75.26 74.36 73.89 74.66 74.13 73.95 71.23 71.16 71.03
Vowel 50 46.61 46.61 46.48 46.60 46.60 46.57 46.76 46.76 46.76
Vowel 100 61.61 61.58 61.37 61.48 61.48 61.45 62.08 62.07 62.06
Vowel 200 77.73 77.65 77.54 77.78 77.77 77.74 77.76 77.75 77.75
Vowel 500 95.00 94.87 94.83 95.20 95.20 95.16 94.52 94.52 94.52
Wine 50 93.17 93.17 93.12 93.16 93.16 93.12 93.32 93.30 93.25
Wine 100 94.26 94.23 94.21 94.21 94.20 94.20 94.24 94.22 94.20
Wine 150 95.29 95.29 95.27 95.29 95.29 95.28 94.85 94.82 94.81
Yeast 50 48.36 47.60 46.98 47.21 46.39 46.09 47.99 47.71 47.44
Yeast 100 52.57 51.63 50.74 50.66 49.11 48.56 51.58 51.57 51.55
Yeast 200 55.00 54.28 53.16 53.01 50.55 49.60 53.06 53.05 53.02
Yeast 500 60.26 59.27 57.75 55.92 51.95 49.88 54.89 54.89 54.89

Notes: The kernel used is exp(− γ||xx′||2/M)), such that the radial basis functions are normalized to the number of features. The performance shown is based on the leave-of-out calculation of Ns samples run over 100 different realizations. The performances of all explored metaparameters for C = 0.1 to 50 and γ = 5, 10 are pooled and sorted. The table shows the average performance of the 10%, 25%, and 50% best models. In most of the cases, the inhibitory SVM outperforms the rest, with Weston-Watkins being competitive for smaller sizes and 1-versus-all becoming competitive for Ns ≥ 200.