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Abstract

Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation,
providing integrated control of complex adaptive phenotypes®. Polymorphic supergenes, in which
specific combinations of traits are maintained within a single population, were first described for
‘pin’ and ‘thrum’ floral types in Primula* and Fagopyrun?, but classic examples are also found in
insect mimicry3-> and snail morphology®. Understanding the evolutionary mechanisms that
generate these co-adapted gene sets, as well as the mode of limiting the production of unfit
recombinant forms, remains a substantial challenge’~19. Here we show that individual wing-
pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with
different genomic rearrangements at the supergene locus ~. These rearrangements tighten the
genetic linkage between at least two colour-pattern loci that are known to recombine in closely
related species®11, with complete suppression of recombination being observed in experimental
crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable
patterns of linkage disequilibrium (LD) are observed across the entire Pregion. The resulting
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divergent haplotype clades and inversion breakpoints are found in complete association with
wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci
have become locked together in a polymorphic rearrangement at the Alocus, forming a supergene
that acts as a simple switch between complex adaptive phenotypes found in sympatry. These
findings highlight how genomic rearrangements can have a central role in the coexistence of
adaptive phenotypes involving several genes acting in concert, by locally limiting recombination
and gene flow.

The origin and maintenance of adaptive multi-locus polymorphism in the face of
recombination is a long-standing puzzle in evolutionary biology’1213 In some cases,
supergene architecture has evolved with tight linkage that maintains specific combinations
of alleles at neighbouring genes!-6. A notable illustration is provided by polymorphic
mimetic butterflies, in which several discrete forms, each resembling a different model, are
maintained in sympatry. Examples include Batesian polymorphism in Papilio dardanus®14
and Papilio memnor® and Miillerian polymorphism in the neotropical species Heliconius
numata*15. In each case, a single supergene locus controls coordinated differences in a
complex phenotype which can involve modifications of wing pattern and shape, body colour
and perhaps behaviour34. Mimetic patterns represent sharp fitness peaks corresponding to
locally abundant wing patterns, separated by adaptivevalleys in which selectionacts against
recombinant individuals with intermediate, non-mimetic phenotypes?.

Theoretical debate has centred on the constraints imposed on supergene evolution by
genomic organization, specifically whether loci must be tightly linked from the outset or
whether the association between elements can be acquired, either gradually or in a single
mutational step’~10:16-19 Chromosomal rearrangements, which can bring genes into closer
physical association and influence local recombination, offer one route through which
supergenes may be assembled from more loosely linked components’:8:17-19, Although
there are many cases of polymorphic inversions associated with adaptive variation12:20,
variation is in most cases geographical, rather than being maintained within populations, and
effects on local adaptation are cumulative. In contrast, supergenes are characterized by a
Mendelian switch between clearly defined combinations of traits in populations. Here we
investigate the genomic organization and population genetics of the Psupergene in H.
numata*° and identify a key role for structural variation in strengthening and maintaining
allelic associations within the supergene.

In H. numata, up to seven sympatric morphs coexist in local populations and each is an
accurate mimic of one of several available model species in another butterfly
family(Danainae: Melinaea)*®°. Each morph is controlled by a specific allele at 2 with
precise allelic dominance*15 (Fig. 1). Rare non-mimetic individuals that combine pattern
elements from different morphs are observed at a frequency of <0.7% in natural
polymorphic populations*15. These individuals, presumed to be recombinants, confirm the
existence of several functional elements in the locus. The genomic position of Pwas
previously shown to correspond to a cluster of three loci, HmN, HmYband HmSb, on
linkage group 15 in the closely related species Heliconius melpomene®, in which they
control distinct wing-pattern elements in geographical races. Other unlinked wing-pattern
loci in related species do not have large effects on H. numata mimicry921,

By fine-scale linkage mapping and positional cloning, we identified a chromosomal interval
of about 400 kilobases (kb) containing the H. numata P supergene, defined by the absence of
crossing over in 366 progeny from six broods (Fig. 2a). The orthologous region in H.
melpomene shows notable rates of recombination and contains two distinct colour-pattern
loci, HmYband HmSb, ~0.9 centimorgans (cM) apart!l. Although genome-wide estimates
of recombination rate in Heliconius are not available, markers adjacent to 2, markers
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elsewhere on linkage group 15, and markers in other linkage groups (Supplementary Table
1)? all show significantly higher rates of crossing over (chi-squared test of independence, P
= 3.8 x 1075), consistent with severe suppression of recombination at 2in H. numata.

To examine the gene content and genomic organization of the supergene, we sequenced an
approximately one-megabase (Mb) region centred on Pby screening a bacterial artificial
chromosome (BAC) library prepared from a mixture of individuals from a single
polymorphic population of H. numata (Supplementary Table 2). Colinearity and gene
content was generally conserved with H. melpomenel, but two BACs overlapping the P
interval showed distinct gene orders, both different from the order seen in H. melpomene
(Figs 2a, 3 and Supplementary Fig. 1). A third gene order, corresponding to the H.
melpomene reference, was detected by PCR (see below). Gene orientation near the
breakpoints on the H. numata clones indicated a minimum of two rearrangement events
compared to the reference, putatively involving 31 genes: a 400-kilobase (kb) segment
containing 18 genes from AN00023to HNOOO40 (breakpoint BP1), and a 180-kb segment
containing 13 genes from HN000O41to HNOOO53 (breakpoint BP2) (Fig. 3a and
Supplementary Fig. 1). The altered gene orders at 2 contrast with the colinearity of flanking
sequences between H. numata and H. melpomene (Supplementary Fig. 2 and Supplementary
Tables 3 and 4), as well as between more distantly related Heliconius species?2.
Furthermore, H. melpomene and the silk moth Bombyx mori, separated by about 100
million years of evolution, share a generally conserved gene order across this region11:23,
This supports the hypothesis that the gene rearrangements are evolutionarily derived and
associated with the evolution of this locus in the H. numata lineage.

The results from BAC-clone sequencing were extended to natural populations by performing
breakpoint-specific PCR on butterflies collected in the field (Fig. 3a and Supplementary
Table 5). Long-range PCR analyses of 31 individuals of four morphs revealed a complete
association between alternative rearrangements and specific wing-pattern phenotypes (Fig.
3b). Rearrangement BP1 was found in every H. numata bicoloratus and in no other morph,
as expected for the dominant Pallele, whereas BP2 was found in all intermediate dominant
forms (aurora and tarapotensis). All recessive silvanaindividuals were BPO homozygotes,
confirming that the reference gene order segregates in H. numata populations. Some
individuals with intermediate and dominant alleles had breakpoints that were lower in the
dominance series, reflecting their heterozygosity. To confirm the association on a larger
sample, short-range PCR assays primed closer to the breakpoints were performed on 156
individuals of six major morphs (Fig. 1 and Supplementary Tables 5-7). Short-range assays
were highly consistent with long-range assays (Supplementary Table 6). Natural populations
thus harbour at least three chromosomal arrangements in tight association with wing-pattern
phenotypes. A short-range PCR product from BP1 was not amplified in two of the 32
bicoloratus individuals tested. This could reflect PCR failure due to sequence variation at
BP1, or it may indicate that the BP1 breakpoint is not directly causative of the bicoloratus
phenotype, despite being strongly associated with the causative variant(s).

To assess whether the recombination suppression that is observed in crosses operates at the
population level, we estimated LD between nucleotide positions in and around ~. A notable
pattern of long-range LD was seen in tight association with the position of 2, mapped from a
survey of 17 markers sequenced in 59 individuals from the polymorphic population near
Yurimaguas (Figs 1 and 2c¢). Complete LD was found between high-frequency single
nucleotide polymorphisms (SNPs) across the 400-kb Pinterval, showing that long-range
haplotypes are maintained across the supergene. This haplotype structure decays rapidly
outside P. flanking markers lack the haplotype segregation found within £and show
comparable levels of LD to the levels seen in 12 unlinked markers (Fig. 2c and
Supplementary Fig. 3). Furthermore, within £, complete association was found between the
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divergent haplotypes and wing-pattern alleles. All recessive si/vana individuals were
homozygous for 39 SNPs in six genes across the Plocus, whereas aurora individuals were
heterozygous or homozygous for the alternative nucleotides (Fig. 2b, Supplementary Fig. 4
and Supplementary Table 5). Again, this complete association breaks down immediately
outside P (Fig. 2b and Supplementary Figs 4 and 5). Therefore, the divergent haplotypes
associated with wing-pattern alleles seem to be confined within the boundaries of the
polymorphic rearrangements and the position of the supergene.

Finally, to confirm that the haplogroups are associated with phenotype and are not due to
local population processes, we screened a population of H. numata from French Guiana,
situated 2,900 km from Peru but harbouring phenotypically similar morphs (s//vana and
numata, Supplementary Table 5)4. The same two haplotype groups were found, and
breakpoint PCR and haplotype clades were perfectly associated with corresponding
phenotypes in both locations (Supplementary Fig. 6 and Supplementary Table 6). The
association between mimicry polymorphism, local rearrangements and divergent haplotype
blocks therefore seems to be conserved across the Amazonian range.

Our results show that the supergene is characterized by a 400-kb chromosomal block that is
sharply structured into distinct haplotype clades separated by 1-4% divergence. These
clades correspond to different wing-pattern alleles, segregate consistently with the allelic
dominance and are associated with the chromosomal rearrangements (Fig. 2d and
Supplementary Figs 3 and 4). This situation stands in stark contrast to the related species H.
melpomene and H. erato, in which several independent wing-patterning loci are under
directional selection, and in which markers surveyed in the orthologous region showed no
fixed nucleotide differences between colour-pattern races, and no long-range LD1924, The P
supergene architecture, associated with mimicry polymorphism under balancing selection in
H. numata+1, is thus evolutionarily characterized by non-recombining co-adapted blocks
that cag)gure distinct wing-pattern genes that are known to recombine in other species of the
clade1024,

In summary, the four strands of evidence, namely fine-scale comparative mapping,
association of three chromosomal arrangements with morphs, SNP—phenotype association at
P, and long-range LD and divergent haplotype clades, all indicate that the rearrangements
lock together distinct elements involved in wing-pattern evolution, providing long-awaited
evidence for a situation that may apply to the evolution of supergenes in other
systems’-16-19 Together, the data begin to explain how distinct loci that control
geographical variation in some species'911 can become locked together in others. Our
results highlight the role that structural variation can have in generating co-adapted gene
complexes involved in adaptation and speciation812.19.20.25 and open the way to the study
of their functional integration.

The next challenge will be to identify the sites that are causally involved in the elements of
pattern variation in H. numata, a goal hindered by reduced recombination within 2, which
limits the power of fine mapping to dissect the locus. Instead, functional studies of genes in
the interval and analysis of rare recombinants will be important. Notably, 2 seems to be a
hotspot of adaptation in several other species?6, including the melanic peppered moth?’, and,
along with other colour-pattern regions, is linked to assortative mating and speciation in
other Heliconius species?8-30, Unravelling the genetic nature of the elements that contribute
to the supergene will therefore be key to understanding the mechanisms and sequence of
events underlying the clustering of adaptive traits in rearrangements that are associated with
ecological divergence.
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METHODS

Chromosome walking

A BAC library was constructed by Amplicon Express from five individual larvae from a
polymorphic population of H. numata segregating for the forms bicoloratus, tarapotensis and
arcuella. The BAC library has an estimated 119-kb average insert size and x7 coverage of
the 319-Mb genome. It was printed onto nylon filters and screened using 11 radiolabelled
PCR probes designed to span the orthologous genomic sequences from an H. melpomene
BAC library®11, The BAC library was also fingerprinted by restriction digest, and
overlapping clones were predicted from analysis of a fingerprinted contig (FPC) database.
Fifty-three BAC clones were identified and tested for positive amplification of the original
probes. Nineteen H. numata clones were sequenced by the Wellcome Trust Sanger Institute
to high-throughput-genomic (HTG) phase 3 quality, totalling 2.9 Mb of overlapping
genomic sequence. Because of the multiple chromosomal arrangements found in this region,
and the fact that the clones sequenced come from chromosomes with differing gene orders
as a consequence, it is impossible to reconstruct a single linear tilepath of clones at this
stage. On the basis of reciprocal BLASTS of the clone sequences, the tilepath covers 0.95
Mb centred on A, consisting of four ‘floating’ contigs, two of which lie within the
recombination interval of £and show different gene orders. A gap in the BAC chromosomal
walk, estimated to be approximately 150 kb, remains between clones 7C9 and 14K13
despite extensive screening of the library. However, the gene markers ARP-like (HmM00028)
and Pros54 (Hm00030), predicted from the reference Heliconius sequence to lie in the
middle of this gap, do indeed map in full linkage with other markers on either side of the
gap, indicating the gene content of the gap is probably conserved. Two additional contigs of
clones were identified and sequenced approximately 350 kb and 900 kb from the end of the
tilepath further down the chromosome (Fig. 2a and Supplementary Table 2). Sequence
similarity was plotted using the software Vista31-32, with a 70% identity threshold and a
100-bp sliding window (Supplementary Fig. 2).

Linkage mapping

Male-informative markers were used to score crossing over events between markers linked
and unlinked to P. Female Lepidoptera have achiasmatic meiosis, so crossing over only
occurs during gametogenesis in the male parent. Thirty-six PCR-based markers were
designed from BAC sequences and genotyped by visualization of differences in amplicon
size, by restriction fragment length polymorphism, or by sequence variation, in 366
individuals from six mapping families (B377, B465, B472, B502, B523 and A298 (refs 9,
11)). This was used to circumscribe the P supergene and orientate the tilepath by
recombination. Special emphasis was given to the regions near the first crossover on either
side of the supergene, for a precise positioning of the mapping boundary. The three
recombinants with 2on one side, and two recombinants on the other side, ensured that P
was circumscribed and in full linkage with markers in an interval estimated to be about 400
kb (using a 0.92 scaling factor for H. numataversus H. melpomene genomic sequence, on
the basis of sequences available for this region). The same procedure was used to score
recombination events in unlinked regions using two sequenced BAC clones (b HN20L 19 and
bHM7E22) from unlinked chromosomes and three mapping families (Supplementary Table
1).

BAC gene annotation

Transcriptome sequencing, assembly and genomic annotation were performed as described
elsewherell, Briefly, annotation and gene predictions in all sequenced BACs
(Supplementary Fig. 1 and Supplementary Table 3) were carried out with the Maker
annotation pipeline33, using 600K expressed sequenced tags generated with Roche 454 FLX
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pyrosequencing (200-base average read length) and assembled using the Mira assembler3*
to yield 24,992 objects. Complementary DNA was generated from wing-disc tissue
extracted from juvenile stages from the Peruvian populations used throughout this study.
Large variations in non-coding content, as well as in the presence and identity of
transposable elements, were noted between clones within H. numata (Supplementary Table
4), causing some H. numata clones (for example, 14K13) to show a higher overall similarity
to the orthologous H. melpomene sequences (bHM29B7) than to other orthologous H.
numata clones (46M23 and 38G4). This indicates that the two H. numata chromosomal
segments with differing gene orders may be anciently derived.

and breakpoint analysis

Annotation of the BACs was used to identify exons within and outside the 2 mapping
interval; exon markers were PCR-amplified anddirect-sequenced for population-genetic
analysis (Supplementary Table 8). Unlinked markers were chosen following the method in
ref. 35. A total of 17 amplicons lying on linkage group 15, both within and outside the
region containing A, plus 13 amplicons on unlinked chromosomes, were sequenced in 48—
144 individuals (Supplementary Table 5) from a polymorphic population in eastern Peru.
This populations segregates predominantly for the forms si/vanaand aurora (including sub-
variants /isabellinus and elegans). In subsequent analyses, we combined the aurora variants
under the single class aurora, because the numerous phenotypic gradations that are found
between these forms contrast with the clearly distinct phenotypic form sifvana*1:36,
Furthermore, PCR assays of the rearrangement breakpoints and the absence of diagnostic
nucleotide differences also indicated that these variants could be combined.

Breakpoint PCR assays were carried out with primers designed from exonic sequences on
either side of each breakpoint (Supplementary Table 7). Fragments were amplified from 31
individuals with four different wing patterns (bicoloratus, tarapotensis, auroraand silvana)
using long-range PCR (Qiagen) following the manufacturer’s conditions, and were end-
sequenced to confirm fragment identity. A second, larger sample of 201 individuals
(including 161 from Peru and 40 from French Guiana) was assayed by standard (short-
range) PCR amplification (Fermentas DreamTaq) using primers positioned closer to the
breakpoints in unique non-coding DNA (Supplementary Table 7). Capillary sequencing of
markers and breakpoint assays was performed on an ABI 3730 capillary sequencer with
BigDye chemistry by the University of Edinburgh sequencing service (http://
genepool.bio.ed.ac.uk/). Sequencing ambiguities were resolved manually using CodonCode
Aligner (http://www.codoncode.com).

Phenotype-by-genotype associations

Association between genotype and phenotype was estimated for all polymorphic sites
(SNPs) within each marker, taking into account the dominance relationships between
different morphs. The Amazonian form of H. numatatermed silvana (widespread from
French Guiana to the Andean foothills) and its geographic replacement 7/lustris (Andean
valleys) are recessive to all other forms*9:36 which predicts that all si/vanaand illustris
individuals are homozygous at 7, whereas individuals of other, cooccurring forms can be
either heterozygous or homozygous for a different allele. We estimated the association
between genotype and phenotype by testing the hypothesis that the major allele should be
homozygous in si/vana individuals and heterozygous or absent in auroraindividuals. For
each polymorphic site with a minor allele frequency of at least 0.1, we calculated the
proportion of individuals whose genotype conformed to this hypothesis and tested the null
hypothesis of no phenotype—genotype association using Fisher’s exact test. This method
allows testing of the phenotype-by-genotype association while using knowledge of the
dominance relationships between Palleles.
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Linkage disequilibrium (LD) across the P supergene

LD was assessed for all pairs of polymorphic sites within and surrounding the Pregion, as
well as in 12 unlinked markers (Fig. 2c) in 59 specimens from a polymorphic population
near Yurimaguas, eastern Peru (Supplementary Table 5). We used genotypic correlation
based testing for LD with several alleles with unknown phase between sites3’. Significance
was tested by a permutation test for the genotypic correlation statistic /2 (ref. 37).

Haplotype networks

The phase of SNP variation was determined by analysing the segregation of alleles from
parent to offspring in markers sequenced from the mapping families, which originate from
the same populations as the population samples. Haplotypes from the population samples
were inferred by coalescent based Bayesian methods using the PHASE 2.1 algorithm38,
optimized by including sequences with known phase from mapping families. The high level
of LD across the region ensured a robust inference of haplotypic diversity for all markers.
Haplotype networks were constructed by parsimony using the Network package3949 (http:/
www.fluxus-engineering.com/). The level of genetic differentiation between the si/vana and
non-sifvana groups was estimated in DNAsp*! using the Fst statistics*2, and its significance
was tested by permutation (Supplementary Fig. 5). Fst was not used to test for genetic
differentiation among different populations, but rather to assess genetic differentiation
between two groups of individuals in a single population (s//vana versus non-si/vana). Even
high levels of genetic differentiation do not indicate the absence of random mating, but
rather that these sites are linked and/or that they co-vary with the functional loci that
determine the different mimetic morphs.
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Figure 1. Supergene allelesand mimicry polymorphism in H. numata

Polymorphic forms of H. numata each mimic different models in the distantly related genus
Melinaea (Nymphalidae: Danainae). Each form is controlled by a specific allele of the
supergene 2, with increasing dominance shown from left to right*®. Two parapatric regions
of northeastern Peru (T, Tarapoto and Andean valleys; Y, Yurimaguas and Amazon
lowlands) harbour different mimicry assemblages'®; dominance (<) is nearly complete
between forms within each region, but is incomplete (~) between certain pairs of alleles
from parapatric regions. In all other species studied in the genus Heliconius, wing pattern is
controlled by several large-effect loci on different chromosomes. In H. melpomene the
HmYb-HmSb-HmN complex is situated in the orthologous position to the H. numata P
supergene®. LG, linkage group.
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Figure 2. Fine-scale mapping and nucleotide variation at the P supergenein H. numata

a, Fine-scale linkage mapping of the supergene P (indicated by red arrows) to the interval
bounded by genes HN0O0020 and HN0OOO41. Recombinants were observed in crosses
totalling 366 individuals. Blue arrows indicate the position of the recombining loci HmYb
and HmSbin H. melpomene'l. HmN, which is known to be part of this cluster of loci, is not
fine-mapped in H. melpomene®11. Coloured blocks represent annotated gene regions on
forward and reverse strands (see Supplementary Fig. 1 and Supplementary Table 3 for
details). b, Association of SNP variation with mimicry polymorphism in a sample of 25
sflvanaand 34 aurora/arcuellaindividuals from a single population. Markers genotyped
across rearrangements BP1 (pink) and BP2 (blue) show perfect association of SNP variation
with wing pattern. No association was found in the flanking region from markers Fox
(Hn00106) to BmSuc (Hno0019), or at 12 unlinked loci (green). The association decays
more slowly in the direction of loci Bm5536 (GCP), Bm5586 (NudC) and Bm5593 (Srp68).
¢, LD heat map. Perfect LD (genotypic correlation coefficient /2 = 1) is found across 580 kb
spanning the BP1 and BP2 rearrangements (/7= 59). LD decays rapidly outside this interval,
although strong within-marker LD remains at HN00021. Markers that are unlinked to P
show little LD with each other or with 2. d, Haplotype network for marker LRR (Hn00024)
in the Yurimaguas population, coloured according to wing-pattern phenotype. Haplotype
clades separated by seven fixed differences are in complete association with wing pattern,
taking into account dominance relationships. Similar haplotype clades were found for all
loci genotyped within 2, and across the Amazon basin, but not for genes flanking Por in
unlinked regions (Supplementary Figs 4 and 6).
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Figure 3. Chromosomal rearrangements associated with the supergenein natural populations
a, Comparison of the gene orders found in the H. numata BAC library and wild populations.
The rearrangements involve the 400-kb segment from genes HM00023to HMO0040
(ERCCE6) (BP1, clones 24110 and 45B17), and the adjacent 180-kb segment from gene
HNO0041 (penguin) and HNOOO53 (lethal (2) giant larvae homologue) (BP2, clone 38G4).
Genes closest to the breakpoints are shown. b, Long-range PCR assays across alternative
breakpoints (BP0, BP1 and BP2) in wild populations show a perfect association of the
polymorphic gene orders with mimicry variation in four morphs from natural populations of
Eastern Perul®, following the dominance relationships (Fig. 1). The Yurimaguas population
segregates primarily for silvanaand aurora/arcuellaforms, associated with BPO and BP2,
respectively. The Tarapoto population segregates mainly for farapotensis and bicoloratus
forms, associated with BP2 and BP1, respectively. This population also harbours recessive
Hlustris alleles associated with BPO (Supplementary Table 6).
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