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Abstract
The degree of applicability of chemogenomic approaches to protein families depends on the
accuracy and completeness of pharmacological data and the corresponding level of
pharmacological similarity observed among their protein members. The recent public domain
availability of pharmacological data for thousands of small molecules on 204 G protein-coupled
receptors (GPCRs) provides a firm basis for an in-depth cross-pharmacology analysis of this
superfamily. The number of protein targets included in the cross-pharmacology profile of the
different GPCRs changes significantly upon varying the ligand similarity and binding affinity
criteria. However, with the exception of muscarinic receptors, aminergic GPCRs distinguish
themselves from the rest of the members in the family by their remarkably high levels of
pharmacological similarity among them. Clusters of non-GPCR targets related by cross-
pharmacology with particular GPCRs are identified and the implications for unwanted side-
effects, as well as for repurposing opportunities, discussed.
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Introduction
G protein-coupled receptors (GPCRs) are extremely versatile signaling proteins involved in
many physiological processes [1]. Because of that, they are highly relevant in a wide range
of therapeutic indications and thus they constitute a target superfamily of utmost importance
in drug discovery [2]. Sequence analyses have recognised over 800 GPCRs in the human
genome, of which approximately 50% of them are expected to exert their biological function
in response to endogenous small molecules [3]. At present, ligands have been identified for
the majority of these GPCRs but there remain more than 100 orphan GPCRs for which
endogenous ligands have yet to be assigned [4]. Complementing phylogenetic relationships
with a deeper understanding of the patterns observed in the interaction profile of small
molecules across GPCRs may become a useful deorphanisation strategy [5].
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In recent years, the capacity to screen large chemical libraries on multiple GPCRs has
increased dramatically and, most importantly, in many cases the bioactivity data generated
has become available in the public domain [6]. In addition, several informatics efforts
aiming at extracting and storing chemical structures for which pharmacological data have
been reported in bibliographic sources have contributed significantly to expand our
knowledge base on ligand-GPCR interactions [7]. Collectively, these data have enabled the
characterisation of the property space relevant for GPCR activity [8,9] and for identifying
the presence of privileged substructures in GPCR ligands [10-12]. This information can be
exploited in the design of GPCR-directed chemical libraries with optimal coverage across its
members [13]. Furthermore, these data have revealed that active GPCR ligands tend to have
exceptionally high levels of target promiscuity, in particular for class A aminergic GPCRs
[14-17], making chemogenomic strategies especially adequate to GPCR drug discovery
[18-23].

The broad target promiscuity observed for GPCR ligands is a reflection of the inherent
similarity among the transmembrane binding cavities of GPCRs [18,22]. The idea that
closely related targets will bind similar ligands has led to the concept of pharmacological
similarity, commonly referred to as cross-pharmacology [24]. In this respect, GPCRs are
recognised to have levels of cross-pharmacology significantly above those observed within
other protein families [17]. For example, based on a large set of screening data available
from proprietary and commercial sources, Paolini et al. [25] identified among the most
intense cross-pharmacology relationships those within and between class A aminergic and
peptidic GPCRs. Using a much smaller set of pharmacological data from both public and
commercial sources, Gregori-Puigjané and Mestres [15] revealed that aminergic GPCRs had
particularly intense pharmacological similarities with opioid receptors but also with two
non-GPCR proteins, namely, sigma-1 and NMDA. The identification of cross-pharmacology
signals among proteins can be naturally exploited to predict putative novel targets for drugs
but also to anticipate potential adverse drug reactions. Under this premise, Keiser et al.
[26,27] identified several novel drug-GPCR interactions that were then successfully
confirmed experimentally and Garcia-Serna and Mestres [28] used recently comparative
pharmacology to predict the likely side-effect profile of GPCR drugs.

The current main limitation of cross-pharmacology analyses of proteins is that coverage of
both chemical space and pharmacological data along target space are largely incomplete
[29]. As new data are collected, they may modulate the levels of cross-pharmacology
perceived previously but may reveal also new cross-pharmacology relationships for GPCRs.
The recent explosion of publicly available pharmacological data calls for an up-to-date in-
depth cross-pharmacology analysis of GPCRs.

Reference Framework
When performing pharmacological similarity analyses of target families, one should keep in
mind that the final perception of the cross-pharmacology between two targets depends on
the reference framework used [30]. This comprises three aspects: the number and diversity
of ligands for which pharmacological data is known, the molecular descriptors used to
represent ligands mathematically and the index to assess their similarity, and the chemical
similarity and biological activity criteria set.

Chemogenomic Databases
The construction of chemical libraries annotated with pharmacological data opened an
avenue to performing family-wide cross-pharmacology analyses of protein targets. Private
initiatives, such as BioPrint [31], Wombat [32], and MDL Drug Data Report (MDDR) [33],
were pioneering in this respect. Therefore, most of the cross-pharmacology analyses
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reported to date were based either on internal proprietary data [25] or on those commercial
databases [15, 23-26]. However, recent efforts on delivering publicly available well-crated
chemogenomic databases have finally opened cross-pharmacology analyses to the entire
scientific community. The list of available public databases is in constant growth and it
currently includes GLIDA [34], PDSP [35], BindingDB [36], lUPHARdb [37], PubChem
[38], ChEMBLdb [39], hGPCR-lig [40], and DrugBank [41]. The cross-pharmacology
analysis of GPCRs performed by Gregori-Puigjané and Mestres [15] made use of
BindingDB and the recent work by van der Horst et al. [23] was based on GLIDA, PDSP,
and ChEMBLdb. As databases are continuously updated, Table 1 contains a summary of the
number of ligands, GPCRs, and ligand-GPCR interaction data collected from the latest
releases of seven public sources. A total of 196,074 unique interactions between 93,068
ligands and 204 GPCRs were compiled, of which 180 are human GPCRs sharing at least one
bioactive ligand with another GPCR (list provided as Supplementary Material). Among the
pharmacological data available, affinity data (pKi) were extracted from five public sources,
namely, ChEMBLdb, PDSP, IUPHARdb, BindingDB, and PubChem, and represent 48.3%,
81.9%, and 54.9% of the total number of unique ligands, GPCRs, and interactions,
respectively. With the exception of PDSP, the other four sources contain also an important
number of additional functional data (pIC50 and pEC50) that together represent an additional
41.7%, 12.6%, and 36.9% of the total number of unique ligands, GPCRs, and interactions,
respectively. Finally, two public sources, namely, hGPCR-lig and DrugBank, do not contain
quantitative pharmacological data but contribute to expand GPCR space with additional
non-numeric bioactivity annotations. It ought to be clarified that if a ligand had different
values of the same interaction type for exactly the same target interaction (either within the
same database or across databases), an average interaction value was assigned. A systematic
analysis of the variations found in compounds with multiple interaction data of the same
type for the same target revealed an average standard deviation of ca. 0.5 log units,
irrespective of the value range.

Molecular Descriptors
Similarity assessment between ligands requires that chemical structures are encoded using
some sort of mathematical descriptors. The choice of a particular type of molecular
descriptor may ultimately have a subtle influence on our perception of the cross-
pharmacology between targets. Interestingly, recent cross-pharmacology analyses of GPCRs
have been performed on essentially different types of molecular descriptors. Hert et al. [24]
and Keiser et al. [26] used up to six types of topological fingerprints, including 2048-bit
Daylight [42], 988-bit Unity [43], 166-bit MDL keys [44], 1024-bit ECFP4 [45], 1024-bit
FCFP4 [45], 1200-bit CATS [46], and one type of three-dimensional structural fingerprint,
FEPOPS [47]. In contrast, van der Horst et al. [23] utilised frequencies of substructures
present in bioactive ligands [48], whereas Gregori-Puigjané and Mestres [15] employed a
reduced set of 10 feature-based topological Shannon entropy descriptors (SHED) [49]. The
latter will be applied here in the cross-pharmacology analysis of GPCRs based on the most
updated publicly available chemogenomic databases (vide infra). In addition, the
(dis)similarity index used on the particular selection of molecular descriptors may have also
an effect on the final perception of the cross-pharmacology between targets. In this respect,
while Hert et al. [24] and Keiser et al. [26] relied on the use of Tanimoto coefficients to
assess ligand similarity, van der Horst et al. [23] applied Pearson correlation coefficients and
Gregori-Puigjané and Mestres [15] used a Euclidean distances. The cross-pharmacology
analysis of GPCRs presented here (vide infra) will describe ligands with SHED and will use
Euclidean distances to assess their (dis)similarity.
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Cross-Pharmacology
The number of similar bioactive ligands between two targets determines its level of cross-
pharmacology. However, the exact definition of both similar and bioactive needs to be
specified, as those criteria will have a direct impact on the strength of the cross-
pharmacology signals detected. In this respect, Paolini et al. [25] took the similarity criteria
to the limit of identity and used an activity window instead of a threshold to decide whether
a compound is shared between two targets only if itself has less than an n log difference in
potency. In contrast, Keiser et al. [26] considered that two compounds contribute to the
cross-pharmacology of a pair of targets if the similarity between their Daylight fingerprints
is above a Tanimoto coefficient of 0.57 and both have at least 10 μM affinity for their
respective targets, the same bioactivity cut-off applied also by Gregori-Puigjané and Mestres
[15] and van der Horst et al. [23]. However, a systematic study of the effect that similarity
and bioactivity criteria have on the cross-pharmacology between targets is still missing.

Cross-Pharmacology Profiles and Scores
The cross-pharmacology profile of a given target is defined here as the list of targets having
at least one similar bioactive ligand. For each one of the 180 human GPCRs (provided as
Supplementary Material), two cross-pharmacology profiles were derived: one within GPCRs
(internal) and another one within non-GPCRs (external). The concept of Shannon entropy
[50] is then applied to determine the variability in the number of similar bioactive ligands in
a cross-pharmacology profile. Within this approach, the entropy, S, of a total number of
similar bioactive ligands, L, shared with a certain number of targets, T, is given by

where pi and li are, respectively, the probability and the number of similar bioactive ligands
at each target i of the cross-pharmacology profile. The values of S range between 0,
reflecting the situation of all similar bioactive ligands being concentrated in a single target,
and a maximum number, Smax = lnT, reflecting the situation of a uniformly distributed
population of similar bioactive ligands among multiple targets. In order to have a more
intuitive measure that can be linearly related to the situation of full uniform occupancy,
entropy values are transformed into projected entropy values, E = es . Correspondingly, E
values provide a measure of the expected maximum uniform occupancy from the
corresponding S value. Now, for any given ligand population L > 0, the values of E can vary
from 1, reflecting the situation of zero entropy in which the population is totally
concentrated in a single target, to T, reflecting the situation of maximum entropy in which
the population is uniformly distributed among all targets. In the limit case of L = 0, then E
will be assigned to E = 0. This E value will be used here as a cross-pharmacology score. The
bias, B, in the distribution of the ligand population is given by 1 − E/T.

To illustrate the different concepts, Fig. (1) depicts the internal and external cross-
pharmacology profiles for the adenosine 2B receptor (ADORA2B) when taking a distance
threshold of 0.2 (ligands between two targets are considered similar if their SHED Euclidean
distance is less than or equal to 0.2) and a bioactivity threshold of 7.0 (ligands between two
targets are considered bioactive if their similar ligands have pKi, pIC50, or pEC50 values
larger than or equal to 7.0 for both targets). The internal cross-pharmacology profile Fig.
(1a) is composed of 1,487 similar bioactive ligands distributed across 16 GPCR targets. As
can be observed, the distribution is highly biased (Bi = 0.76) towards the three other
adenosine receptor subtypes, as reflected by a cross-pharmacology score close to 3 (Ei =
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3.81). In comparison, the external cross-pharmacology profile Fig. (1b) contains only 60
similar bioactive ligands distributed across 16 non-GPCR targets. Whereas the maximum
number of similar bioactive ligands with a GPCR target (adenosine 2A receptor) was 563,
the corresponding number with a non-GPCR target (the ion channel Gamma-aminobutyric
acid receptor subunit alpha-1) is 24, which gives a good impression of the significantly
different degree of internal and external cross-pharmacology. In comparison with the
internal profile, the external cross-pharmacology profile is less biased (Be = 0.46) and the
population of similar bioactive ligands is more evenly distributed across the targets (Ee =
8.68). This type of analysis was performed for the 180 human GPCR targets covered in this
work.

Cross-Pharmacology Analysis
In an attempt to address the issue of how different similarity and bioactivity criteria affect
the cross-pharmacology of targets, variations in the cross-pharmacology profiles of all
GPCR targets were studied through systematic scanning of distance (d) and bioactivity
(pAct) criteria. Seven distance criteria were applied. The tightest one (d=0.0) considered
cross-pharmacology only when a “descriptor collision” between ligands bioactive to any two
targets occurred. Note here that descriptor collision does not strictly correspond to structural
identity since some atomic mutations may ultimately lead to exactly the same feature-pair
distribution [49]. A distance window of d ≤ t allows for contributing to the cross-
pharmacology of targets all bioactive ligands within a Euclidean distance smaller than or
equal to a given threshold t. Based on previous validation studies [15], threshold t values
ranged from 0.1 to a maximum of 0.6, in intervals of 0.1. Five bioactivity criteria were
applied, with bioactivity windows of pAct≥ t, threshold t values ranging from 5 (10 μM) to
9 (1 nM), in intervals of 1 log unit (using the negative log scale). In total, all cross-
pharmacology profiles obtained from the thirty-five combinations of distance and bioactivity
thresholds were explored.

As an illustrative example, changes in the cross-pharmacology perception of the histamine
HI receptor (H1R) upon varying distance and bioactivity thresholds are shown in Fig. (2).
Two main effects, reproduced in the cross-pharmacology profiles of the other GPCRs, are
worth discussing. First, as the bioactivity threshold is set towards higher potency (pAct from
5 to 9), the cross-pharmacology scores (Ei and Ee) decrease significantly, meaning that
fewer GPCRs, but also fewer non-GPCR targets, are related to H1R by cross-pharmacology.
Notably, the level of cross-pharmacology of H1R with other GPCRs is, under all pAct
thresholds, clearly higher than with non-GPCR targets. In this particular case, when the
bioactivity threshold changes from pAct ≥ 6.0 to pAct ≥ 7.0, the cross-pharmacology
relative to non-GPCR targets is severely reduced, whereas the cross-pharmacology relative
to GPCR remains largely unaffected. This is most indicative of the fact that as one moves
towards more stringent bioactivity criteria, the probability of hitting any unwanted non-
GPCR target decreases significantly. Second, as the distance threshold is enlarged to allow
for similar compounds to be considered, both internal and external cross-pharmacology
scores increase steadily. As can be observed, the H1R cross-pharmacology profile shrinks
from 150 targets for the most relaxed criteria (d ≤ 0.2 and pAct ≥ 5.0) to just 19 targets for
the most stringent criteria (d = 0.0 and pAct ≥ 9.0). In this respect, more stringent criteria are
likely to highlight potent promiscuous GPCR antagonists for which, more often than not,
H1R antagonism is an unwanted side effect (drowsiness), for centrally acting H1R
antagonists, rather than the therapeutic effect in itself (antiallergic), for peripherally acting
H1R blockers [51].

Having explored the effects of the various distance and bioactivity criteria on the final
perception of the cross-pharmacology of targets, the relationship between the degree of
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internal and external cross-pharmacology (as measured by Ei − Ee) and the number of
ligands considered to evaluate the respective cross-pharmacology scores (as measured by Li
− Le) was revised. The results under two essentially different sets of criteria are illustrated in
Fig. (3). Using a set of rather stringent criteria (d = 0.0 and pAct ≥ 8.0), it is observed that
class A aminergic GPCRs clearly differentiate from the rest of GPCRs Fig. (3a). On one
hand, they show a comparably large bias towards wider cross-pharmacology among GPCRs
than among non-GPCR targets, with 57% of class A aminergic GPCRs having Ei − Ee ≥ 5.0
compared to the 5% and 0% of peptidic and other GPCRs, respectively. On the other hand,
they also are amongst the ones showing the largest differences in the amount of ligands
shared with GPCRs relative to non-GPCR targets, with 65% of class A aminergic GPCRs
having Li−Le≥500 compared to the 6% and 0% of peptidic and other GPCRs, respectively.
In particular, the histamine H1 receptor is the aminergic GPCR with the largest difference
between internal and external cross-pharmacology (Ei − Ee= 24.0) and the adrenoceptor α1A
is the one with the largest difference between the amount of ligands shared with GPCRs and
non-GPCRs (Li − Le = 2,729). Of mention is the case of muscarinic receptors (CHRMs), the
only aminergic GPCRs showing negative values for the difference in cross-pharmacology
scores. Close inspection of their cross-pharmacology profiles reveals that, unlike the rest of
aminergic GPCRs, this is caused by the relatively low strength of the cross-pharmacology
outside their own subfamily, very much in agreement with the results from recent clustering
analyses of GPCR binding site sequences [22,23] and the difficulties for obtaining subtype
selective compounds via an orthosteric mechanism [52].

The use of more relaxed criteria (d ≤ 0.2 and pAct ≥ 6.0) offers a different view of the cross-
pharmacology of GPCRs discussed above Fig. (3b). The most significant change is the clear
spread by some non-aminergic GPCRs towards larger negative values of the difference
between internal and external cross-pharmacology scores, reflecting wider cross-
pharmacology profiles for non-GPCR targets. Among them, cholecystokinin (CCKs),
adenosine (ADORs) and cannabinoid (CNRs) receptors are the ones being most affected. In
all cases, this is due to the fact that, while their external cross-pharmacology has expanded
when similar low-potent ligands have been included in the analysis, their internal cross-
pharmacology has remained mainly concentrated within the members of each subfamily.
Remarkably, inclusion of similar low-potent ligands in the analysis had little effect on the
cross-pharmacology of aminergic GPCRs perceived under more stringent criteria Fig. (3a)
and, apart from the already noted odd muscarinic receptors, they all keep on appearing well
discriminated from the rest of GPCRs in a similar region of the picture.

To summarise in a more illustrative manner some of the results obtained from the cross-
pharmacology analysis of GPCRs, a cross-pharmacology network was constructed Fig. (4).
The use of stringent criteria (d ≤ 0.2 and pAct ≥ 9.0) allowed for focussing on some of the
strongest cross-pharmacology relationships identified. The central network in Fig. (4)
contains GPCR targets that are linked if they share highly potent similar ligands. As can be
observed, this network is composed mainly of class A aminergic GPCRs. Muscarinic
receptors are however notably absent in this network, due to their previously noted
inbreeding cross-pharmacology. The only non-aminergic GPCRs present in the central
network are the sigma-1 receptor and all opioid and adenosine receptors.

Also added in Fig. (4) is a related network composed solely of non-GPCR targets, namely,
sodium-dependent serotonin transporter (SLC6A4, also referred to as SERT or 5HTT),
nischarin (NISCH), monoamine oxidases (MAOA and MAOB) and phenylethanolamine N-
methyltransferase (PNMT). Targets in this network are linked because they share highly
potent similar ligands with GPCR targets and, in particular, they all share ligands with the
adrenoceptor α2C. SERT is likely to be linked to α2C due to the cross-link with the sodium-
dependent noradrenaline transporter (SLC6A2, also referred to as NET); nischarin appears
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to be a functional imidazoline I1 receptor [53] and related to α2C antagonists that have an
antihypertensive effect (e.g., moxonidine and tolazoline); MAO enzymes are known to have
a catabolic role in adrenergic pathways; and PNMT is also acknowledged to have an
anabolic role in adrenergic pathways (epinephrine biosynthesis). Therefore, this cluster
appears to be organised around ligands with antihypertensive and antidepressive indications,
which substantiates the need for stronger scrutiny with respect to unwanted side-effects but
also to repurposing opportunities. This provides a good representative example of the
potential implications that cross-pharmacology analyses can have for GPCR drug discovery.

Conclusions
Perhaps the main lesson learned from all the pharmacological similarity studies reported
thus far is that cross-pharmacology analyses are context-sensitive, as they depend on the
amount, quality, and type of pharmacological data available, the molecular descriptors used,
and the similarity and bioactivity criteria applied. With respect to data, one ought to consider
that in many instances the data available may reflect in part that pharmacological testing of
GPCR ligands outside the realm of its own family is more the exception rather than the
norm and thus, any conclusions drawn should be taken with caution and balanced with
regards to data completeness [29]. With respect to descriptors, one should be warned by the
different artifacts that may arise from the use of any type of mathematical representation of
ligands and that can partly distort the perception of cross-pharmacology for certain (or all)
targets. Finally, with respect to criteria, stringent similarity and bioactivity thresholds offer a
highly focused view of cross-pharmacology, often centered in a sub-family of receptors
(e.g., class A amine GPCRs). This type of analysis could be used in prophetic patents, in
particular when one lacks the resources to perform extended coverage for multiple receptor
types. On the other hand, more relaxed criteria (lower similarity and bioactivity thresholds)
highlight out-of-target-class potential interactions, which may indeed prove relevant in the
context of adverse events or drug repurposing, as well as a potential platform for lead
hopping.

Major technical advancements have allowed recently the determination of the first high-
resolution X-ray crystal structures of GPCRs and in the not so distant future representative
structures of key subfamily members are expected to become available [54]. With this
structural information in hand, the different cross-pharmacology relationships between
GPCRs observed at present indirectly from pharmacological similarity analysis of bioactive
ligands are likely to be rationally explained through comparative analyses of binding site
structures [55], opening an avenue for the design of safer, more efficacious, GPCR ligands
with customised pharmacological profiles [56].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cross-pharmacology profiles among (a) GPCR and (b) non-GPCR targets for the adenosine
2B receptor (ADORA2B). All numerical bioactivity data available (pKi, pIC50, and pEC50)
were considered and the criteria for shared ligands were set to d ≤ 0.2 and pAct ≥ 7.0. See
text for the definition of the different parameters (Li, Ti, Ei, Bi and Le, Te, Ee, Be).
Description of gene names is available as Supplementary Material.
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Figure 2.
Changes in the internal, Ei, and external, Ee, cross-pharmacology scores for the histamine
H1 receptor (H1R) upon varying distance and bioactivity thresholds. Size of circles reflect
the relative number of targets involved in the cross-pharmacology profile of H1R.
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Figure 3.
Difference between GPCR and non-GPCR cross-pharmacology, Ei − Ee, versus difference
in the number of ligands considered to evaluate the respective cross-pharmacology scores, Li
− Le, under two sets of criteria: (a) d = 0.0 and pAct ≥ 8.0 and (b) d ≤ 0.2 and pAct ≥ 6.0.
Description of gene names and subfamily abbreviations is available as Supplementary
Material, ○: aminergic GPCRs, □: peptidic GPCRs, Δ: other GPCRs.
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Figure 4.
Cross-pharmacology network between GPCR targets and a cluster of non-GPCR targets
connected by cross-pharmacology to GPCRs. GPCR targets linked share ligands under the
criteria of d ≤ 0.2 and pAct ≥ 9.0; non-GPCR targets linked share ligands under the same
criteria with the adrenoceptor α2C (marked with a dashed line). Description of gene names is
available as Supplementary Material.
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Table 1
Number of Ligands Interacting with GPCR Targets According to Bioactivity Data and
Annotations Available from Public Sources

Database No. Ligands No. GPCRs No. Interactions

Affinity Data (pKi)

ChEMBLdb 43,440 151 98,820

PDSP 1,667 127 9,309

IUPHARdb 514 74 1,625

BindingDB 464 30 855

PubChem 16 2 16

Total unique 44,960 167 107,638

Additional Functional Data (pIC50, pECSO)

ChEMBLdb 38,261 166 71,405

IUPHARdb 144 46 203

BindingDB 201 7 259

PubChem 140 7 213

Total unique 38,531 172 71,800

Cumulative unique 77,123 191 170,511

Additional Bioactivity Annotations

hGPCR-lig 18,581 152 29,450

DrugBank 380 97 827

Total unique 18,821 167 30,053

Cumulative unique 93,068 204 196,074
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